
Formal Proof of a Vulnerability in Z-Wave IoT Protocol∗

Mario Lilli a, Chiara Braghin b and Elvinia Riccobene c

Computer Science Department, Università degli Studi di Milano, Italy

Keywords: Z-Wave Protocol, IoT Security, MITM, Formal Verification, Abstract State Machine, ASMETA.

Abstract: Nowadays, IoT (Internet of Things) devices are becoming part of our daily life. Unfortunately, many of
them do not use standardized communication protocols with a provable security guarantee. The use of formal
methods is, therefore, highly demanded in order to perform property verification and to prevent possible
threats and accidents to users. In this paper, we propose a formal verification of the Z-Wave protocol, claimed
to be one of the most secure IoT communication protocols thanks to the new S2 Security class, recently
added. Specifically, our analysis targets the joining procedure of a device to the Z-Wave net. We exploit the
ASMETA formal framework to model the protocol and to perform formal analysis in terms of model validation
against informal documented requirements and verification of the protocol correct behaviour with respect to
its security goals. The verification process revealed a vulnerability that could be used to perform a successful
Man-In-The-Middle (MITM) attack compromising the secrecy of the exchanged symmetric keys.

1 INTRODUCTION

Nowadays, millions of IoT (Internet of Things) de-
vices (e.g., alarms, door locks, lights, sensors, etc.)
are becoming part of our daily life. They are used
in very different applications that in many cases are
security and safety critical services, as for example
gas monitoring, home door opening, etc. Installing
vulnerable or unsafe devices might have serious con-
sequences in terms of user’s privacy and safety, and
many alliance of corporations are adopting security
procedures to protect the traffic generated by their
protocols. Nevertheless, the approaches adopted to
meet security requirements have often proven to be
insufficient, and many of them do not use standard-
ized communication protocols with provable guaran-
tee of security and safety, which can be achieved only
by means of formal verification (Hofer-Schmitz and
Stojanović, 2020).

Among the plethora of IoT security protocols, the
Z-Wave protocol (Z-wave, 2020) is considered the
most promising in terms of security features offered.
It is a communication protocol designed primarily for

a https://orcid.org/0000-0001-7236-9171
b https://orcid.org/0000-0002-9756-4675
c https://orcid.org/0000-0002-1400-1026
∗The work was partially supported by the SEED Project
“Situational awareness in critical Infrastructure Environ-
ment (SENTINEL)”, Università degli Studi di Milano.

home automation, and security is provided by mes-
sage encryption. It was proprietary for long time,
and this is the reason why the protocol has not been
largely investigated in literature. It became publicly
available only in 2017, then it has been updated with
a new security layer (S2 Security), overcoming the
shortcomings of the previous S0 security layer which
was found vulnerable (Fouladi and Ghanoun, 2013).

In this paper, we propose a formal verification of
the Z-Wave protocol with S2 security layer in terms
of the Abstract State Machine formal method (Börger
and Raschke, 2018; Börger and Stärk, 2003) and we
exploit the validation and verification techniques of-
fered by the supporting framework ASMETA (Ar-
caini et al., 2011). More precisely, our protocol anal-
ysis targets the joining procedure of a device to the Z-
Wave network, which involves the use of S2 security
class. It defines the key establishment phase, where a
new joining device negotiates with the controller the
symmetric keys that it will use to secure all commu-
nications with the other nodes of the network.

In order to verify if the protocol security goals are
satisfied, we also formalised a malicious adversary,
able to intercept and craft messages. Then, the for-
mal verification of the joining procedure revealed a
feasible Man-In-The-Middle (MITM) attack. Indeed,
the model checker returned a path showing how an at-
tacker obtains all the encryption keys exchanged dur-
ing the joining procedure. We reported the vulner-

198
Lilli, M., Braghin, C. and Riccobene, E.
Formal Proof of a Vulnerability in Z-Wave IoT Protocol.
DOI: 10.5220/0010553301980209
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 198-209
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ability to Silicon labs and Z-Wave Alliance. They
confirmed that the attack works for one authentica-
tion method, is previously unknown, and is feasible
in practice. To avoid the exploitation of the flaw, an
improved version of the protocol, called SmartStart,
employs a QR code scan of the DSK (Device Specific
Key) that renders the attack infeasible by removing
human operator error from the attack scenario.

The contribution of the paper is threefold:
• A rigorous and precise description of the Z-Wave

protocol with S2 security layer, overcoming the
limitation of a fragmented and unclear documen-
tation of the protocol.

• A scenario-based validation to check our model
against the protocol requirements.

• Verification of the protocol security goals with the
detection of a MITM attack (confirmed by proto-
col designers).
The rest of the paper is organised as follows. In

Sect. 2 we briefly review existing results on formal
methods in the context of IoT security protocols. Sect.
3 presents in a concise way the theory behind the
ASM formal method and the ASMETA framework
with its analysis approaches; it also introduces the op-
eration of Z-Wave. Sect. 4 presents the ASM formal
modeling, validation and verification of the protocol,
together with the attacker model and the description
of a feasible MITM attack. Sect. 5 concludes the pa-
per and outlines future research work.

2 RELATED WORK

Specification and verification of IoT protocols is a re-
cent topic in the context of formal methods, and small
literature exists in this area. A comprehensive re-
view on formal methods for IoT protocols is given
in (Hofer-Schmitz and Stojanović, 2020). The pa-
per gives details both on the properties taken in con-
sideration, and on the methods applied. Moreover,
they identify four areas for the application of formal
methods: i) a functional area, concerning the veri-
fication of protocol stack and key management; ii)
a second one, regarding the extension of the proto-
col with provable enhanced security features; iii) a
third area on the evaluation of security properties; and
iv) the last one on the implementation verification.
Among IoT protocols, the mostly analised are Zigbee,
LoRaWAN, Bluetooth, Narrowband IoT, 6LoWPAN,
5G. Z-Wave has small literature since it has been pro-
prietary for a long time. To the best of our knowledge,
the only contribution on formal methods applied to Z-
Wave protocol is that in (Mohsin et al., 2017). It in-
vestigates the possibility of flaws generated by wrong

configurations in Z-Wave scenes.
The Zigbee protocol is analyzed in (Melaragno

et al., 2012) by using AVISPA and Casper, where
the existence of a known security flaw is discov-
ered. AVISPA, in combination with the graphical tool
SPAN, allows a sort of protocol runtime verification
where Message Sequence Charts are built during the
protocol execution and are used to check if the execu-
tion performs consistently with the expected message
exchange (Armando et al., 2005; Viganò, 2006).

