
Impact of End User Human Aspects on Software Engineering

John C. Grundy a

Department of Software Systems and Cybersecurity, Faculty of Information Technology,
Monash University, Melbourne, Australia

Keywords: Software Engineering, Stakeholders, End Users, Human Aspects, Human Factors.

Abstract: Software is designed and built to help solve human problems. However, much current software fails to take
into account the diverse end users of software systems and their differing characteristics and needs eg. age,
gender, culture, language, educational level, socio-economic status, physical and mental challenges, etc. I give
examples of some of these diverse end user characteristics and the need to better incorporate them into require-
ments engineering, design, implementation, testing, and defect reporting activities in software engineering. I
report on some of our work trying to address some of these issues, including: use of personas to better charac-
terise diverse end user characteristics; extending requirements and design models to capture diverse end user
needs; analysis of app reviews and JIRA logs to identify problems and ways developers try to address them;
analysis of approaches to improve the accessibility of software designs for diverse end users; adaptive user
interfaces and model-driven engineering with human aspects; improved human-centric defect reporting ap-
proaches; and use of living lab co-design approaches to ensure end users are first class contributors during all
phases of software development. I finish by outlining a research roadmap aiming to improve the incorporation
of end user human aspects into software engineering.

1 INTRODUCTION

Humans build software systems to help solve human
problems, be they for industry, leisure, health and well
being, social interactions, and so on (Rashid et al.,
2017; Strengers and Kennedy, 2020; Curumsing et al.,
2019; Grundy and Grundy, 2013). Yet, humans are
different in many ways, including having diverse age,
gender, culture, language, educational level, technical
proficiency, preferences in interaction and problem
solving styles, personality, emotional reaction to us-
ing software, mental and physical challenges, and so
on (Burnett et al., 2016; Perez, 2019; Grundy, 2020;
Curumsing et al., 2019; Cruz et al., 2015).

There has been considerable research into co-
operative and human aspects of software engineering
– from the perspectives of software engineers as hu-
mans – for many years (Cruz et al., 2015; Lenberg
et al., 2015; Hidellaarachchi et al., 2021). How-
ever, there has been much less research into how
diverse END USER human aspects impact software
engineering from requirements, design, implementa-
tion, testing, deployment and defect reporting and
fixing perspectives (Lopez-Lorca et al., 2014; Al-

a https://orcid.org/0000-0003-4928-7076

shayban et al., 2020; Grundy, 2020; Hidellaarachchi
et al., 2021; Burnett et al., 2016; Yusop et al., 2020).
While human-computer interaction, design science,
psychology, anthropology, and other disciplines have
researched these software end user human impacts
for many years, particularly on design and usabil-
ity evaluation, few software engineers know about
many of the theories involved, techniques and tools
invented, and integrate little or none of these find-
ings into contemporary software engineering prac-
tices (Yusop et al., 2016; Grundy, 2020; Madampe
et al., 2020; Curumsing et al., 2019; Alshayban et al.,
2020; Cruz et al., 2015).

Given the increasing use of software for all as-
pects of modern living and working, and the increas-
ing diversity of end users and end user challenges
this software thus has, software engineers must bet-
ter understand and take account of diverse end user
human aspects. In this keynote talk I discuss how
the lack of accounting for some of these end user hu-
man aspects produces not-fit-for-purpose software so-
lutions. I then discuss some of the work my Human-
iSE (Human-centric Software Engineering) team1 is
doing to address different current deficiencies dur-

1https://www.monash.edu/it/humanise-lab

Grundy, J.
Impact of End User Human Aspects on Software Engineering.
DOI: 10.5220/0010531800090020
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 9-20
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

9



ing requirements engineering, design, implementa-
tion, evaluation and the overall software process.

The rest of this paper is organised as follows. Sec-
tion 2 outlines some of the key end user human as-
pects and issues of failing to address them during
software development. I then discuss in Sections 3,
4, 5 and 6 some of our work in improving require-
ments engineering, design, model-driven engineering
and evaluation by incorporating end user human as-
pects into key steps of development. In Section 7 I
discuss progress to date and key planned future work
to extend this research and to deliver practical out-
comes for software engineers. In finish in Section 8
with key conclusions from this keynote talk.

