
Overview of Model Interpretation Techniques and Their Applications

Vladislavs Nazaruks a and Jānis Osis b
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, Riga, Latvia

Keywords: Model Execution, Model Interpretation, Systems Analysis, Domain Analysis.

Abstract: Model interpretation opens quite wide opportunities for domain analysts and software developers. The main
weakness related to using domain models in software development is a lack of resources in projects and an
invisible value for business stakeholders. Certainly, the doubts that model interpretation will provide
additional resources for projects are objective, but it could allow dealing with the existing ones by increasing
the value of domain modeling and analysis to the business stakeholders. Two main factors can raise this
probability: first, visible execution of models or at least helpful results of this, and second, the opportunity to
modify the model and see how changes affect the behavior of the planned system. This paper overviews
existing model interpretation techniques with the aim to understand possible architectural solutions, their
advantages and weaknesses for certain models. The results of this overview can help researchers those of
starting development of their own model interpreter.

1 INTRODUCTION

A use of models as an executable artifact is a desired
target of the model-driven development. The main
idea of this was proposed in the Object Management
Group’s (OMG) guide on Model Driven Architecture
(MDA) in 2001 (Miller and Mukerji, 2001). It
requires having a formal (computer-understandable)
model as an input. This input model must have
enough details for getting complete source code.
Completeness of the model means that the model is
likely to be complex. Unfortunately, constructing the
complete complex model cannot be done in one
moment; this requires incremental work. Besides,
understanding of such a model is not a trivial activity
(Quante, 2016b). The attempt to create a complete
language is the Unified Modeling Language (UML)
proposed by the OMG (OMG, 2005). At present, the
UML language can be used for its model
interpretation or for code generation. However, its
independence from software development techniques
and platforms, size, incoherence, different
interpretations, lack of causality and frequent
subsetting lead to ambiguous semantics, cognitive
misdirection during the development process,
inadequate capture of system’s properties and so on

a https://orcid.org/0000-0003-4335-707X
b https://orcid.org/0000-0003-3774-4233

(Osis and Donins, 2017). The mentioned problems
affect the quality of generated code as well as require
additional transformations and mechanisms for UML
model interpretation as discussed in Section 3.2.

In the process of building a complete input model,
it is necessary to be able to “run”, “debug” and “test”
it similarly to debugging and testing the source code.
From one point of view, manual reviews and
sometimes partial prototyping can be successfully
applied, but manual work is slow and does not
exclude human mistakes due to complexity of
models. From the other side, automated model
checking techniques exist like, for instance, those of
used to verify requirements and design for real-time
embedded and safety-critical systems. These
automated model-checking techniques require a use
of formal modeling language, e.g., finite state
machines can be used for “control-oriented” systems
(applied in aerospace, avionics, automotive, etc.)
(Palshikar, 2004). However, the model checking also
requires manual translation of requirements
descriptions into these languages, as well as it is hard
to follow the checking algorithm execution in case of
“data-oriented” systems where business logic is more
important than behavior.

Another opportunity is interpretation or “running”
of models. The goal of this paper is to overview

Nazaruks, V. and Osis, J.
Overview of Model Interpretation Techniques and Their Applications.
DOI: 10.5220/0010534105130520
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 513-520
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

513

existing implementations of model interpretation
techniques and their applications in software
development.

Section 2 presents the considerations that
influence the research flow. Section 3 gives an
overview of existing model interpreters. Section 4 is
dedicated to discussion on the main findings.
Section 5 concludes the paper with main results and
discussion on validity of the research done.

2 RESEARCH QUESTIONS AND
METHOD

Reading literature, one can find that it is possible to
“simulate” a model, to “execute or run” a model, and
to “interpret” a model. Let us look what does it mean.
Simulation of models usually is used for real complex
systems that are hard to be analyzed analytically, e.g.,
day-to-day operation of a bank. “A simulation model
is a parameterised model that is solved on the
computer…” (Arnott, 2012). It uses statistical data
about operation of the real system it describes as well
as autonomously existing events. Execution of
models usually refers to an executable UML model,
which can represent either planned to be built
software or already existing one. A systematic
overview on execution of UML models (Ciccozzi,
Malavolta, and Selic, 2019) indicated two ways of
UML models execution, namely, interpretation and
translation. The authors’ research showed that a large
part of existing UML execution tools uses a
translative approach to a programming language (in
most cases it is Java). The reason is a desire to get
generated production artifacts as the result of
modeling. However, interpretative approaches are
mostly used for validating and improving functional
correctness at the beginning of development.
Although there are few existing model-level
debugging implementations, both translative and
interpretative executions can be combined with the
simulation mechanism based on autonomously
existing events. Simulation of models extends users’
abilities to debug and correct the model itself. Thus,
interpretation of models is just a way how to execute
a model.