Two versions of LoRaWAN are compared in (El-
defrawy et al., 2019) using models specified with
Scyther: for LoRaWAN v1.0, they find some flaws
already known in the literature, while they do not
find any evident vulnerability in v1.1. However,
they claim that this is possibly due to the limita-
tion of Scyther in terms of verification capabilities
and the Dolev-Yao assumption of perfect cryptogra-
phy (Dolev and Yao, 1983), under which the protocol
analysis is conducted.

Some of the Bluetooth protocol versions have
been verified with formal methods. Version v5.0-Part
I has been checked by Sun and Sun (Sun and Sun,
2019); they perform a formal analysis of the secure
simple pairing (SSP) that constitutes a considerable
part of the security in home automation scenarios.
Four different models are used depending on the ca-
pability of the device, but they all resist passive eaves-
dropping and MITM attacks.

Two schemas for the 6LoWPAN protocol have
been verified. (Qiu and Ma, 2016) proposes a se-
cure Proxy Mobile IPv6 (MPIPv6) that prevents some
attacks, including replay attacks, man-in-the-middle
attacks, privileged insider attacks and Sybil attacks.
The attacks and the schema are executed by using
AVISPA and a Java simulation. The work in (Qiu and
Ma, 2018) presents an extension schema of 6LoW-
PAN, which grants the CIA (Confidentiality, Integrity
and Authenticity) for a group of resource-constrained
6LoWPAN devices. A method based on the BAN
logic and the tool Scyther proves the resistance of the
schema against replay, MITM, impersonation, privi-
leged insider, and Sybil attacks.

(Basin et al., 2018) provides a formal analysis of
the 5G authenticated key exchange (AKA) protocol.
They formalise the 5G AKA with Tamarin, and their
verification shows possible privacy flaws. They pro-
pose a provable fix for the vulnerability found.

Although the results on formal analysis of the Z-
Wave protocol are very limited, the security of the
Z-Wave protocol has been instead investigated and
tested in practice, by means of test beds in real en-
vironments. In (Unwala et al., 2018), Z-Wave is
analysed with respect to common attacks to IoT sys-

Formal Proof of a Vulnerability in Z-Wave IoT Protocol

199

tems. In (Badenhop et al., 2017), the frame forward-
ing and topology management aspects of a previous
version of the Z-Wave routing protocol are reverse en-
gineered. Then, a security analysis is also performed
on the network and the possibility of modifying the
topology and routes by an outsider is found. In (Kim
et al., 2020), the authors propose three different attack
vectors that, if combined, can cause critical damage
(e.g., DoS).

3 BACKGROUND

3.1 Z-Wave Protocol

Z-Wave is a wireless radio frequency based communi-
cations protocol designed primarily for home automa-
tion, using frequencies from 865 to 926 MHz. Nodes
can be residential appliances or other devices, such as
lighting control, thermostats, security systems, win-
dows, locks and garage door openers.

A Z-Wave network is a mesh network using low-
energy radio waves to communicate: nodes within
range communicate directly with one another, remote
nodes rely on intermediate nodes (see Fig. 1). Nodes
can be either controllers or slaves: controllers are re-
sponsible for including and excluding nodes, and for
maintaining the routing table of the whole network,
whereas slaves are the real smart things of the net-
work composed of lights, switches, dimmers, sensors,
motors and other. In order to limit battery consump-
tion, nodes are alternatively active or in sleep mode.
Thus, only some nodes can relay a message.

Figure 1: Z-wave network topology.

Z-Wave has been designed with security in mind: se-
curity is achieved by encrypting the messages ex-
changed between devices. The first version of the
security layer (S0 Security) has been found vulner-
able due to a weak temporary key (Fouladi and Gha-
noun, 2013) during the joining phase. The new Z-
Wave security layer (S2 Security) evolves from S0
and provides messages integrity, confidentiality, au-
thentication and data freshness, by using a combina-

tion of symmetric encryption and message authenti-
cation code (MAC) (as shown in Tab. 1).

Table 1: Security features of Z-Wave protocol.

Security Feature Technique
Confidentiality
Authentication

AES CCM mode
128 bit key

Integrity AES CMAC mode
128 bit key

Freshness

Pre-Agreed
Nonces (PAN)

Multicast Pre-Agreed
Nonces (MPAN)

Each device has a role, and each role is linked to
one or more security classes by design. There are
four possible security classes: S2-AccessControl,
S2-Authenticated, S2-Unauthenticated and S0 for
retro compatibility. In general, door locks, garage
door openers and controllers fall at least into S2-
AccessControl class, whereas all types of secure end-
devices such as window blind motors, switchers,
other sensors and secondary controllers belong to S2-
Authenticated class. During the joining procedure, a
new device joining the network first negotiates with
the controller the subset of its security classes that the
controller can handle. Then, the controller sends one
key for each security class it has been granted. In
this way, a Z-Wave network is segmented by grouping
nodes into security classes that communicate securely
using the same AES 128 bits key. The usage of dif-
ferent keys for each class protects the network when
one of the granted keys is compromised, by reducing
the number of devices using the compromised key.