2 END USER HUMAN ASPECTS

The term “human factors” has been used extensively
in HCI and Engineering and Design disciplines to
characterise human issues involved in designing and
using complex technologies (Woodson et al., 1992).
The term “human aspects” has been used for some
time in software engineering but usually to discuss
human issues of software engineers, as individuals
and teams (Hazzan and Tomayko, 2005). In this pa-
per I use the term “end user human aspects” – or
just human aspects – to describe human issues of the
target end users of the software systems we build.
While this concept is related to human aspects of the
software engineers building the systems – and I re-
turn to this interplay at the end of this keynote talk
– they have quite different implications. Similarly
while human factors of complex systems have been
well-studied for many years, how to best support soft-
ware engineers in addressing the diverse human as-
pects of their software end users is a related but quite
different – and under-researched – focus area.

A wide variety of end user human aspects impact
software and its usage. This is becoming more promi-
nent as more and more people need to use software
solutions more and more often (Lopez-Lorca et al.,
2014; Grundy, 2020). Below I summarise some, but
by no means all, of these end user human aspects that
software engineers increasingly need to consider and
address effectively in their work.
Age. End users have a wide range of ages from the
very young to the very old. Different aged people
have quite different challenges in using software, and
may have quite different expectations and reactions
to the same software (Grundy et al., 2018; Nouwen
et al., 2015; Williams et al., 2013). Failure to take
account of differently aged end users may result in
software that uses wrong terminology, poor interfaces

and workflow, is overly complex or confusing, and is
not sufficiently enjoyable or engaging.
Physical and Mental Challenges. Many software so-
lutions have been developed to assist with people liv-
ing with physical and/or cognitive challenges. Some
must be designed and implemented to specifically
take account of them to assist with accessibility of
the software or to ensure the software supports and
not harms vulnerable end users (Carcedo et al., 2016;
Sierra and Togores, 2012). These challenges include
poor mental health, various degrees of cognitive im-
pairment and a wide variety of physical challenges,
such as limited or impaired sight, hearing, mobility
and speech (Alshayban et al., 2020; Stock et al., 2008;
Zhao et al., 2020; Rashid et al., 2017). Failure to
account for diverse physical and mental challenges
results in accessibility problems, but also inefficient
and ineffective software solutions, confusing and even
dangerous systems, end user frustration, and creates
digital living barriers and obstacles that add to and/or
exacerbate physical ones.
Emotions. Using the same software system often
generates positive and negative emotions in differ-
ent people. For example, positive reactions might
include a home monitoring system providing a feel-
ing of safety, to negative reactions to the same soft-
ware, such as feeling lack of control or being moni-
tored intrusively (Curumsing et al., 2019). These re-
actions can have a major impact of acceptance and use
of solutions, but are very poorly supported by most
existing software requirements and design methods
(Miller et al., 2015; Taveter et al., 2019).
Personality and Cognitive Style. There has been rel-
atively little research about the impact of personality
and cognitive style differences of end users on soft-
ware usage to date (McElroy et al., 2007; Barnett
et al., 2015; Burnett et al., 2016). Studies with soft-
ware engineers and others have shown significant im-
pacts of personality and different cognitive styles –
these may thus have a major impact on end user per-
ceptiosn and usage of software solutions (Cruz et al.,
2015; Kanij et al., 2015).
Engagement and Entertainment. Many end users are
highly driven by enjoyment, entertainment and ‘fun’
aspects of using software – such as with computer
games and gamification-based approaches. Similarly,
different people may engage with the same software
at different levels and in different ways (Fensel et al.,
2017; Kumar, 2013). Failure to take these differences
into account will likely result in less appealing soft-
ware for different end user groups.
Human Values. These include values such as inclu-
siveness, equality, privacy, openness, etc. (Winter
et al., 2018). These human values have been found

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

10



to be mis-aligned with software they use, with many
software systems and developers have values that con-
flict with one or more end user values (Obie et al.,
2021). As a result, these mis-aligned values can cause
severe expectation mis-matches of end users and their
software solutions, reducing the software take-up and
usage.

Gender. Gender bias has been shown to be highly
problematic in many modern technologies including
many software systems (Perez, 2019; Strengers and
Kennedy, 2020; Burnett et al., 2016). Different prob-
lem solving styles of different genders have been
shown to have a major impact on software acceptance
and usability (Burnett et al., 2016).

