
Overview of Model Interpretation Techniques and Their Applications 

Vladislavs Nazaruks a and Jānis Osis b 
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, Riga, Latvia 

Keywords: Model Execution, Model Interpretation, Systems Analysis, Domain Analysis. 

Abstract: Model interpretation opens quite wide opportunities for domain analysts and software developers. The main 
weakness related to using domain models in software development is a lack of resources in projects and an 
invisible value for business stakeholders. Certainly, the doubts that model interpretation will provide 
additional resources for projects are objective, but it could allow dealing with the existing ones by increasing 
the value of domain modeling and analysis to the business stakeholders. Two main factors can raise this 
probability: first, visible execution of models or at least helpful results of this, and second, the opportunity to 
modify the model and see how changes affect the behavior of the planned system. This paper overviews 
existing model interpretation techniques with the aim to understand possible architectural solutions, their 
advantages and weaknesses for certain models. The results of this overview can help researchers those of 
starting development of their own model interpreter. 

1 INTRODUCTION 

A use of models as an executable artifact is a desired 
target of the model-driven development. The main 
idea of this was proposed in the Object Management 
Group’s (OMG) guide on Model Driven Architecture 
(MDA) in 2001 (Miller and Mukerji, 2001). It 
requires having a formal (computer-understandable) 
model as an input. This input model must have 
enough details for getting complete source code. 
Completeness of the model means that the model is 
likely to be complex. Unfortunately, constructing the 
complete complex model cannot be done in one 
moment; this requires incremental work. Besides, 
understanding of such a model is not a trivial activity 
(Quante, 2016b). The attempt to create a complete 
language is the Unified Modeling Language (UML) 
proposed by the OMG (OMG, 2005). At present, the 
UML language can be used for its model 
interpretation or for code generation. However, its 
independence from software development techniques 
and platforms, size, incoherence, different 
interpretations, lack of causality and frequent 
subsetting lead to ambiguous semantics, cognitive 
misdirection during the development process, 
inadequate capture of system’s properties and so on 
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(Osis and Donins, 2017). The mentioned problems 
affect the quality of generated code as well as require 
additional transformations and mechanisms for UML 
model interpretation as discussed in Section 3.2. 

In the process of building a complete input model, 
it is necessary to be able to “run”, “debug” and “test” 
it similarly to debugging and testing the source code. 
From one point of view, manual reviews and 
sometimes partial prototyping can be successfully 
applied, but manual work is slow and does not 
exclude human mistakes due to complexity of 
models. From the other side, automated model 
checking techniques exist like, for instance, those of 
used to verify requirements and design for real-time 
embedded and safety-critical systems. These 
automated model-checking techniques require a use 
of formal modeling language, e.g., finite state 
machines can be used for “control-oriented” systems 
(applied in aerospace, avionics, automotive, etc.) 
(Palshikar, 2004). However, the model checking also 
requires manual translation of requirements 
descriptions into these languages, as well as it is hard 
to follow the checking algorithm execution in case of 
“data-oriented” systems where business logic is more 
important than behavior. 

Another opportunity is interpretation or “running” 
of models. The goal of this paper is to overview 
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existing implementations of model interpretation 
techniques and their applications in software 
development. 

Section 2 presents the considerations that 
influence the research flow. Section 3 gives an 
overview of existing model interpreters. Section 4 is 
dedicated to discussion on the main findings. 
Section 5 concludes the paper with main results and 
discussion on validity of the research done. 

2 RESEARCH QUESTIONS AND 
METHOD 

Reading literature, one can find that it is possible to 
“simulate” a model, to “execute or run” a model, and 
to “interpret” a model. Let us look what does it mean. 
Simulation of models usually is used for real complex 
systems that are hard to be analyzed analytically, e.g., 
day-to-day operation of a bank. “A simulation model 
is a parameterised model that is solved on the 
computer…” (Arnott, 2012). It uses statistical data 
about operation of the real system it describes as well 
as autonomously existing events. Execution of 
models usually refers to an executable UML model, 
which can represent either planned to be built 
software or already existing one. A systematic 
overview on execution of UML models (Ciccozzi, 
Malavolta, and Selic, 2019) indicated two ways of 
UML models execution, namely, interpretation and 
translation. The authors’ research showed that a large 
part of existing UML execution tools uses a 
translative approach to a programming language (in 
most cases it is Java). The reason is a desire to get 
generated production artifacts as the result of 
modeling. However, interpretative approaches are 
mostly used for validating and improving functional 
correctness at the beginning of development. 
Although there are few existing model-level 
debugging implementations, both translative and 
interpretative executions can be combined with the 
simulation mechanism based on autonomously 
existing events. Simulation of models extends users’ 
abilities to debug and correct the model itself. Thus, 
interpretation of models is just a way how to execute 
a model. 