Since AES-128 symmetric keys are used to se-
cure all communication between nodes, the key estab-
lishment phase, i.e., the joining procedure occurring
when a new device joins the network, is the core of
S2 Security layer. The procedure works in two steps
(see Fig. 2): during the first phase, the two partici-
pants agree on a temporary AES key to be used in the
second phase of the protocol to encrypt the symmet-
ric keys granted to the new device. As a consequence,
key establishment relies on the secrecy of the tempo-
rary key Kt: if the key is compromised, all the sym-
metric keys exchanged in the second part of the pro-
tocol are compromised. Therefore, in the following,
we discuss and analyse only the messages exchanged
during the first phase of the protocol, and that can be
divided into three subsections:
1. A first phase starting with the device announcing

its device type with a Node Information Frame
(NIF). Subsequently, controller A and slave B
agree on which security classes to share, by ex-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

200

Figure 2: Z-Wave joining procedure.

changing KEX Get, KEX Report and KEX Set mes-
sages.

2. A second phase, where the two participants ex-
change their public keys, used to generate the tem-
porary encryption key by means of Elliptic Curve
Diffie-Hellman (ECDH) on Curve25519 with a
public key length of 256 bits. ECDH is a key
agreement protocol that allows two parties A and
B, both owning an elliptic-curve public-private
key pair, to establish a shared secret over an inse-
cure channel. Actor A computes the shared secret
with her/his own private key and B’s public key,
while B computes the same shared secret with B’s
private key and A’s public key. No one but A or
B can compute the shared secret, unless (s)he can
solve the elliptic curve discrete logarithm prob-
lem.
Since ECDH is vulnerable to a man-in-the-middle
attack, Z-Wave Alliance introduced (Z-Wave,
2020) three Out-Of-Band (OOB) authentication
to prevent eavesdropping and MITM attack vec-
tors. In order to continue the joining procedure,
the user can use one of the following methods:
(1) enter as a PIN the first five digits of the DSK
(printed on the device), obfuscated during the RF
transmission; (2) verify the full DSK by visual
inspection; (3) scan a QR code to verify the full
DSK (p. 93, requirement CC:009..01.00.11.05F 1

in (Z-Wave, 2020)).
The attack presented here applies only to the first
method: the PIN code is inserted on the controller
side if the slave device is S2 security native (i.e.,
released with S2 security), or on the slave side if

1“The user MUST be prompted a dialog to visually validate
the bytes 3..16 of Node B’s DSK”.

the slave has been updated to S2 security.

3. The third section consists of a challenge-response
protocol based on a nonce allowing the controller
and slave to check if they both know Kt. They also
resend KEX Report and KEX Set messages that are
used to assure no message tampering.

The protocol then continues with a loop assign-
ing an AES key for each granted class. Please notice
that many sub-phases of the protocol are temporised,
thus, if a message does not arrive in time, the slave or
controller will abort the joining procedure (e.g., timer
T B1 ends the procedure if message KEX Get takes
more than 30 seconds to arrive).

As an example, consider the case of a smart light
(node B) with native S2 security, asking to join the
network. In a normal execution of the protocol, the
light asks two security classes, S2 Unauthenticated
and S0, and receives the corresponding symmetric
keys. In case the network consists only of native S2
security devices, in order to strengthen the security of
its network, the user may disable class S0 security in
the controller (node A). In this specific scenario, let us
suppose that the KEX Report message sent from B to A
has been corrupted. As a consequence, the controller
receives the request only of S0 security class. This sit-
uation triggers the error message KEX FAIL KEX KEY
since the intersection between the requested security
classes and the granted security classes is empty. This
behaviour follows a security requirement expressed in
the protocol specification.

3.2 Abstract State Machines

Abstract State Machines (ASMs) (Börger and
Raschke, 2018; Börger and Stärk, 2003) are an ex-
tension of Finite State Machines (FSMs).

Formal Proof of a Vulnerability in Z-Wave IoT Protocol

201

ASM states replace unstructured FSM control
states by algebraic structures, i.e., domains of objects
with functions and predicates defined on them. An
ASM location, defined as the pair (function-name,
list-of-parameter-values), represents the ASM con-
cept of basic object container. The couple (location,
value) represents a memory unit. Therefore, ASM
states can be viewed as a set of abstract memories.

State transitions are performed by firing transition
rules, which express the modification of functions in-
terpretation from one state to the next one and, there-
fore, they change location values. Location updates
are given as assignments of the form loc := v, where
loc is a location and v its new value. They are the
basic units of rules construction.

By a limited but powerful set of rule construc-
tors, location updates can be combined to express
other forms of machine actions as: guarded actions
(if-then, switch-case), simultaneous parallel ac-
tions (par and forall), sequential actions (seq),
non-deterministic actions (choose).

Functions which are not updated by rule transi-
tions are static. Those updated are dynamic, and dis-
tinguished in monitored (read by the machine and
modified by the environment), controlled (read and
written by the machine), shared (read and written by
the machine and its environment).

An ASM model has a predefined structure con-
sisting of: a signature, which contains declarations of
domains and functions; a block of definitions of static
domains and functions, transition rules, state invari-
ants and properties to verify; a main rule, which is
the starting point of a machine computation; a set of
initial states, one of which is elected as default and
defines an initial value for the machine locations.

An ASM computation (or run) is defined as a fi-
nite or infinite sequence S0,S1, . . . ,Sn, . . . of states of
the machine, where S0 is an initial state and each Sn+1
is obtained from Sn by firing the unique main rule
which in turn could fire other transitions rules.

ASMs allow modeling different computational
paradigms, from a single agent executing an ASM,
to distributed multiple agents, which is the computa-
tional paradigm we used in our Z-Wave model. A
multi-agent ASM is a family of pairs (a,ASM(a)),
where each a of a predefined set Agent executes its
own machine ASM(a) (specifying the agent’s behav-
ior), and contributes to determine the next state by in-
teracting synchronously or asynchronously with the
other agents. A predefined function program on Agent
is used to associate the ASM with an agent. Since
agents of a same kind (i.e., agents representing proto-
col slaves) have the same behaviour, within transition
rules, each agent can identify itself by means of a spe-

cial 0-ary function self : Agent which is interpreted by
each agent a as itself.