Ethnicity and Culture. Culture can be used to de-
scribe different beliefs and behaviours of different
groups of people (Alsanoosy et al., 2019). Software
that is biased in terms ethnicity of people is highly
problematic, especially for many emerging AI-based
smart living and surveillance systems used by police
and other agencies (Garvie and Frankle, 2016). Like
many other human aspects, software developers often
have different ethnicity and culture than many of their
target end user groups. Current software development
methods do not assist developers in better understand-
ing and accounting for culture and ethnic differences
of their end users.

Figure 1: Part of a persona used for smart parking app de-
velopment.

Language. Language differences occur in several
forms in end users of software. People speak dif-
ferent languages, use different forms of jargon, have
differing educational attainment levels, have differ-
ent language competencies, and use different dialects
and slang (Roturier, 2015). Failure to take these
language differences into account means software is
much harder to understand and interact with for many
end users. Again, software engineers lack sufficient

techniques and tools to help them take into account
these end user language differences.
Socio-economic Status. There is a huge digital and
physical divide between those with jobs, money and
luxuries, and those in precarious living, little/no work,
and who struggle to access some of the necessities of
life (Ahmed, 2007). There is still a massive imbalance
in the world’s wealth and access to physical world as
well as digital services, including access to commu-
nity support services via digital means (Grundy and
Grundy, 2013). Most software engineers are rela-
tively wealthy and highly educated – supporting more
vulnerable members of society in software solutions
is not always straightforward, obvious or even con-
sidered (Newman et al., 2015).

3 HUMAN-CENTRIC
REQUIREMENTS
ENGINEERING

I outline several projects we are undertaking to en-
hance requirements engineering practices and tools to
better support diverse end user human aspects.

3.1 Use of Personas to Model Users

Software engineers need to better understand the wide
differences in their end users, in terms of their diverse
human aspects outlined in Section 2 as well as oth-
ers (Lopez-Lorca et al., 2014; Grundy, 2020). One
approach used extensively in human-computer inter-
action and design domains, but less frequently in soft-
ware engineering, is the persona. Figure 1 shows an
example persona from a smart parking app develop-
ment project one of our student teams and PhD stu-
dent developed to aid them in better understanding the
range of end users of this app. This example shows
an elder woman user and outlines her demographics,
goals and frustrations relating to transport and park-
ing. We developed several diverse personas and used
them to help capture richer requirements, develop a
more complete design to support all these possible
end users, and to evaluate and refine the prototype
new smart parking app. We aim to develop tools to
help build richer end user personas with diverse hu-
man aspects, and to support their use more extensively
throughout phases of software development.

Impact of End User Human Aspects on Software Engineering

11



3.2 Identification and Dialogue with
Stakeholders

Related to persona building to represent end users,
we are working on developing improved approaches
to identify software stakeholders in general, not just
end users of the software. For example, some e-
health sofwtare systems are not used directly by hos-
pital managers or carers of patients, but these are crit-
ical stakeholders whose needs from the software also
needs to be carefully identified, modelled and taken
into account. These stakeholders themselves have
diverse human aspects that may different from end
users. Improving dialogue with stakeholders and end
users to more effectively identify and capture human
aspects is needed (McManus, 2004). We plan to cap-
ture these with personas and extended modelling lan-
guages (see Section 4 below for an example).

3.3 Extraction of Human-centric
Requirements from Documents

There has been much work done on extracting func-
tional and non-functional requirements from natural
language documents over many years (Osama et al.,
2020). We want to explore the identification, ex-
traction, modelling and reasoning about requirements
relating to human aspects of end users and related
needs. For example, extracting the requirements re-
lating to smart parking for the persona illustrated in
Figure 1 semi-automatically would assist software en-
gineers in identifying and using these end user hu-
man aspect-related requirements. We also plan de-
sign critics that assist software engineers in explor-
ing end user human aspect-related requirements gaps,
incomplete requirements or seemingly-erroneous re-
quirements for the domain/target end users (Ali et al.,
2013).

4 HUMAN-CENTRIC DESIGN

Following on from the previous section, I discuss
some our current projects relating to enhancing the
design phase of software engineers to better address
end user human aspects.