A topological functioning model (TFM)
introduced by Jānis Osis in 1969 (Osis, 1969) is a
formal mathematical model that can be used both for
business modeling and software source code
generation (Nazaruka and Osis, 2019; Osis and
Donins, 2017) starting from the automated processing
of textual descriptions of the system’s structure and

functionality (Nazaruka, 2020). However, the
constructed TFM requires experts’ check. In order to
assist this check TFM interpetation can be used. Thus,
we want to understand what is the state of the art in
the field and what model interpretation techniques
could be more beneficial.

In order to achieve the goal stated, a list of
questions has been defined, answers on which should
be found during the overview of the existing
publications. The research questions are as follows:

 What software model interpreters exist?
 What is the purpose for which a model

interpreter is used?
 What input models do they use?
 How model interpretation is implemented?
 What systems characteristics do model

interpreters allow users to check?
 How interaction with a user is implemented? Is

it possible at the run-time?

The information on software model interpreters
published by IEEE, ACM, ScienceDirect and those of
presented in Google Scholar have been searched for a
period from 2000 till 2020. The starting year, 2000,
was selected as the year when Model Driven
Architecture was presented to the public. An
additional filter used was the context, i.e., software
development including embedded and real-time
systems. Besides that, the research works related to
pure code generation from models were omitted.

The keywords used are “model interpretation,”
“model execution,” and “model interpreter.” It must
be said that quite many research works were found,
and selection of those found can illustrate the main
principles of model interpretation.

In order to structure the information found, these
key publications are grouped according to the
interpretable models, i.e., business process models,
UML models and domain specific models.

3 MODEL INTERPRETATION
TECHNIQUES

The general definition of interpreters states (Karsai,
1999): “model interpreters are transformation
programs that walk a graph (the model objects), and
perform actions during this process.” A model
interpreter should have the following components:
model structure, visitors and traversals. The model
structure can be a graph or its textual specification.
Thus, it usually represents a set of nodes and
transitions between them. One of the issues here is

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

514

that the graph may consist of nodes of heterogeneous
types with a certain action related to a certain type.
The common solution is a use of the visitor design
pattern, which implementing Visitor classes can be
assigned to a specific type of a node and be invoked
if needed (Karsai, 1999). In order to capture
information on what node the interpreter need to go
next, traversals are used. Traversals are objects that
contain the traversal code fragments and can also
contain state information. Traversals and visitors are
to be directly linked to each other. However, visitor-
based interpreters have two limitations: coupled
interpreter-logic and generation-logic, as well as a
minimal reuse of code (Hill and Gokhale, 2012).

In the model-driven engineering, a model
interpreter is a software component that operates on
the information captured in a system model to
produce some useful artifact (Edwards, Seo, and
Medvidovic, 2008). Model interpreters may extract
the model structure and properties (Edwards et al.,
2008) or be based on the modifiable pre-developed
meta-model (Shroff, Agarwal, and Devanbu, 2009).
However, universal interpreters that are independent
of the application domain do not exist (Djukić,
Luković, Popović, and Ivančević, 2012).

Cook et al. have investigated many techniques to
define the interpretations of models (Cook, Delaware,
Finsterbusch, Ibrahim, and Wiedermann, 2009).
According to the authors, one common approach is to
use a translator from one modeling language to
another modeling language or to code. Dynamic
interpreters are also common in practice, although
they have received less attention in research
publications. One point of confusion is that the term
“interpreter” is often used to mean “translator” in the
model-driven literature. Here, the term “interpreter”
is also used in its more traditional meaning as a meta-
program that executes a program in the given
language, the same as the authors use in (Cook et al.,
2009). According to the authors, translators have the
advantage that they can produce efficient code and
target any runtime environment. Interpreters are often
easier to write then compilers, but they are typically
slower and do not necessarily integrate easily with
other parts of a system, which may be written in
compiled languages.