1 asm zwaveProtocol join
2
3 signature:
4 domain Slave subsetof Agent
5 domain Controller subsetof Agent
6
7 static nodeA: Controller
8 static nodeB: Slave
9

10 definitions:
11 main rule r Main =
12 par
13 program(nodeA)
14 program(nodeB)
15 endpar
16 default init s0:
17 function slaveState (a in Agent) = if (a = nodeB) then INIT SLV endif
18 function controllerState (c in Agent) = if (c = nodeA)
19 then INIT CTRL endif
20 ...
21 agent Controller:
22 r controllerRule[]
23 agent Slave:
24 r slaveRule[]

Code 1: Excerpt of the ASM model for Z-Wave protocol.

Code 1 shows an excerpt of the multi-agent ASM
model for the Z-Wave joining procedure between two
nodes (A and B), working as controller and as slave,
respectively. r controllerRule[] on line 21 is the
ASM program associated to an agent of type Con-
troller, while r slaveRule[] on line 23 is that of an
agent of type Slave; nodeA and nodeB are initiated as
the corresponding type of agents.

Tools & Validation and Verification Techniques.
The ASM formal method is supported by the tool-
set ASMETA (ASM mETAmodeling) (Arcaini et al.,
2011) for model editing, validation and verification.
Model construction, especially when taking the sys-
tem requirements from natural language, can often be
error prone. For this reason, it is essential to be able to
validate a model against its functional and non func-
tional requirements. ASM models can be validated in
terms of model simulation (by using AsmetaS), an-
imation (by AsmetaA), and scenarios execution (by
AsmetaV). In the latter case, each scenario contains
the expected system behavior, and the tool checks
whether the machine runs correctly. It is also pos-
sible to verify properties, expressed in temporal logic,
by means of model checking (with AsmetaSMV): the
tool will check if the property holds during all possi-
ble model executions.
Remark. ASMs offer several advantages as formal
method: (1) due to their pseudo-code format, they
can be easily understood by practitioners and can be
used for high-level programming; (2) they allow for
system specification at any desired level of abstrac-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

202

tion; (3) they are executable models, so they are suit-
able also for lighter forms of model analysis such as
simple simulation to check model consistency w.r.t.
system requirements; (4) they support techniques for
mapping models to code (e.g., to C++ (Bonfanti et al.,
2020) or Java (Arcaini et al., 2017)); (5) they can
be used for modeling distributed systems, as IoT net-
works; (6) the ASMETA framework allow for an inte-
grated use of tools for different forms of model anal-
ysis, it is maintained and under continuous features
improvement.

4 Z-Wave FORMAL
VERIFICATION

In this section, we present the ASM specification of
Z-Wave protocol. We started by defining a model of
the joining procedure, which has been validated by
checking that, during the execution, it behaves as re-
quired in the protocol informal description. Then, we
explicitly modelled an attacker controlling the net-
work, able to delete, inject, modify and intercept any
message. The verification phase highlighted a feasi-
ble MITM attack, where the attacker is able to ob-
tain the temporary AES key (and consequently also
the keys granted to a new device during the joining
phase).

4.1 ASM Model of the Joining
Procedure

As shown in the excerpt of Code 1, the controller
and the slave participating to the joining procedure
are modeled as two agents with their programs run-
ning independently. These programs can be viewed as
two separate finite state machines (FSMs) that change
their internal state only if a message arrives from the
other agent, or when a timer has expired.

In Fig. 3, the flow chart of the corresponding ASM
model is depicted. There are two swim-lines, one for
node A, the controller, and one for node B, the slave.
The node internal states are coloured in light green.
The flow of a node behaviour is vertical, whereas the
horizontal flow is given by the messages exchanged
between the two nodes. The mapping from Z-Wave
protocol description to ASMs is rather straightfor-
ward: for each message exchange in the green box
of Fig. 2, there is a corresponding state in Fig. 3 and
a transition rule is defined. The INPUT box on some
states, e.g., on INSERT PIN state, models the fact that
a user is asked to perform an action without which it
is impossible to proceed to the next state. Mimicking

the protocol requirements, every time a control fails
(e.g, in case there is a security class mismatch be-
tween the requested classes and the granted classes,
or the wrong ECDH curve is asked - at the moment
the only possible curve is ECDH on Curve25519), the
node sends an error message to the other node and ter-
minates its execution.

As explained in Section 3.2, an ASM state con-
sists of objects’ domains and functions defined on
them. For the sake of brevity, we cannot list all the
functions we defined. We discuss the most impor-
tant ones. The internal state of agents is a controlled
function (slaveState or controllerState) that associates
a slave or a controller to its actual state. Protocol
messages are also represented by a controlled func-
tion named protocolMessage, where the first param-
eter represents the message sender, while the second
indicates the receiver. As another example, each agent
has a matching type. The slave type SLAVETYPE is
used to specify the device type and the security class
the device belongs to. A monitored function slave:
SLAVE→SLAVETYPE is invoked during the agent
initialisation phase to setup the device type. Under
the assumption of joining a native S2 Security device,
as explained in Section 3.1, the input of the PIN code
takes place on the controller side in the INSERT PIN
state, otherwise, the user inputs the PIN code on the
slave side during the INSERT PIN CSA state. For the
slave, the invocation of the slave function corresponds
to the NIF of Fig. 2 sent by the slave to the controller
before the joining procedure starts.

Both in the controller and slave models, most of
the transition rules have the same structure: activation
is demanded to a rule guard that controls the current
state, the message received, and the time left. The
core of a rule consists of function updates changing
the internal state of the agent, setting a timer, and
crafting the next messages expected by the Z-Wave
protocol.

As an example, we describe in depth the KexRe-
port rule in Code 2, the other rules are similar:

• The first line of code selects the controller or
the slave with whom the agent is communicating
(choose $ctrl in Controller) and emulates
the NodeID that is used in the network to identify
a device uniquely.