4.1 Modelling Human-centric Aspects
of End Users

Figure 2 shows a wireframe model that one of our
student teams has extended to identify different target
end user groups and to describe different interfaces

Figure 2: Modelling human-centric characteristics of end
users (from (Jim et al., 2021)).

needed for these diverse groups (Jim et al., 2021).
In this example we model different age group needs
from an app interface that needs to take into account
age-related differences of these end users. These in-
clude different language, font, colour, layout, size
and other UI design choices. Such design differences
are not just restricted to appearance/interaction design
choices but also overall problem solving workflow for
(parts of) the app. We want to generalise this ap-
proach to other modelling languages for requirements
and design – such as i∗, UML, BPMN, user stories
and so on – to enable better capture and usage of a
wide range of diverse end user human aspects during
software development.

4.2 Design with Personas

In Figure 1 we showed one of our smart parking app
personas. Figure 3 shows some of the screens from
the redesigned smart parking app that one our student
teams prototyped using a range of diverse personas.
Some users have physical and age-related challenges
e.g. eye-sight, colour-blindness, mobility skills – that
all need to be carefully designed in and evaluated.
Others have diverse parking needs relating to human
aspects e.g. their children, job, living location, per-
sonal preferences, personal emotions and preferences,
and language and cultural differences. All of these
need to be elicited, modelled and then used during
design, implementation and evaluation of the app pro-
totype. In this example, some text is enlarged for
users with eyesight challenges (1); different prebook-
ing, selection and driving direction approaches are
provided based on different end user needs and pref-

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

12



Figure 3: Example of human-centric parking app design.

Figure 4: Example of user-defined data visualisation (from
(Avazpour et al., 2015)).

erences (2); image-based recognition of license-plate
avoids typographical errors (3); and different reserv-
ing/booking/leaving workflows support different user
personal circumstances (4).

4.3 Addressing Human Values and
Accessibility of Web Sites and Apps

We have several projects looking at analysing web
sites and mobile apps for issues with human values
violations (Obie et al., 2021), privacy and accessibil-

ity issues (Haggag et al., 2021), and user with vari-
ous human aspect-related challenges e.g. sight, hear-
ing, ageing and so on (Grundy, 2020; Grundy et al.,
2018). We are also conducting indepth surveys and
interviews of developers and end users exploring rea-
sons for these issues, why they are challenging to ad-
dress, and how they are fixed when found (Sham-
sujjoha et al., 2021). We aim to determine from
this analysis key design failures in the apps and web
sites which can be detected during design-time via
improved techniques and tools for developers. We
also aim to equip developers with improved guidance
on how to correct these issues with improved design
decision guidelines and implementation automation
tools.

5 HUMAN-CENTRIC
MODEL-DRIVEN
ENGINEERING

5.1 End-user Visualisation Development

For many years we have been developing tools to sup-
port end-user development of complex software sys-
tems (Khalajzadeh et al., 2020; Hirsch et al., 2010;
Grundy et al., 1998). This helps to avoid the clas-
sic problem with conventional software engineering
– reliance on a highly trained expert workforce (soft-
ware engineers) to build and make necessary changes
to software systems. Instead, end users can specify
and generate their own solutions, often for very com-
plex domains, incorporating their own human aspect-
related needs into their own solutions.

Figure 4 shows an example of one such tool, Con-
VErT, used by end users to specify and generate com-
plex information visualisations and data mapping sys-
tems (Avazpour et al., 2019; Avazpour et al., 2015).
This example shows two end user-specified data vi-
sualisations – a building layout (left) from a CAD
tool dataset and categorisations tree from an ERP
systen (middle). A data mapping between parts of
each data model can be specified by drag and drop
between elements (arrows connecting), used to gen-
erate code to implement CAD tool to ERP system
data export. Such end user development tools allow
end users to tailor their software solutions themselves
without waiting for software engineers to do it.

Impact of End User Human Aspects on Software Engineering

13



Figure 5: Need for human aspects in MDE (from (Khambati et al., 2008)).