3.1 Business Process Model
Automation

According to (Ferme, Lenhard, Harrer, Geiger, and
Pautasso, 2017), workflow automation relates to the
execution of automated business processes within
Workflow Management Systems (WfMSs). Ferme et

al. (Ferme et al., 2017) think that the most critical part
in WfMSs is the modeling language implementations
that do not satisfy language standards; nevertheless,
there are several proposed standards for the modeling
language. The main part of the WfMSs responsible
for business model running is a process engine. This
is not a new thing now. There are many commercial
and open-source solutions of process engines, e.g.,
IBM’s WebSphere, Windows Workflow Foundation,
JBPM, Bonita, Apache ODE, ActiveBPEL
(ActiveVOS), Oracle BPEL Process Manager (Oracle
BPM), etc. In this part, several of them will be
considered to understand main common principles
implemented in them.

The BPEL engine uses business processes
descriptions as “a series of activities” which are
executed by web services (ARIS BPM Community,
2021). According to the BPEL vendors, a graphical
representation of a BPEL process reduces complexity
of the process flows and allows integrating BPEL
diagrams into the process architecture model. These
graphical models are exported into a BPEL XML
(eXtensible Markup Language) based script. In
essence, the BPEL combines block structures and
allows describing transitions between them as
directed graphs (Juric, n.d.).

The IBM’s WebSphere line’s (IBM, 2011)
process engine takes as a basis high-level XML
process definitions in the BPEL supplemented with
code fragments in Java. The execution and
monitoring of models requires IBM’s WebSphere
Application Server that at present supports
Kubernetes and microservices.

Microsoft also has had its embeddable workflow
engine called Windows Workflow Foundation (WF)
(Microsoft, 2017). The WF is a part of the .NET
framework that allows developing workflow
functionality using XAML-encoded workflow
definitions. This possibility is implemented in the
Workflow Designer (WD), which is a visual designer
and debugger for the graphical construction and
debugging. The basic building blocks in WF are
activities. The developer can select the needed one
from the Activity Designer Library templates and
Visual Studio will create an activity designer
definition in XAML and a code-behind
implementation file. Besides that, it is possible to
model arguments with values, variables for use in
data-binding scenarios and conditional statements,
and expressions (i.e., controls used in workflow
activities to enter and evaluate expressions).
Activities can form the sequential flow or a state
machine workflow, can be grouped and even ordered
according to a hierarchy. In WF, a workflow running

Overview of Model Interpretation Techniques and Their Applications

515

is thread-based. Debugging of the workflows is
possible via Workflow Designer or at the XAML
level.

Process engines mentioned here depend on the
language used for the workflow design and lack
flexibility. Therefore, if someone wants to provide the
flexibility in this context, they should create a process
virtual machine and then some suites for each
potential language.

BMPN models can also be interpreted, e.g., to
ensure modification of processes without recompiling
them completely, as it is demonstrated for smart
contracts (Lopez-Pintado, Dumas, Garcia-Banuelos,
and Weber, 2019). The main difficulty in model-
based smart contracts used for blockchain-based
business process execution is a lack of flexibility
(because they are attached to different versions of the
model) and high deployment costs. The suggested
Caterpillar interpreter supports all three process
modeling perspectives, namely, control-flow, data,
and resources. The idea is to create a new subprocess,
relate it to the existing one and generate code for this
new subprocess. The one issue that remains in this
implementation is a lack of consistency checking.

Another possible solution is described by
Weigold, Kramp and Buhler (Weigold, Kramp, and
Buhler, 2007), where they suggest the ePVM, an
embeddable process virtual machine. It consists of a
lightweight library with basic functionality to state
and control flow managements, process persistence
and transactions, monitoring, inter-process
communication, and communication with the host
application, as well as optional functionality for
workflow systems support, human interaction and
even integration with “not native” process languages.
In the ePVM, a business process is developed using a
programming environment supporting
communicating extended finite state machines
(CEFSM). The CEFSM is implemented as libraries
functions called via API. Thus, the business process
model can be defined by an ordinary JavaScript
function. The process definitions can be also
structured by using packages. Concurrency and
synchronization are provided by a threading
mechanism. Interprocess communication is
implemented by a message-passing mechanism.
Communication with the host application is
organized via host API.