A topological functioning model (TFM) 
introduced by Jānis Osis in 1969 (Osis, 1969) is a 
formal mathematical model that can be used both for 
business modeling and software source code 
generation (Nazaruka and Osis, 2019; Osis and 
Donins, 2017) starting from the automated processing 
of textual descriptions of the system’s structure and 

functionality (Nazaruka, 2020). However, the 
constructed TFM requires experts’ check. In order to 
assist this check TFM interpetation can be used. Thus, 
we want to understand what is the state of the art in 
the field and what model interpretation techniques 
could be more beneficial. 

In order to achieve the goal stated, a list of 
questions has been defined, answers on which should 
be found during the overview of the existing 
publications. The research questions are as follows: 

 What software model interpreters exist? 
 What is the purpose for which a model 

interpreter is used? 
 What input models do they use? 
 How model interpretation is implemented? 
 What systems characteristics do model 

interpreters allow users to check? 
 How interaction with a user is implemented? Is 

it possible at the run-time? 

The information on software model interpreters 
published by IEEE, ACM, ScienceDirect and those of 
presented in Google Scholar have been searched for a 
period from 2000 till 2020. The starting year, 2000, 
was selected as the year when Model Driven 
Architecture was presented to the public. An 
additional filter used was the context, i.e., software 
development including embedded and real-time 
systems. Besides that, the research works related to 
pure code generation from models were omitted. 

The keywords used are “model interpretation,” 
“model execution,” and “model interpreter.” It must 
be said that quite many research works were found, 
and selection of those found can illustrate the main 
principles of model interpretation. 

In order to structure the information found, these 
key publications are grouped according to the 
interpretable models, i.e., business process models, 
UML models and domain specific models. 

3 MODEL INTERPRETATION 
TECHNIQUES 

The general definition of interpreters states (Karsai, 
1999): “model interpreters are transformation 
programs that walk a graph (the model objects), and 
perform actions during this process.” A model 
interpreter should have the following components: 
model structure, visitors and traversals. The model 
structure can be a graph or its textual specification. 
Thus, it usually represents a set of nodes and 
transitions between them. One of the issues here is 
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that the graph may consist of nodes of heterogeneous 
types with a certain action related to a certain type. 
The common solution is a use of the visitor design 
pattern, which implementing Visitor classes can be 
assigned to a specific type of a node and be invoked 
if needed (Karsai, 1999). In order to capture 
information on what node the interpreter need to go 
next, traversals are used. Traversals are objects that 
contain the traversal code fragments and can also 
contain state information. Traversals and visitors are 
to be directly linked to each other. However, visitor-
based interpreters have two limitations: coupled 
interpreter-logic and generation-logic, as well as a 
minimal reuse of code (Hill and Gokhale, 2012). 

In the model-driven engineering, a model 
interpreter is a software component that operates on 
the information captured in a system model to 
produce some useful artifact (Edwards, Seo, and 
Medvidovic, 2008). Model interpreters may extract 
the model structure and properties (Edwards et al., 
2008) or be based on the modifiable pre-developed 
meta-model (Shroff, Agarwal, and Devanbu, 2009). 
However, universal interpreters that are independent 
of the application domain do not exist (Djukić, 
Luković, Popović, and Ivančević, 2012). 

Cook et al. have investigated many techniques to 
define the interpretations of models (Cook, Delaware, 
Finsterbusch, Ibrahim, and Wiedermann, 2009). 
According to the authors, one common approach is to 
use a translator from one modeling language to 
another modeling language or to code. Dynamic 
interpreters are also common in practice, although 
they have received less attention in research 
publications. One point of confusion is that the term 
“interpreter” is often used to mean “translator” in the 
model-driven literature. Here, the term “interpreter” 
is also used in its more traditional meaning as a meta-
program that executes a program in the given 
language, the same as the authors use in (Cook et al., 
2009). According to the authors, translators have the 
advantage that they can produce efficient code and 
target any runtime environment. Interpreters are often 
easier to write then compilers, but they are typically 
slower and do not necessarily integrate easily with 
other parts of a system, which may be written in 
compiled languages. 