• Lines 2-4 specify the guard, which activates the
updates if it is true. The guard checks: (i) the
internal state of the slave (in this case the slave
must be in LEARN MODE state), (ii) the mes-
sage received (in this case the message must be
part of the negotiation part of the protocol, i.e.,
KEX GET), and (iii) if there is still some time for
the execution of the rule (by means of the mon-

Formal Proof of a Vulnerability in Z-Wave IoT Protocol

203

Figure 3: ASM model of Z-wave joining procedure.

itored function passed which tells if a timer has
expired).

• On Lines 6-8, the slave: (i) updates its internal
state to WAIT KEX SET, (ii) activates timer TB2,
and (iii) deactivates timer TB1.

• On Lines 9-17, the slave sends the KEX REPORT
message to the correct controller (line 9), and with
the expected payload (lines 11-17).

• On lines 18-25, the slave stores the message pay-
load locally for further computation (thanks to the
syntax (self, self)).

Some other transition rules are not covered by a timer,
or they execute only controls over the payload of
an already received message (e.g., EvalGrantKexKey
rule checks if the intersection between REQUESTED
KEY and GRANTED KEY is not empty, and then it
saves the GRANTED KEY locally).

Model Validation. Our model of the joining pro-
cedure has been validated by using the AsmetaV tool
in combination with the simulator AsmetaS. We ex-
pressed one scenario for each requirement in the Z-
Wave protocol documentation. Scenarios are written
in the Avalla language, providing special commands
to: set the values of monitored functions, perform one
step of simulation, exec rules or function updates,
check that some properties hold. By playing with a
combination of these commands, we were able to ex-
press significant scenarios and check that the model
behaves as expected.
Code 3 shows (a fragment of) the validation scenario
of the security class mismatch case. In this scenario,
the joining procedure terminates throwing the error

1 choose ctrl in Controller with true do

2 if(slaveState(self) = LEARN MODE

3 and protocolMessage(ctrl , self) = KEX GET

4 and not passed(TB1)) then

5 par

6 slaveState(self) := WAIT KEX SET

7 startTimer(TB2) := true

8 startTimer(TB1) := false

9 protocolMessage(self, ctrl) := KEX REPORT

10 // KEX REPORT payload

11 reqCsa(self , ctrl) := slvCsa(self)

12 reqSkex(self , ctrl) := slvSkex(self)

13 reqEcdh(self , ctrl) := slvEcdh(self)

14 reqS2Access(self , ctrl) := slvS2Access(self)

15 reqS2Auth(self , ctrl) := slvS2Auth(self)

16 reqS2Unauth(self , ctrl) := slvS2Unauth(self)

17 reqS0(self , ctrl) := slvS0(self)

18 //save for control of authenticity

19 reqCsa(self, self) := slvCsa(self)

20 reqSkex(self, self) := slvSkex(self)

21 reqEcdh(self, self) := slvEcdh(self)

22 reqS2Access(self, self) := slvS2Access(self)

23 reqS2Auth(self, self) := slvS2Auth(self)

24 reqS2Unauth(self, self) := slvS2Unauth(self)

25 reqS0(self, self) := slvS0(self)

26 endpar

27 endif

Code 2: KexReport rule.

KEX FAIL KEX KEY. On line 4-5, we check that the
scenario is correctly set at the beginning of the joining
procedure. Then, on line 6-7, we set the type of the
controller and of the slave (recall that the slave is a na-
tive S2 security smart light). On lines 13-14, we sim-
ulate the user disabling class S0 security and an inter-
ference modifying the payload of KEX REPORT, i.e.,
the corruption of S2 Unauthenticated security class.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

204

After some intermediate simulation steps and checks,
on lines 18-20, we check that the controller (i) sends
the KEX FAIL KEX KEY error message to the slave,
(ii) goes in the ERROR C error state, and (iii) checks
if the slave is still in a WAIT KEX SET state. At the
end, on lines 23-24, we check that, after receiving the
ERROR S error message from the controller, the slave
has gone into the ERROR S error state, as expected.

1 scenario validation protocol ctrl key mismatch
2 load zwaveProtocol join.asm
3
4 check slaveState(nodeB) = INIT SLV
5 and controllerState(nodeA) = INIT CTRL;
6 set controller(nodeA) := CONTROLLER S2;
7 set slave(nodeB) := LIGHT NAT;
8 ...
9 step

10 ...
11 exec
12 par
13 ctrlS0(nodeA) := false
14 slvS2Unauth(nodeB) := false
15 endpar;
16 ...
17 step
18 check protocolMessage(nodeA,nodeB)= KEX FAIL KEX KEY
19 and slaveState(nodeB) = WAIT KEX SET and
20 controllerState(nodeA) = ERROR C;
21 ...
22 step
23 check protocolMessage(nodeA,nodeB)= KEX FAIL KEX KEY and
24 slaveState(nodeB) = ERROR S and
25 controllerState(nodeA) = ERROR C;

Code 3: Validation of key mismatch scenario.

Property Verification. In order to verify that a spe-
cific security property holds in the model, the prop-
erty must be expressed as a CTL (Computation Tree
Logic, CTL for short) temporal logic formula and
proved to be true. We used the AsmetaSMV tool that
checks if a CTL formula holds in an ASM model by
exploiting the NuSMV model checker. The result, if the
model checker terminates, is a boolean condition: if it
is False, it means that the property is violated at least
once (and the tool returns the violating path), in case
of True, the property holds.

We examined many reachability and safety prop-
erties, and none of the properties we tested was ever
violated. For example, in the security class negotia-
tion phase of the joining procedure, we checked:

• If there exists a state in the future in which the
CONTROLLER S2 (nodeA) sends KEX SET with
an illegal scheme, expressed with the CTL for-
mula:
¬EF(controllerState(nodeA) = ERROR C ∧ slaveState(nodeB) =

ERROR S ∧ protocolMessage(nodeA,nodeB) =

KEX FAIL KEX KEY)
The evaluation of the formula is True, since with-
out an external interference the CONTROLLER
always sends the correct scheme.