The Event-driven Process Execution Model
(EPEM) supporting process virtual machine called
OncePVM is presented in (Wu, Wei, Gao, and Dou,
2012). By the authors’ opinion, the event-driven
architecture is more preferable for highly concurrent
systems than the thread-driven (or similar to it –

process-driven). The main idea is that a process
description consists of nodes and transitions. Each
node or action contains one or more ports and listens
or produces the dedicated events. Besides, the action
also holds a reference of a context to preserve the
corresponding state. The context maintains all the
requested variations of an executing instance.
Preconditions and postconditions serve as indicators
of the task readiness to start and success of the
completion and are checked by independent actions
called connectors. Thus, connectors could be
modified to adapt different pre/post-conditions and
ensure necessary behavior. The OncePVM has a
triple-layered architecture. The bottom layer consists
of a set of basic services for processing actions,
threads, and objects. The middle layer provides
support for the runtime process execution. The top
layer is dedicated for event queue managements and
even scheduling. Before execution, the process
description (in any process description language) is
parsed into memory objects for each presented
element and then these memory objects are
transformed into executable actions and events. Then
it is possible to start the execution of the process by
deploying the execution objects and managing them
by the runtime engine. Faults are handled as related
fault events.

The interesting workflow-based model interpreter
called InstantApp (Shroff et al., 2009) is dedicated to
web applications. It provides functionality for
runtime modifications of web application forms by
changing the application model stored in a model
repository and cached in memory during runtime.
This interpreter gives a possibility not only to change
the graphical controls in forms but also to modify
business logic associated with them. For handling
changes in business logic, the authors use a “logic
map” which is an extension of Google’s MapReduce.
The logical map is a graph with create, search,
update, merge and reduce nodes. In general,
InstantApp also implements visitor-based pattern but
by using other means: each activity in a logic map is
assigned to an InstantApp form. The interpreter
searches all the activities that the user can perform
while using this form and executes them.

Summarizing, business process and workflow
automation is quite developed nowadays and supports
deployment of different scale applications as well as
new types of application architectures. However,
most of the tools are language dependent excluding
process virtual machines. Nevertheless, the
implementation of virtual machines is more complex,
it is the future of workflows automation.

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

516

3.2 UML Model Interpretation

The various approaches for executing UML models
are analyzed in Gotti and Mbarki’s work (Gotti and
Mbarki, 2016) in order to understand their
particularities and supporting tools. Supporting the
conclusion done by Cook et al. (Cook et al., 2009),
the authors rightly note the UML model execution is
possible either by compiling the model or by
interpreting it.

Model interpretation assumes the presence of a
virtual machine which is an environment where
executable UML models can be read and executed
without generation of executable code from them.

In 2001 the idea of a UML virtual machine was
presented in (Riehle, Fraleigh, Bucka-Lassen, and
Omorogbe, 2001) where authors suggested to avoid
the step of generation of objects from classes but to
interpret them directly. As the authors wrote, all
objects should exist in the same memory space thus
providing the immediate causal connection between a
model and its instances. This was a kind of rapid
prototyping but without direct coding. Such
implementation allows runtime exploration of the
model by a developer. Instructions for this machine
are specified in UML, but the persistent version is in
XMI (XML Interchange) language. The memory
model uses facilities provided by Java, the
implementation language of the virtual machine. The
virtual machine has logical and physical architecture
that assumes that for each object in the logical
architecture a logical class and a physical (Java) class
are to be defined. The proposed virtual machine
allowed using of the restricted UML and OCL
(Object Constraint Language), since UML’s semi-
formal constructs may lead to the unexpected
interpretations. The most formal technique, i.e., UML
state charts, were used as the primary tool for modeling
object behavior. Besides that, the imperative part also
was required, and the authors added “hand-
programmed policy classes.” The advantages of this
solution are rapid user feedback, application
architecture independent execution of the model. The
main weakness was a limited usefulness of the UML.