3.1 Business Process Model 
Automation 

According to (Ferme, Lenhard, Harrer, Geiger, and 
Pautasso, 2017), workflow automation relates to the 
execution of automated business processes within 
Workflow Management Systems (WfMSs). Ferme et 

al. (Ferme et al., 2017) think that the most critical part 
in WfMSs is the modeling language implementations 
that do not satisfy language standards; nevertheless, 
there are several proposed standards for the modeling 
language. The main part of the WfMSs responsible 
for business model running is a process engine. This 
is not a new thing now. There are many commercial 
and open-source solutions of process engines, e.g., 
IBM’s WebSphere, Windows Workflow Foundation, 
JBPM, Bonita, Apache ODE, ActiveBPEL 
(ActiveVOS), Oracle BPEL Process Manager (Oracle 
BPM), etc. In this part, several of them will be 
considered to understand main common principles 
implemented in them. 

The BPEL engine uses business processes 
descriptions as “a series of activities” which are 
executed by web services (ARIS BPM Community, 
2021). According to the BPEL vendors, a graphical 
representation of a BPEL process reduces complexity 
of the process flows and allows integrating BPEL 
diagrams into the process architecture model. These 
graphical models are exported into a BPEL XML 
(eXtensible Markup Language) based script. In 
essence, the BPEL combines block structures and 
allows describing transitions between them as 
directed graphs (Juric, n.d.). 

The IBM’s WebSphere line’s (IBM, 2011) 
process engine takes as a basis high-level XML 
process definitions in the BPEL supplemented with 
code fragments in Java. The execution and 
monitoring of models requires IBM’s WebSphere 
Application Server that at present supports 
Kubernetes and microservices. 

Microsoft also has had its embeddable workflow 
engine called Windows Workflow Foundation (WF) 
(Microsoft, 2017). The WF is a part of the .NET 
framework that allows developing workflow 
functionality using XAML-encoded workflow 
definitions. This possibility is implemented in the 
Workflow Designer (WD), which is a visual designer 
and debugger for the graphical construction and 
debugging. The basic building blocks in WF are 
activities. The developer can select the needed one 
from the Activity Designer Library templates and 
Visual Studio will create an activity designer 
definition in XAML and a code-behind 
implementation file. Besides that, it is possible to 
model arguments with values, variables for use in 
data-binding scenarios and conditional statements, 
and expressions (i.e., controls used in workflow 
activities to enter and evaluate expressions). 
Activities can form the sequential flow or a state 
machine workflow, can be grouped and even ordered 
according to a hierarchy. In WF, a workflow running 
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is thread-based. Debugging of the workflows is 
possible via Workflow Designer or at the XAML 
level. 

Process engines mentioned here depend on the 
language used for the workflow design and lack 
flexibility. Therefore, if someone wants to provide the 
flexibility in this context, they should create a process 
virtual machine and then some suites for each 
potential language. 

BMPN models can also be interpreted, e.g., to 
ensure modification of processes without recompiling 
them completely, as it is demonstrated for smart 
contracts (Lopez-Pintado, Dumas, Garcia-Banuelos, 
and Weber, 2019). The main difficulty in model-
based smart contracts used for blockchain-based 
business process execution is a lack of flexibility 
(because they are attached to different versions of the 
model) and high deployment costs. The suggested 
Caterpillar interpreter supports all three process 
modeling perspectives, namely, control-flow, data, 
and resources. The idea is to create a new subprocess, 
relate it to the existing one and generate code for this 
new subprocess. The one issue that remains in this 
implementation is a lack of consistency checking. 

Another possible solution is described by 
Weigold, Kramp and Buhler (Weigold, Kramp, and 
Buhler, 2007), where they suggest the ePVM, an 
embeddable process virtual machine. It consists of a 
lightweight library with basic functionality to state 
and control flow managements, process persistence 
and transactions, monitoring, inter-process 
communication, and communication with the host 
application, as well as optional functionality for 
workflow systems support, human interaction and 
even integration with “not native” process languages. 
In the ePVM, a business process is developed using a 
programming environment supporting 
communicating extended finite state machines 
(CEFSM). The CEFSM is implemented as libraries 
functions called via API. Thus, the business process 
model can be defined by an ordinary JavaScript 
function. The process definitions can be also 
structured by using packages. Concurrency and 
synchronization are provided by a threading 
mechanism. Interprocess communication is 
implemented by a message-passing mechanism. 
Communication with the host application is 
organized via host API. 