• There is not a state in the future in which a SLAVE
sends KEX REPORT with an incompatible curve.
¬EF(controllerState(nodeA) = ERROR C ∧ slaveState(nodeB) =

ERROR S ∧ protocolMessage(nodeA,nodeB) =

KEX FAIL KEX CURVE)
The evaluation of the formula is True, since with-
out an external intervention it is impossible the
slave sends an incorrect curve.
We also specified CTL formulas to check the cor-

rectness of the parts of the protocol relying on timers.
In particular, we checked that a timer is running only
on the states it is assigned to. For example, for timer
TA1, the formula is:

¬AG((controllerState(nodeA) != WAIT KEX REP ∧
controllerState(nodeA) != TIMEOUT C)⇒startTimer(TA1)= false)

In this formula, we checked that the only states
in which timer TA1 might be active are either
WAIT KEX REP or T IMEOUT C.

All the CTLs tested ensure that the joining proce-
dure behaves correctly.

4.2 ASM Model with an Attacker

In this section, we describe how we extended the join-
ing procedure model presented in Section 4.1 with
two new agents, ESLAVE and ECONTROLLER, mod-
elling an evil adversary trying to subvert the proto-
col. ECONTROLLER models an attacker impersonat-
ing a legitimate controller when communicating with
the slave, while ESLAVE does the opposite. The two
agents model an active attacker controlling the net-
work, thus able to intercept, modify, delete and inject
any message. In particular, we gave the attacker the
ability to execute a brute force attack to retrieve the
PIN code. This specific capability was given to the
attacker since, while formalising the protocol, we no-
ticed that the duration of timers TA1 and TA2 might be
overestimated, leaving enough time to an intruder to
execute a brute force attack to retrieve the PIN code.
Our goal is then to verify if a MITM can break the
joining procedure, obtaining by the entitled controller
the granted keys associated to the legitimate slave se-
curity classes.

In short, the attack works as follows: the attacker
exploits the session of the protocol between ECON-
TROLLER and SLAVE (called EC-S for short) in or-
der to obtain from the legitimate slave the first 5 dig-
its of its public key, then (s)he uses them in the ses-
sion between CONTROLLER and ESLAVE (called C-
ES for short) to obtain the keys in place of the legiti-

Formal Proof of a Vulnerability in Z-Wave IoT Protocol

205

Figure 4: Flow chart of the MITM attack.

mate slave. To this aim, the ASM model works with
evil slave and evil controller sharing a memory, where
they store all the messages exchanged in the two ses-
sions of the protocol. In Fig. 4, the flow chart of the
ASM model corresponding to the whole MITM attack
is depicted (in the picture, the brute force attack to ob-
tain the PIN is labeled with B, whereas label C iden-
tifies the attack on the public key using generated by
knowing the PIN). In this case, there are three swim-
lines: the one on the left for node A, the legitimate
controller, the one on the right for node B, the legiti-
mate slave, and the one in the center for the two ASM
agents emulating the attacker. The right part of the
flow chart depicts the messages exchanged during the
EC-S session of the protocol, while the left part shows
the C-ES session.

The attack begins after the new device has started
the joining procedure by announcing its device type
with the NIF, with the attacker impersonating the con-
troller and sending the KEX GET message to the de-
vice (i.e., the EC-S session starts). The attacker can
continue the execution of the protocol until (s)he re-
ceives the information of her/his interest, i.e., mes-
sage ENC SEI KEX SET ECHO, which is the target
of the first part of the attack, since it can be used to

retrieve the initial 5 digits of the slave public key. The
5 digits are needed both in the EC-S and in the C-
ES session of the protocol. In the first case, they are
needed to complete the EC-S session without making
the user suspect that the device has failed the join. In
the second case, they are necessary to continue the
C-ES protocol session (recall that, according to the
joining procedure: first, the slave sends to the con-
troller its public key with the first 5 digits obfuscated;
then, during the OOB authentication, the user manu-
ally inserts the first 5 digits; finally, the controller uses
the slave public key and its own private key to gener-
ate with ECDH the temporary key Kt used to encrypt
the requested keys). In this case, there is a time con-
straint: the attacker must get the 5 digits in the EC-S
protocol session in order to be able to send to the le-
gitimate controller a public key with the correct first
5 digits (the ones the user will insert during OOB au-
thentication) before TA2 runs out in the C-ES session.

In order to obtain the slave public key in the EC-S
protocol session, the attacker has two options (before
TA1 and TA2 run out):

1. To perform a brute-force attack on temporary
AES 128 bits key Kt , then derive the slave pub-
lic key by knowing Kt and the controller private

SECRYPT 2021 - 18th International Conference on Security and Cryptography

206

Figure 5: PIN number of bytes.

key (as described in Section 3.1, Kt is generated
by the (evil) controller by using her/his own pri-
vate key and the slave’s public key). A brute force
attack on a 128 bits key would need to try 2127

keys (on average), thus the time required would
be a lot longer than TA1+TA2. Therefore, this op-
tion is not feasible.

2. To take advantage of the fact that Kt can be gen-
erated using ECDH either by knowing the legiti-
mate slave’s private key and the evil controller’s
public key, or the evil controller’s private key and
the legitimate slave’s public key. The attacker
(acting as a controller) knows her/his own private
key and the legitimate slave’s public key a part
from the first 5 digits. According to Z-Wave doc-
umentation (see Fig. 5), the PIN code must be 5
decimal digits representing the value of the first
2 bytes of the node’s device specific key. Since
the slave public key has the first 2 bytes obfus-
cated, the evil controller has to guess only 2 bytes
in order to find the correct public key. There-
fore, the size of the search space of the key is
reduced from 2128 to 216. More specifically, the
attacker has to generate with ECDH a key K for
all 216 combinations, and then check for which
combination it yields K = Kt (by decrypting the 6
bytes message ENC SEI KEX SET ECHO). By us-
ing the OpenSSL command (version 1.0.2j) in de-
crypt mode on a notebook with 8 Gb of RAM and
Intel i7-8550U CPU (see Table 2 for performance
information), considering a 16 bytes packet, the
slave public key can be retrieved in around 65 ms.
Therefore, TA2 timeout (10s) gives the evil con-
troller plenty of time to complete the attack.