5.2 Adding Human Aspects to Code
Generators

Figure 5 shows an example of the Visual Care Plan
Modelling Language (VCPML) tool in use to specify
a care plan for those with obesity (Khambati et al.,
2008). This provides a set of visual languages al-
lowing end users – clinicians – to specify complex
health care plans. They can then tailor generic care
plans to specific patient needs and have the tool gen-
erate a fully working mobile app from the specified
care plan and associated desired screen definitions.
While this idea is good in theory, the VCPML tool
does not capture any specific human aspects of dif-
ferent users e.g. different language, gender, age, cul-
ture, accessibility issues etc. The tool thus generates
a one-size-fits-all mobile app. We are working on in-
corporating such human aspects of different end users
into the modelling languages and code generators of
such MDE-based tools. We will then be able to tai-
lor the generated code to range of different individual
end user human aspect-related differences, better ad-
dressing these in a “personalised” app generated for
each different user.

5.3 Adaptive User Interfaces

Related to the above generated app example, we have
also been experimenting with using an alternative ap-
proach of highly run-time adaptable UI components

(Grundy and Hosking, 2002; Grundy and Zou, 2004).
These allow different end users to specify a range of
preferences e.g. fonts, size, colour scheme, colour
mapping, language preferences etc and have their web
site or app adapt at run-time to these preferences. Fig-
ure 6 shows two example configuration approaches.
A large configuration menu (1) allows users to spec-
ify a wide range of sight- and cognition-related con-
straints that need to be satisfied by the web site e.g.
colour blindness, eyesight limitations, dyslexia, etc.

Figure 7 shows an example of an adaptive web site
prototype using these configurations to adapt a food
information website to a particular end user’s human
aspects e.g. enlarged font size, dyslexia-friendly font
face, color blindness friendly colour scheme, colour
blindness friendly image colour filtering and site auto
re-layout. The second small app configuration panel
in Figure 6 is used by the smart parking app proto-
type from Figure 3 to adapt various UI components in
the app to different user human aspect needs e.g. lan-
guage, font size, style, colour scheme etc. We are also
exploring AI-based semi-automated adaptation of UI
components to different user human aspect needs, to
compliment these manual configuration approaches.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

14



Figure 6: Approaches to UI/app configuration.

Figure 7: Example of adapted UI.

6 HUMAN-CENTRIC SOFTWARE
EVALUATION

6.1 A New Human-centric Defect
Reporting Taxonomy

We discovered when exploring the domain of usabil-
ity defect reporting that existing usability defect clas-
sification schemes are severely limited (Yusop et al.,
2020). To this end we developed a revised usabil-
ity defect classification taxonomy to aid the devel-
opment of improved usability defect reports (Yusop
et al., 2018). In a similar way, we want to develop a
taxonomy of end user human aspects in software en-
gineering (Grundy, 2020), and use these to improve
the classification of “end user human aspect defects”

in software applications. Such a taxonomy will aid
end users in reporting human aspect-related software
defects in their applications, but also aid software en-
gineers in understanding these defects, the end users
reporting them, what impact they have, and how they
might be fixed. This work also leverages our use of
personas to describe different end users of software
application and analysis of app reviews to determine
human aspect and human value defects with apps,
both described above.

6.2 Human-centric Defect Reporting

An interesting challenge for end users in reporting
human aspect-related defects in their software is the
poor usability and human aspect defects in current de-
fect reporting tools! Similar to the poor usability and
suitability of current usability defect reporrting tools
(Yusop et al., 2018; Yusop et al., 2020), we need to
provide end users with human aspect defect report-
ing tools. Figure 8 shows an example of a human as-
pect defect reporting prototype tool developed by one
of our student teams. This uses an end user human
aspect preference setting panel, similar to the smart
parking and adaptive user interface component ones
in Figure 6, to configure the reporting tool to differ-
ent end user sight, hearing, cognitive and language
challenges. The left hand side image shows the first
stage of reporting a defect. The right hand side im-
age shows further defect information being specified.
It also shows an alternative way of capturing this in-
formation, using more “human-centric” voice record-
ing and voice transcription. This recorded voice ap-
proach can better suit some end users reporting de-
fects than typing a lot of text. We use a set of personas
to represent different groups of end users with differ-
ent human aspect challenges to group these defect re-
ports. When shown to the software engineers, these
personas help them to see the defects from the per-
spectives of end users with different human aspects to
each other and to the software engineers themselves.
The idea is to help the software engineers reproduce
– and fix and test – the defect through the eyes of the
diverse defect reporters.