Gotti and Mbarki indicated that nowadays an
executable UML model usually may consist of three
diagrams – the class diagram, the state chart diagram
and the activity diagrams – plus behavioral
specifications (Gotti and Mbarki, 2016). Executable
elements of UML can be defined using foundational
UML (fUML) and the supplementing Action
language for foundational UML (Alf). Nevertheless,
an executable UML model is first transformed into a
formal control flow graph or a finite state machine

and then analysis of these artifacts is performed. The
analysis checks paths, dead-ends, transitions, etc. The
same principles are implemented in the UML model
interpreter for verification and monitoring of UML
models of embedded cyber-physical systems that
plays a role of synchronous observer automata
(Besnard, Teodorov, Jouault, Brun, and Dhaussy,
2019). For model verification, the authors apply the
OBP2 model-checker to modeled UML state
machines. For runtime monitoring, the observer
monitors the current execution trace of the system.
The UML model interpreter has the action language
which is used to access states in the state chart
diagrams. The action language can specify guards and
effects of transitions and provide C macros to access
UML instances and their attributes.

The systematic overview of solutions suggested
before and after appearing of fUML and Alf
languages were overviewed in (Ciccozzi et al., 2019).
The authors have found 14 interpretive solutions, e.g.,
Moka that is Eclipse Papyrus plug-in, fUML virtual
machine, BridgePoint, etc. All of them focus on the
higher-level execution for simulation and model-
based analysis. The authors concluded that there is no
preferable solution among the overviewed. The level
of readiness of these solutions also differs and the
commercial status does not affect it much
(Ovchinnikova and Nazaruka, 2016, 2017).

3.3 Domain Specific Model
Interpretation

Model-based approaches got visible acceptance in
today’s automotive software system development
(Quante, 2016b). By raising the level of abstraction,
they became more understandable to humans.
However, the degree of complexity increases over
time and limits maintenance and understanding them
as well as increases the corresponding costs. Jochen
Quante has presented the idea of the interpreter for
such automotive software maintenance and
calibration (Quante, 2016b). This interpreter can be
called generic, since for any new modeling language
only the transformation to the intermediate
representation must be added. The interpreter itself is
based on control-flow and dependency graph. It
executes them step-by-step considering branches and
function calls. Concrete operations and decisions can
be delegated either to a visitor (the evaluator) class,
or to abstraction strategies that transform concrete
values into abstract values. The interpreter can detect
which code is never executed and can trace back to
the model level and indicate which parts of the model
are irrelevant, because it investigates all possible

Overview of Model Interpretation Techniques and Their Applications

517

paths. Besides, the interpreter can be used for
extracting formulas from code even symbolically
getting conditional formulas as a result, for concolic
testing (i.e., generating test cases with full path
coverage), and for recording and replay
measurements. Details on the suggested architecture
and functions are presented by Quante in (Quante,
2016a). The potential limitation of architecture of
such model interpreters is that it is hard to modify the
list of points to be visited and the list of points to be
generated (Hill and Gokhale, 2012).

An approach for testing models, generated code
and target interpreters is presented by Djukić et al.,
where they suggest using action reports – special
programs (generators) that conduct synchronization
between the domain-specific model, client
applications and target interpreter (Djukić et al.,
2012). The authors indicate that the limitation of their
approach is a lack of a generated code interpreter,
because then every model modification requires
generation of the application code, its compilation
and rerun of the application. The authors also note
that in case of domain-specific models neither the
source nor the target language needs to be known in
advance. Thus, one of the approaches that can be used
to create a stronger logical relationship between
debugging environments and modeling tools is the use
of patterns specific to each combination of a domain-
specific language and a target platform. The action
reports in the form of metadata is a specification of
transition from one diagram state to another. In its turn,
the target interpreter interprets synchronization
commands defined in the report and sets corresponding
property values in the report definition. The modeling
tool takes this modified report and runs operations on
the graphical interface elements. The transfer of action
report is done by packets.

In order to interpret architecture of computerized
numerical control (CNC) systems (Zhaogang, Di,
Feng, and Suhua, 2007) the authors propose the model
interpreter that generates source code automatically
from models. The models are created in conformity
with the predefined meta-model for CNC systems. The
model interpreter acts like a translator or, in other
words, a compiler of a programming language. When
the model interpreter works as a model translator, it
produces code in the input language of other analysis
or simulation tools, e.g., UPPAAL. Otherwise, it
produces code, static data-structures, configuration
files or customized generic components: these artifacts
can be compiled and linked.