Table 2: AES 128 CCM decrypt single core performance.

16 bytes 64 bytes
Number of

Packets in 3 sec 304057417 184699602

In the EC-S parallel session of the protocol, at the be-
ginning, the attacker (impersonating the slave) is in
the ADD MODE state and intercepts the KEX GET
message. Although the attacker can respond immedi-
ately, (s)he waits to send the KEX REPORT message
received from the slave in order to take time. How-
ever, (s)he must send it before timer TA1 expires. Af-

terwards, the legitimate controller completes the ne-
gotiation phase and reaches the point in the protocol
where the joining device has to insert its public key
(with the first 5 digits obfuscated) before TA2 expires.
At this point the attacker could:

• Use the public key (s)he obtained in the EC-S ses-
sion, but (s)he does not know the associated pri-
vate key and it would take too long to generate it
with another brute force attack.

• Create a pair of public-private keys and send the
public one to the controller. However, if the first 5
digits do not match with the ones obtained in the
EC-S, the OOB authentication would fail.

• Create the public-private key pair so that the pub-
lic key contains the first 5 digits obtained in the
EC-S session.

The last option slightly differs from the first one: in
the latter case, the public key is crafted in a way that
only the first 5 digits (i.e., 2 bytes) correspond to the
ones of the legitimate slave public key, not the whole
key. This fact simplifies the attack: in this case, the
attacker may create in advance at least one key pair
(public and private) of the 216 possible ones (i.e., the
key pairs with the public key differing on the first 2
bytes). Thus, the feasibility of the attack depends on
the number of keys the attacker has to generate to be
confident, with a good probability, that (s)he has got at
least one copy of the keys (s)he will need to complete
EC-S session of the protocol.

This probability can be expressed, as usual, as the
ratio between successful outcomes and all possible
outcomes. In our case, it yields:

P(gen success) =

(y−216+216−1
216−1

)
(y+216−1

216

)
Being y the total number of keys to generate, the nu-
merator corresponds to the multi-set binomial coeffi-
cient, which represents the number of ways of select-
ing a total of 216 out of y - 216 keys with unrestricted
repetition. The denominator shows all the possible
combination of the 216 unique public keys over a total
of y generated keys.

We use the formula to find a feasible y, i.e., the
number of keys the attacker needs to generate off-line
to be sure with P(gen success) probability of finding
the 216 unique keys (s)he will need. With y = 234, we
obtain P(gen success) = 80%. In average, for a good
home computer, the time interval for the generation
of a single key pair is between 10-4 and 10-6 seconds.

During the protocol attack, the evil slave looks for
a key with the same first 2 bytes of the slave public
key obtained in the first part of the attack among the

Formal Proof of a Vulnerability in Z-Wave IoT Protocol

207

ones in her/his hash table of pre-computed keys (see
Table 3 for an example), and sends it to the controller.

Table 3: Example of crafted public keys.

00000 26467 58443 24926 55534 27025 55113 08637
00001 43605 13128 01516 47089 25370 27578 61791

... ...
65365 49316 10780 35451 55217 51086 38075 23415

In a ideal run of the protocol, a user should check
the rest of the key digits visually, but the lack of atten-
tion of the user may make the attack fully successful.

Ironically, older devices that have been updated to
S2 Security are resistant to the attack. In fact, in this
case, the PIN code required is 4 bytes long (not only
2 bytes). Thus, the brute force attack would require
longer than TA1 + TA2.

Model Validation. The validation phase is slightly
different from 4.1 because the the attacker does not
propagate the error messages that are described in the
protocol. In this way, the complexity of the MITM
model is reduced and all the validation scenarios ex-
ecuted for the joining procedure are not of interest in
this analysis. The message flow remains unchanged,
so we do not need to revalidate those parts. The val-
idation of this model is achieved by reproducing the
path obtained in the verification phase that confirms
the MITM attack feasibility. The scenario is repre-
sented in Code 4.

The nearToEnd monitored function acts as an in-
ternal timer that computes on the MITM agents an ap-
proximation of the CONTROLLER timer. This mon-
itored function is essential to maintain the model as
realistic as possible. In fact, in a real environment,
the attacker can only guess when the timer is started
when (s)he has received the messages. We added
to the MITM attacker model an invariant that grants
the temporal consistency between the passed and the
nearToEnd monitored function.

Property Verification. The verification is easy for
the MITM model, and it consists of the following
CTL formula:

• There is not a state in the future in which the
CONTROLLER and the SLAVE are both in the OK
state, that represents the final state they reach only
when the protocol runs as expected.
¬EF(controllerState(nodeA) =OK C ∧ slaveState(nodeB) = OK S)

As expected, the model checker returns a path leading
to a state where the property does not hold, meaning
that an attack can be successful.

1 scenario validation protocol mitm
2 load zwaveProtocol join.asm
3
4 check slaveState(nodeB) = INIT SLV and
5 controllerState(nodeA) = INIT CTRL;
6 set controller(nodeA) := CONTROLLER S2;
7 set slave(nodeB) := GARAGE LOCK NAT;
8 set passed(TA1) := false;
9 ...

10 step
11 ...
12 set nearToEnd(TA1) := true;
13 step
14 check protocolMessage(nodeES,nodeA)=KEX REPORT and
15 protocolMessage(nodeEC,nodeB) = PUB KEY REP CTRL and
16 slaveState(nodeB) = WAIT ECDH PUB CTRL and
17 controllerState(nodeA) = WAIT KEX REP;
18 ...
19 step
20 ...
21 check protocolMessage(nodeA,nodeES)=EC KEX REPORT ECHO
22 and protocolMessage(nodeEC,nodeB)=EC KEX REPORT ECHO and
23 slaveState(nodeB) = OK S and controllerState(nodeA) = OK C;

Code 4: Successful MITM attack scenario.