6.3 Developer Surveys and GitHub,
JIRA Developer Discussion Analysis

We are interested to better understand (1) what end
user human aspects software engineers have experi-
ence (or little experience) addressing in their soft-
ware; (2) which aspects they find harder to address
and why; (3) how they currently talk about human
aspect-related requirements and defects; and (4) what

Impact of End User Human Aspects on Software Engineering

15



Figure 8: Example of human-centric defect reporting.

tools and techniques they currently use to help them
address different end user human aspects in their soft-
ware. To this end, we have been carrying our a large
survey and targeted interviews of software engineers.
We have also been looking for JIRA and GitHub issue
logs and StackOverflow posts that reflect discussion
of different human aspects by software engineers. We
hope to link these to end user defect reports and app
reviews and better understand how these are under-
stood (or not) and addressed (or not) by software en-
gineers. This, we hope, will lead us to better guide-
lines, techniques and tools for software engineers to
improve end user human aspect defect fixing, but also
improved design and implementation decision mak-
ing to avoid or reduce the severity of these human-
centric defects.

6.4 Living Lab Co-design Approach

A key issue we have identified with realising our vi-
sion of achieving improved addressing of end user hu-
man aspects in software engineering is the current ap-
proach used to develop software. Despite agile soft-
ware development’s promise of people-oriented de-
velopment (Hoda et al., 2018), there is still a ”them
vs us” approach taken by software engineers, us =
software engineers and them = everyone else. We are
exploring the use of a living-lab based approach to
software development, popularised by development
approaches used for eHealth systems among others
(Andersen et al., 2017).

Figure 9 outlines our approach (Grundy et al.,
2020). (1) We build focus groups of stakehold-
ers and developers to co-create software solutions as

Figure 9: Living lab co-design approach (from (Grundy
et al., 2020)).

equals. (2) We enrich software requirements and de-
sign processes, models, techniques and tools to cap-
ture and reason about diverse human aspect-related
needs of stakeholders and end users. (3) We use
model-driven engineering techniques to generate and
configure software allowing for faster development
and response to emerging end user needs. (4) We sup-
port more human-centric defect reporting and fixing,
via proactive feedback loops.

7 DISCUSSION

I summarise some of our key findings and progress
to date, key gaps still to address, and briefly discuss
software engineers and their human aspects.

We have been focusing on better understanding
current developer approaches to addressing their end
users’ human aspects, key open challenge areas in
this domain, and then researching new techniques and
tools to address these. We conducted a detailed sur-
vey, answered by 59 developers and managers, and
interviewed 12 developers, to better understand these
issues from a software engineering perspective. Fig-
ure 10 summarises their rating of key critical end user
human aspects in their work. Figure 11 summarises
the key reasons given why they find these end user
human aspects challenging to address. Key reasons
included the different languages and (lack of) comfort
with technology of different user groups; range of end
user human differences that exist; complexity of user

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

16



Figure 10: End user human aspects survey respondents judge to be critical (or not) in their work.

Figure 11: Reasons these human aspects are challenging and how taken into consideration in survey respondents work.

interfaces; different problem solving styles of many
end user groups; and differences in terminology used,
digital literacy and need to carefully consider text and
icon usage.

We asked developers what would help them to
improve development of their software to better ad-
dress some of these diverse end user human aspects.
Examples we were given included: the need to de-
velop better development processes to improve target
end user involvement in software development; pro-
vide developers with better guidelines and practices
to follow to address diverse end user human aspects;
better requirements capture and human aspect mod-
elling support; AI-based tools to automatically advise
on missing end user human aspect issues; more live
testing with representative end users; a need for bet-
ter education of software engineers about diverse end
user human aspects and their impact on software us-
age; simpler interfaces in software for many end user
groups; better defect reporting to enable end users
to more easily identify, describe and report problems
they have with their software; better participant re-
cruitment approaches ensuring more diverse end users
are included; better design frameworks and tooling to
address a range of end user human aspects; and more

research into human aspects in software engineering.
To address some of these issues, we have been de-

veloping the techniques and tools outlined in this talk,
among many others. Key examples include:

• improved processes to including diverse end user
perspectives – living lab based approaches

• better identification of stakeholders and improv-
ing capture and modelling of diverse stakeholder
and end user human aspect-related requirements

• improved design and implementation support,
ranging from better tools to model end user hu-
man aspects, include these in software code gen-
erators and run-time adaption frameworks, better
design guidance for developers to address differ-
ent end user human aspects in software, and AI-
based tools to proactively deploy this guidance