The Event-driven Process Execution Model 
(EPEM) supporting process virtual machine called 
OncePVM is presented in (Wu, Wei, Gao, and Dou, 
2012). By the authors’ opinion, the event-driven 
architecture is more preferable for highly concurrent 
systems than the thread-driven (or similar to it – 

process-driven). The main idea is that a process 
description consists of nodes and transitions. Each 
node or action contains one or more ports and listens 
or produces the dedicated events. Besides, the action 
also holds a reference of a context to preserve the 
corresponding state. The context maintains all the 
requested variations of an executing instance. 
Preconditions and postconditions serve as indicators 
of the task readiness to start and success of the 
completion and are checked by independent actions 
called connectors. Thus, connectors could be 
modified to adapt different pre/post-conditions and 
ensure necessary behavior. The OncePVM has a 
triple-layered architecture. The bottom layer consists 
of a set of basic services for processing actions, 
threads, and objects. The middle layer provides 
support for the runtime process execution. The top 
layer is dedicated for event queue managements and 
even scheduling. Before execution, the process 
description (in any process description language) is 
parsed into memory objects for each presented 
element and then these memory objects are 
transformed into executable actions and events. Then 
it is possible to start the execution of the process by 
deploying the execution objects and managing them 
by the runtime engine. Faults are handled as related 
fault events. 

The interesting workflow-based model interpreter 
called InstantApp (Shroff et al., 2009) is dedicated to 
web applications. It provides functionality for 
runtime modifications of web application forms by 
changing the application model stored in a model 
repository and cached in memory during runtime. 
This interpreter gives a possibility not only to change 
the graphical controls in forms but also to modify 
business logic associated with them. For handling 
changes in business logic, the authors use a “logic 
map” which is an extension of Google’s MapReduce. 
The logical map is a graph with create, search, 
update, merge and reduce nodes. In general, 
InstantApp also implements visitor-based pattern but 
by using other means: each activity in a logic map is 
assigned to an InstantApp form. The interpreter 
searches all the activities that the user can perform 
while using this form and executes them. 

Summarizing, business process and workflow 
automation is quite developed nowadays and supports 
deployment of different scale applications as well as 
new types of application architectures. However, 
most of the tools are language dependent excluding 
process virtual machines. Nevertheless, the 
implementation of virtual machines is more complex, 
it is the future of workflows automation. 
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3.2 UML Model Interpretation 

The various approaches for executing UML models 
are analyzed in Gotti and Mbarki’s work (Gotti and 
Mbarki, 2016) in order to understand their 
particularities and supporting tools. Supporting the 
conclusion done by Cook et al. (Cook et al., 2009), 
the authors rightly note the UML model execution is 
possible either by compiling the model or by 
interpreting it. 

Model interpretation assumes the presence of a 
virtual machine which is an environment where 
executable UML models can be read and executed 
without generation of executable code from them. 

In 2001 the idea of a UML virtual machine was 
presented in (Riehle, Fraleigh, Bucka-Lassen, and 
Omorogbe, 2001) where authors suggested to avoid 
the step of generation of objects from classes but to 
interpret them directly. As the authors wrote, all 
objects should exist in the same memory space thus 
providing the immediate causal connection between a 
model and its instances. This was a kind of rapid 
prototyping but without direct coding. Such 
implementation allows runtime exploration of the 
model by a developer. Instructions for this machine 
are specified in UML, but the persistent version is in 
XMI (XML Interchange) language. The memory 
model uses facilities provided by Java, the 
implementation language of the virtual machine. The 
virtual machine has logical and physical architecture 
that assumes that for each object in the logical 
architecture a logical class and a physical (Java) class 
are to be defined. The proposed virtual machine 
allowed using of the restricted UML and OCL 
(Object Constraint Language), since UML’s semi-
formal constructs may lead to the unexpected 
interpretations. The most formal technique, i.e., UML 
state charts, were used as the primary tool for modeling 
object behavior. Besides that, the imperative part also 
was required, and the authors added “hand-
programmed policy classes.” The advantages of this 
solution are rapid user feedback, application 
architecture independent execution of the model. The 
main weakness was a limited usefulness of the UML. 