5 CONCLUSION

In this paper, we present a formal analysis of the
Z-Wave protocol using S2 Security class, a security
layer required in every new certified IoT device. In
particular, we focus on the joining procedure, which
is the core part of the S2 Security layer, allowing a
new device to join the Z-Wave net and to obtain the
symmetric key to be used for future communication.

We model the protocol requirements by means of
an ASM model. As a consequence, we are able to
provide a rigorous and precise protocol description,
which is often ambiguous and fragmented in the of-
ficial documentation. Moreover, we validate the pro-
tocol execution by means of a scenario-based tech-
nique, and we prove a sequence of reachability and
safety temporal properties to guarantee the correct-
ness of the joining procedure. We also formalise the
behaviour of an external actor behaving maliciously
with the capability of intercepting, modifying, delet-
ing and injecting messages. In particular, we give the
attacker the ability to execute a brute force attack to
retrieve the PIN code.

The verification process revealed the possibility of
executing a MITM attack for the PIN-based OOB au-
thentication method under certain time constraints. Its
practical feasibility was confirmed by the Silicon labs
and Z-Wave Alliance.

Our results show the importance of exploiting for-
mal methods during the design process of a security

SECRYPT 2021 - 18th International Conference on Security and Cryptography

208

protocol in order to find vulnerabilities since the early
stages of protocol development.

As a short-term objective, we plan to further in-
vestigate the Z-Wave protocol, both by modeling the
application layer, and by covering the whole S2 Secu-
rity layer, searching for other vulnerabilities.

Since the mathematical base of formal methods
discourages designers from their usage, as a long-
term objective, we plan to develop a “user-friendly”
environment for the formal specification, verification
and development of IoT security protocols.

REFERENCES

Arcaini, P., Gargantini, A., and Riccobene, E. (2017). Rig-
orous development process of a safety-critical system:
from ASM models to Java code. Int. J. Softw. Tools
Technol. Transf., 19(2):247–269.

Arcaini, P., Gargantini, A., Riccobene, E., and Scandurra,
P. (2011). A model-driven process for engineering a
toolset for a formal method. Software: Practice and
Experience, 41(2):155–166.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Com-
pagna, L., Cuellar, J., Drielsma, P. H., Heám, P. C.,
Kouchnarenko, O., Mantovani, J., Mödersheim, S.,
von Oheimb, D., Rusinowitch, M., Santiago, J., Tu-
ruani, M., Viganò, L., and Vigneron, L. (2005). The
AVISPA tool for the automated validation of inter-
net security protocols and applications. In Computer
Aided Verification, pages 281–285. Springer.

Badenhop, C. W., Graham, S. R., Ramsey, B. W., Mullins,
B. E., and Mailloux, L. O. (2017). The z-wave routing
protocol and its security implications. Computers &
Security, 68:112–129.

Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse,
R., and Stettler, V. (2018). A formal analysis of
5g authentication. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’18, page 1383–1396, New York,
NY, USA. Association for Computing Machinery.

Bonfanti, S., Gargantini, A., and Mashkoor, A. (2020). De-
sign and validation of a C++ code generator from ab-
stract state machines specifications. J. Softw. Evol.
Process., 32(2).

Börger, E. and Raschke, A. (2018). Modeling Companion
for Software Practitioners. Springer.

Börger, E. and Stärk, R. (2003). Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer Verlag.

Dolev, D. and Yao, A. (1983). On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–208.

Eldefrawy, M., Butun, I., Pereira, N., and Gidlund, M.
(2019). Formal security analysis of lorawan. Com-
puter Networks, 148:328 – 339.

Fouladi, B. and Ghanoun, S. (2013). Security evaluation of
the z-wave wireless protocol. In Proceedings of Black
Hat USA, pages 1–2.

Hofer-Schmitz, K. and Stojanović, B. (2020). Towards for-
mal verification of IoT protocols: A review. Computer
Networks, 174:107233.

Kim, K., Cho, K., Lim, J., Jung, Y., Sung, M., Kim, S.,
and Kim, H. (2020). What’s your protocol: Vulnera-
bilities and security threats related to z-wave protocol.
Pervasive and Mobile Computing, 66.

Melaragno, A. P., Bandara, D., Wijesekera, D., and
Michael, J. B. (2012). Securing the zigbee protocol
in the smart grid. Computer, 45(4):92–94.

Mohsin, M., Sardar, M. U., Hasan, O., and Anwar, Z.
(2017). Iotriskanalyzer: A probabilistic model check-
ing based framework for formal risk analytics of the
internet of things. IEEE Access, 5:5494–5505.

Qiu, Y. and Ma, M. (2016). A pmipv6-based secured mobil-
ity scheme for 6lowpan. In 2016 IEEE Global Com-
munications Conference (GLOBECOM), pages 1–6.

Qiu, Y. and Ma, M. (2018). Secure group mobility support
for 6lowpan networks. IEEE Internet of Things Jour-
nal, 5(2):1131–1141.

Sun, D.-Z. and Sun, L. (2019). On secure simple pair-
ing in bluetooth standard v5.0-part i: Authenticated
link key security and its home automation and enter-
tainment applications. Sensors (Basel, Switzerland),
19(5):1158.

Unwala, I., Taqvi, Z., and Lu, J. (2018). Iot security: Zwave
and thread. In 2018 IEEE Green Technologies Confer-
ence (GreenTech), pages 176–182.

Viganò, L. (2006). Automated security protocol analysis
with the avispa tool. Electronic Notes in Theoreti-
cal Computer Science, 155:61 – 86. Proceedings of
the 21st Annual Conference on Mathematical Foun-
dations of Programming Semantics (MFPS XXI).

Z-wave (2020). Z-wave protocol. https://www.z-
wave.com/.

Z-Wave (2020). Z-wave protocol. https://www.silabs.com
/documents/login/miscellaneous/SDS13783-Z-Wave-
Transport-Encapsulation-Command-Class-
Specification.pdf.

Formal Proof of a Vulnerability in Z-Wave IoT Protocol

209