The interesting improvement of the visitor-based
interpreters by using generative programming
techniques is presented by James Hill and Aniruddha

Gokhale (Hill and Gokhale, 2012). The authors call
their model interpretation technique
Metaprogrammable Interpreters for Model-driven
Engineering (MIME). Similarly to (Quante, 2016a),
Hill and Gokhale consider that using the Strategy
design pattern and Parametrized Strategy design
pattern partially addresses the problem of a reuse of
core interpretation logic, but note that it is still not
possible to modify the set of points to be visited. As a
solution they propose the interpreter built on the
parametrized strategy with a use of template
metaprogramming technique. This allows avoiding
points that should not be visited and, thus, the
corresponding code also is not generated.

Another application of model interpreters can be
for self-adaptive systems, where executable runtime
“megamodels” are interpreted and modified at
runtime (Vogel and Giese, 2012). A megamodel is a
feedback loop specification “by means of operations,
the control flow between operations, and the models
that are used by operations” (Vogel and Giese, 2012).
This kind of systems suggests separation of the
domain logic and the adaptation logic. In between
both, a feedback loop (or even a number of feedback
loops) ensures that the adaptation logic dynamically
governs the domain logic according to changes in the
environment or requirements to the domain logic or
to circumstances in the domain logic itself.

4 DISCUSSION

The search for publications on model interpretation
techniques resulted in understanding that there is
plenty such solutions with different purposes and for
different contexts. However, the research done gave
as answers on the questions set in Section 2.

What software model interpreters exist? There are
many solutions that can be considered as model
interpreters. Most of them are language specific. This
means that architecture and implementation of the
process engine is based on the language used for
process specification (design). This leads to inflexible
solutions that is a problem.

What is the purpose for which a model interpreter
is used? The model interpreters may be used for
executing and modifying the workflows (or other
process flow solutions) at the runtime; for supporting
the domain analysis, as well as for simulating,
debugging, testing, executing, and monitoring
domain-specific models of the embedded and real-
time systems.

What input models do they use? The input models
can be specified as workflows in BPMN or BPEL

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

518

languages or other languages developed for the same
field, as process specifications or domain-specific
models in XML and XMI or other XML based or
XML similar language (such as YAML).

How model interpretation is implemented?
Implementations differ from the simplest two layered
solutions to multiple executing engines dedicated to a
certain task, e.g., messaging, process execution,
process monitoring, etc. The one common thing is
that at the physical layer most of them are based on
some kind of finite automata thus providing expected
execution of the designed model.

What systems characteristics do model
interpreters allow users to check? Since model
interpreters support parametrization, it is possible to
check any control flow and data flow related
characteristics. However, the focus is mostly on
functional aspects, and rare solutions consider non-
functional characteristics.

How interaction with a user is implemented? Is it
possible at the run-time? The main principle of the
model interpretation is to support direct interaction
between an application and a user at the run-time
without interrupting it.

Returning to the question on the TFM
interpretation, we can conclude that this obviously is
possible. The TFM is based on the principles of
system theory and algebraic topology. Thus, it can be
translated into any kind of finite automata and
interpreted. The process engines are not suitable for
TFM interpretation since this model combines
processes in one digraph. The process engines will
require additional activities on separating scenarios.
The concept of virtual machines seems more
appropriate. The state chart or finite automata
obtained from the model would contain all possible
states and transitions, thus allowing proper model
debugging and simulation. Besides that, this solution
could be flexible to using different TFM specification
languages.

5 CONCLUSIONS

The aim of the given research was to overview the
state-of-the-art software model interpretation and
opportunities that the current solutions give to model
debugging, testing, simulation, and execution.

The six questions were set and clear answers on
them were achieved. The more advanced solutions
are presented in the field of workflow automation
within business process management systems. This
direction proposes complex industrial interpreters of
models. The main weaknesses of these solutions are

the complexity and dependency on the modeling
language. Plenty solutions are presented in the field
of UML models execution, but only several of them
are interpreters not compilers. The main weaknesses
of these solutions are the degree of their readiness and
uncertainty of the UML itself. Many ad-hoc solutions
exist in the field of embedded and real-time systems,
where domain-specific models require proper
simulation before implementation. The main
weakness here is that each solution is domain and
model dependent.

Future research directions are related to deeper
research on development of the TFM interpreter that
should apply advantages presented and avoid
weaknesses found.