Gotti and Mbarki indicated that nowadays an 
executable UML model usually may consist of three 
diagrams – the class diagram, the state chart diagram 
and the activity diagrams – plus behavioral 
specifications (Gotti and Mbarki, 2016). Executable 
elements of UML can be defined using foundational 
UML (fUML) and the supplementing Action 
language for foundational UML (Alf). Nevertheless, 
an executable UML model is first transformed into a 
formal control flow graph or a finite state machine 

and then analysis of these artifacts is performed. The 
analysis checks paths, dead-ends, transitions, etc. The 
same principles are implemented in the UML model 
interpreter for verification and monitoring of UML 
models of embedded cyber-physical systems that 
plays a role of synchronous observer automata 
(Besnard, Teodorov, Jouault, Brun, and Dhaussy, 
2019). For model verification, the authors apply the 
OBP2 model-checker to modeled UML state 
machines. For runtime monitoring, the observer 
monitors the current execution trace of the system. 
The UML model interpreter has the action language 
which is used to access states in the state chart 
diagrams. The action language can specify guards and 
effects of transitions and provide C macros to access 
UML instances and their attributes. 

The systematic overview of solutions suggested 
before and after appearing of fUML and Alf 
languages were overviewed in (Ciccozzi et al., 2019). 
The authors have found 14 interpretive solutions, e.g., 
Moka that is Eclipse Papyrus plug-in, fUML virtual 
machine, BridgePoint, etc. All of them focus on the 
higher-level execution for simulation and model-
based analysis. The authors concluded that there is no 
preferable solution among the overviewed. The level 
of readiness of these solutions also differs and the 
commercial status does not affect it much 
(Ovchinnikova and Nazaruka, 2016, 2017). 

3.3 Domain Specific Model 
Interpretation 

Model-based approaches got visible acceptance in 
today’s automotive software system development 
(Quante, 2016b). By raising the level of abstraction, 
they became more understandable to humans. 
However, the degree of complexity increases over 
time and limits maintenance and understanding them 
as well as increases the corresponding costs. Jochen 
Quante has presented the idea of the interpreter for 
such automotive software maintenance and 
calibration (Quante, 2016b). This interpreter can be 
called generic, since for any new modeling language 
only the transformation to the intermediate 
representation must be added. The interpreter itself is 
based on control-flow and dependency graph. It 
executes them step-by-step considering branches and 
function calls. Concrete operations and decisions can 
be delegated either to a visitor (the evaluator) class, 
or to abstraction strategies that transform concrete 
values into abstract values. The interpreter can detect 
which code is never executed and can trace back to 
the model level and indicate which parts of the model 
are irrelevant, because it investigates all possible 
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paths. Besides, the interpreter can be used for 
extracting formulas from code even symbolically 
getting conditional formulas as a result, for concolic 
testing (i.e., generating test cases with full path 
coverage), and for recording and replay 
measurements. Details on the suggested architecture 
and functions are presented by Quante in (Quante, 
2016a). The potential limitation of architecture of 
such model interpreters is that it is hard to modify the 
list of points to be visited and the list of points to be 
generated (Hill and Gokhale, 2012). 

An approach for testing models, generated code 
and target interpreters is presented by Djukić et al., 
where they suggest using action reports – special 
programs (generators) that conduct synchronization 
between the domain-specific model, client 
applications and target interpreter (Djukić et al., 
2012). The authors indicate that the limitation of their 
approach is a lack of a generated code interpreter, 
because then every model modification requires 
generation of the application code, its compilation 
and rerun of the application. The authors also note 
that in case of domain-specific models neither the 
source nor the target language needs to be known in 
advance. Thus, one of the approaches that can be used 
to create a stronger logical relationship between 
debugging environments and modeling tools is the use 
of patterns specific to each combination of a domain-
specific language and a target platform. The action 
reports in the form of metadata is a specification of 
transition from one diagram state to another. In its turn, 
the target interpreter interprets synchronization 
commands defined in the report and sets corresponding 
property values in the report definition. The modeling 
tool takes this modified report and runs operations on 
the graphical interface elements. The transfer of action 
report is done by packets.  

In order to interpret architecture of computerized 
numerical control (CNC) systems (Zhaogang, Di, 
Feng, and Suhua, 2007) the authors propose the model 
interpreter that generates source code automatically 
from models. The models are created in conformity 
with the predefined meta-model for CNC systems. The 
model interpreter acts like a translator or, in other 
words, a compiler of a programming language. When 
the model interpreter works as a model translator, it 
produces code in the input language of other analysis 
or simulation tools, e.g., UPPAAL. Otherwise, it 
produces code, static data-structures, configuration 
files or customized generic components: these artifacts 
can be compiled and linked. 