REFERENCES

ARIS BPM Community. 2021. BPEL. Retrieved January
28, 2021, from https://www.ariscommunity.com/ bpel

Arnott, R. 2012. Simulation models for urban economies.
In International Encyclopedia of Housing and Home
(pp. 342–349). Elsevier. https://doi.org/10.1016/B978-
0-08-047163-1.00176-4

Besnard, V., Teodorov, C., Jouault, F., Brun, M., and
Dhaussy, P. 2019. Verifying and Monitoring UML
Models with Observer Automata: A Transformation-
Free Approach. In 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages
and Systems (MODELS), 161–171. Munich, Germany:
IEEE. https://doi.org/10.1109/MODELS.2019.000-5

Ciccozzi, F., Malavolta, I., and Selic, B. 2019. Execution of
UML models: a systematic review of research and
practice. Software & Systems Modeling, 18(3), 2313–
2360. https://doi.org/10.1007/s10270-018-0675-4

Cook, W. R., Delaware, B., Finsterbusch, T., Ibrahim, A.,
and Wiedermann, B. 2009. Model Transformation by
Partial Evaluation of Model Interpreters. Technical
Report TR-09-09. Retrieved from https://www.
cs.utexas.edu/~wcook/publications.htm

Djukić, V., Luković, I., Popović, A., and Ivančević, V.
2012. Using action reports for testing meta-models,
models, generators and target interpreter in domain-
specific modeling. In 2012 Federated Conference on
Computer Science and Information Systems (FedCSIS),
1365–1372. Wroclaw, Poland: IEEE.

Edwards, G., Seo, C., and Medvidovic, N. 2008. Model
Interpreter Frameworks: A Foundation for the Analysis
of Domain-Specific Software Architectures. Journal of
Universal Computer Science, 14(8), 1182–1206.

Ferme, V., Lenhard, J., Harrer, S., Geiger, M., and
Pautasso, C. 2017. Workflow Management Systems
Benchmarking: Unfulfilled Expectations and Lessons
Learned. In Proceedings of the 39th International
Conference on Software Engineering Companion, 379–
381. IEEE Press. https://doi.org/10.1109/ICSE-
C.2017.126

Overview of Model Interpretation Techniques and Their Applications

519

Gotti, S., and Mbarki, S. 2016. UML executable: A
comparative study of UML compilers and interpreters.
2016 International Conference on Information
Technology for Organizations Development (IT4OD),
1–5. Fez, Morocco: IEEE. https://doi.org/10.1109/
IT4OD.2016.7479251

Hill, J. H., and Gokhale, A. 2012. Using Template
Metaprogramming to Enhance Reuse in Visitor-Based
Model Interpreters. In 2012 IEEE 19th International
Conference and Workshops on Engineering of
Computer-Based Systems, 5–14. Novi Sad, Serbia:
IEEE. https://doi.org/10.1109/ECBS.2012.48

IBM. 2011. IBM100 - WebSphere. Retrieved February 25,
2021, from IBM 100 website: https://www.ibm.com/
ibm/history/ibm100/us/en/icons/websphere/

Juric, M. B., n.d.. ORACLE, A Hands-on Introduction to
BPEL. Retrieved January 28, 2021, from
https://www.oracle.com/technical-resources/articles/
matjaz-bpel.html

Karsai, G. 1999. Structured specification of model
interpreters. In Proceedings ECBS’99. IEEE
Conference and Workshop on Engineering of
Computer-Based Systems, 84–90. IEEE Comput. Soc.
https://doi.org/10.1109/ECBS.1999.755865

Lopez-Pintado, O., Dumas, M., Garcia-Banuelos, L., and
Weber, I. 2019. Interpreted Execution of Business
Process Models on Blockchain. In 2019 IEEE 23rd
International Enterprise Distributed Object Computing
Conference (EDOC), 206–215. Bangkok, Thailand:
IEEE. https://doi.org/10.1109/EDOC.2019.00033

Microsoft. 2017. Windows Workflow Foundation.
Retrieved February 25, 2021, from Microsoft Docs
website: https://docs.microsoft.com/en-us/dotnet/frame
work/windows-workflow-foundation/

Miller, J., and Mukerji, J. 2001. Model Driven Architecture
(MDA). In Architecture Board ORMSC.

Nazaruka, E. 2020. Processing Use Case Scenarios and
Text in a Formal Style as Inputs for TFM-based
Transformations. Baltic J. Modern Computing, 8(1),
48–68. https://doi.org/https://doi.org/10.22364/bjmc.
2020.8.1.03

Nazaruka, E., and Osis, J. 2019. The Formal Reference
Model for Software Requirements. In E. Damiani, G.
Spanoudakis, and L. Maciaszek (Eds.), Evaluation of
Novel Approaches to Software Engineering. ENASE
2018. Communications in Computer and Information
Science, vol 1023 (pp. 352–372). Springer, Cham.
https://doi.org/10.1007/978-3-030-22559-9_16

OMG. 2005. Introduction to Omg’s Unified Modeling
LanguageTM (UML®). Retrieved March 3, 2021, from
Unified Modeling Language website:
https://www.uml.org/what-is-uml.htm

Osis, J. 1969. Topological Model of System Functioning (in
Russian). Automatics and Computer Science, J. of
Academia of Siences, (6), 44–50.

Osis, J., and Donins, U. 2017. Topological UML Modeling:
An Improved Approach for Domain Modeling and
Software Development. Cambridge, Massachusetts,
USA: Elsevier.

Ovchinnikova, V., and Nazaruka, E. 2016. The validation

 possibility of Topological Functioning Model using the
Cameo Simulation Toolkit. In ENASE 2016 -
Proceedings of the 11th International Conference on
Evaluation of Novel Software Approaches to Software
Engineering. SciTePress.

Ovchinnikova, V., and Nazaruka, E. 2017. Lessons learned
on using execution model implementation in sparx
enterprise architect for verification of the topological
functioning model. In ENASE 2017 - Proceedings of the
12th International Conference on Evaluation of Novel
Approaches to Software Engineering. SciTePress.

Palshikar, G. K. 2004. An introduction to model checking -
Embedded.com. Retrieved March 3, 2021, from
https://www.embedded.com/an-introduction-to-model-
checking/

Quante, J. 2016a. A Program Interpreter Framework for
Arbitrary Abstractions. In 2016 IEEE 16th
International Working Conference on Source Code
Analysis and Manipulation (SCAM), 91–96. Raleigh,
NC, USA: IEEE. https://doi.org/10.1109/SCAM.
2016.29

Quante, J. 2016b. Use Cases of a Generic Model Interpreter
in an Automotive Software Setting. In 2016 IEEE
International Conference on Software Maintenance
and Evolution (ICSME), 539–542. Jinan, China: IEEE.
https://doi.org/10.1109/ICSME.2016.81

Riehle, D., Fraleigh, S., Bucka-Lassen, D., and Omorogbe,
N. 2001. The architecture of a UML virtual machine.
ACM SIGPLAN Notices, 36(11), 327–341.
https://doi.org/10.1145/504311.504306

Shroff, G., Agarwal, P., and Devanbu, P. 2009.
InstantApps: A WYSIWYG model driven interpreter
for web applications. In 2009 31st International
Conference on Software Engineering - Companion
Volume, 417–418. Vancouver, BC, Canada: IEEE.
https://doi.org/10.1109/ICSE-
COMPANION.2009.5071040

Vogel, T., and Giese, H. 2012. A language for feedback
loops in self-adaptive systems: Executable runtime
megamodels. In 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 129–138. Zurich, Switzerland:
IEEE. https://doi.org/10.1109/SEAMS.2012.6224399

Weigold, T., Kramp, T., and Buhler, P. 2007. ePVM - An
Embeddable Process Virtual Machine. In 31st Annual
International Computer Software and Applications
Conference - Vol. 1- (COMPSAC 2007), 1, 557–564.
IEEE. https://doi.org/10.1109/COMPSAC.2007.110

Wu, D., Wei, J., Gao, C., and Dou, W. 2012. A Highly
Concurrent Process Virtual Machine Based on Event-
driven Process Execution Model. In 2012 IEEE Ninth
International Conference on E-Business Engineering,
61–69. IEEE. https://doi.org/10.1109/ICEBE.2012.20

Zhaogang, S., Di, L., Feng, Y., and Suhua, X. 2007. Model-
based development architecture for embedded CNC
system. In Proceedings of the IEEE International
Conference on Automation and Logistics, ICAL 2007,
154–158. IEEE. https://doi.org/10.1109/ICAL.2007.43
38548

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

520