The interesting improvement of the visitor-based 
interpreters by using generative programming 
techniques is presented by James Hill and Aniruddha 

Gokhale (Hill and Gokhale, 2012). The authors call 
their model interpretation technique 
Metaprogrammable Interpreters for Model-driven 
Engineering (MIME). Similarly to (Quante, 2016a), 
Hill and Gokhale consider that using the Strategy 
design pattern and Parametrized Strategy design 
pattern partially addresses the problem of a reuse of 
core interpretation logic, but note that it is still not 
possible to modify the set of points to be visited. As a 
solution they propose the interpreter built on the 
parametrized strategy with a use of template 
metaprogramming technique. This allows avoiding 
points that should not be visited and, thus, the 
corresponding code also is not generated. 

Another application of model interpreters can be 
for self-adaptive systems, where executable runtime 
“megamodels” are interpreted and modified at 
runtime (Vogel and Giese, 2012). A megamodel is a 
feedback loop specification “by means of operations, 
the control flow between operations, and the models 
that are used by operations” (Vogel and Giese, 2012). 
This kind of systems suggests separation of the 
domain logic and the adaptation logic. In between 
both, a feedback loop (or even a number of feedback 
loops) ensures that the adaptation logic dynamically 
governs the domain logic according to changes in the 
environment or requirements to the domain logic or 
to circumstances in the domain logic itself. 

4 DISCUSSION 

The search for publications on model interpretation 
techniques resulted in understanding that there is 
plenty such solutions with different purposes and for 
different contexts. However, the research done gave 
as answers on the questions set in Section 2. 

What software model interpreters exist? There are 
many solutions that can be considered as model 
interpreters. Most of them are language specific. This 
means that architecture and implementation of the 
process engine is based on the language used for 
process specification (design). This leads to inflexible 
solutions that is a problem. 

What is the purpose for which a model interpreter 
is used? The model interpreters may be used for 
executing and modifying the workflows (or other 
process flow solutions) at the runtime; for supporting 
the domain analysis, as well as for simulating, 
debugging, testing, executing, and monitoring 
domain-specific models of the embedded and real-
time systems. 

What input models do they use? The input models 
can be specified as workflows in BPMN or BPEL 
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languages or other languages developed for the same 
field, as process specifications or domain-specific 
models in XML and XMI or other XML based or 
XML similar language (such as YAML). 

How model interpretation is implemented? 
Implementations differ from the simplest two layered 
solutions to multiple executing engines dedicated to a 
certain task, e.g., messaging, process execution, 
process monitoring, etc. The one common thing is 
that at the physical layer most of them are based on 
some kind of finite automata thus providing expected 
execution of the designed model. 

What systems characteristics do model 
interpreters allow users to check? Since model 
interpreters support parametrization, it is possible to 
check any control flow and data flow related 
characteristics. However, the focus is mostly on 
functional aspects, and rare solutions consider non-
functional characteristics. 

How interaction with a user is implemented? Is it 
possible at the run-time? The main principle of the 
model interpretation is to support direct interaction 
between an application and a user at the run-time 
without interrupting it. 

Returning to the question on the TFM 
interpretation, we can conclude that this obviously is 
possible. The TFM is based on the principles of 
system theory and algebraic topology. Thus, it can be 
translated into any kind of finite automata and 
interpreted. The process engines are not suitable for 
TFM interpretation since this model combines 
processes in one digraph. The process engines will 
require additional activities on separating scenarios. 
The concept of virtual machines seems more 
appropriate. The state chart or finite automata 
obtained from the model would contain all possible 
states and transitions, thus allowing proper model 
debugging and simulation. Besides that, this solution 
could be flexible to using different TFM specification 
languages. 

5 CONCLUSIONS 

The aim of the given research was to overview the 
state-of-the-art software model interpretation and 
opportunities that the current solutions give to model 
debugging, testing, simulation, and execution. 

The six questions were set and clear answers on 
them were achieved. The more advanced solutions 
are presented in the field of workflow automation 
within business process management systems. This 
direction proposes complex industrial interpreters of 
models. The main weaknesses of these solutions are 

the complexity and dependency on the modeling 
language. Plenty solutions are presented in the field 
of UML models execution, but only several of them 
are interpreters not compilers. The main weaknesses 
of these solutions are the degree of their readiness and 
uncertainty of the UML itself. Many ad-hoc solutions 
exist in the field of embedded and real-time systems, 
where domain-specific models require proper 
simulation before implementation. The main 
weakness here is that each solution is domain and 
model dependent. 

Future research directions are related to deeper 
research on development of the TFM interpreter that 
should apply advantages presented and avoid 
weaknesses found. 
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