• improved human-centric defect reporting tools,
with improved support for developers to locate
human aspect-related defects, identify possible
fixes, make fixes, and inform end users of fixes
made

Some of the key remaining gaps in this area we have
identified include:

• lack of a taxonomy of end user human aspects

Impact of End User Human Aspects on Software Engineering

17



including keywords, phrases and examples – this
makes talking about end user human aspects more
difficult and impacts all of the techniques and
tools we want to provide software developers

• lack of studies focusing on how software engi-
neers and software engineering teams address end
user human aspects in software – many design and
HCI works exist but few if any have made their
way into impacting software engineering practice,
for various reasons

• lack of tools to identify challenging end user hu-
man aspects to address during requirements en-
gineering, including extraction, modelling, 3Cs
checking, and validation

• a range of design and evaluation guidelines and
tools but lack of connectivity, consistency, and ap-
plicability of these tools in many domains e.g. for
mobile app development

• overly-complex, inaccessible and incomplete de-
sign and implementation guidelines to address
many challenging end user human aspects

• difficulty in end users reporting human aspect de-
fects in software, difficulty in software engineers
understanding these defects – or even appreciating
them – and little or no guidelines, techniques and
tools for fixing these human aspect-related defects
when they occur

• development processes and techniques that still
don’t sufficiently include diverse stakeholder and
end user perspectives – hence the co-creational
living lab approach we are trialling to address this

• deficiencies in the education of software engi-
neers regarding human aspects of their end users
and the need to carefully elicit, understand and
address these – one of our final year Bachelor of
Engineering in Software Engineering honors team
members mentioned when working on the adap-
tive UI components “... someone mentioned ac-
cessibility issues once, I think, a few years ago in
a UX lecture...”

Finally, software engineers and software engineering
teams themselves have many human aspects that im-
pact how they work, think about their work, and think
about their software end users, including their end
user human aspects. Software engineers are humans
themselves and thus are impacted by all of the hu-
man aspects end users have, to greater or lesser de-
gree. Exactly how these software developer human
aspects and end user human aspects interplay has not
yet been researched in any way to our knowledge
(Hidellaarachchi et al., 2021). It may be the case that
various differences in developer and end user human

aspects have significant impact on how the later issues
are addressed (or not) in produced software.

8 SUMMARY

I have described the need to better take into account
human aspects of end users during software develop-
ment. This includes diverse age, ethnicity, gender,
personality, emotional reactions, engagement, socio-
economic status, language and language skills, cul-
ture, physical and mental challenges, cognitive prob-
lem solving style, and likely many more. These di-
verse human aspects of users can have a very sig-
nificant impact on the usability and fit-for-purpose of
the software. Currently we lack even a taxonomy to
characterise and discuss such diverse human aspects
of software end users. I have outlined some of our
projects to address end user human aspects during re-
quirements engineering, design, model-driven engi-
neering, implementation, defect reporting and defect
fixing. I have described our co-creational living lab
approach aimed at having end users be fully involved
during the whole development process for future soft-
ware systems. This will, we hope, ensure their diverse
human aspects are fully supported in future software
systems.

ACKNOWLEDGEMENTS

Efforts of the HumaniSE team, including Lisa Mc-
Givern, Bran Salic, Anuradha Madugalla, Jen McIn-
tosh, Ingo Mueller, Hourieh Khalajzadeh, Tanjila
Kanij, Waqar Hussain, Humphrey Obie, Mojtaba
Shahin and Rashina Hoda on these and related
projects are greatly acknowledged. Several of these
project outcomes have been produced by final year
project teams, Masters and and PhD students whose
enthusiasm for human-centric sofwtare engineering
is wonderful to see. Aspects of this work have been
supported by ARC Discovery Projects DP200100020,
DP170101932 and DP140102185, Industry Transfor-
mation Research Hub IH170100013, and ARC Lau-
reate Fellowship FL190100035.

REFERENCES

Ahmed, A. (2007). Open access towards bridging the
digital divide–policies and strategies for developing
countries. Information Technology for Development,
13(4):337–361.

Ali, N. M., Hosking, J., and Grundy, J. (2013). A tax-

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

18



onomy and mapping of computer-based critiquing
tools. IEEE Transactions on Software Engineering,
39(11):1494–1520.

Alsanoosy, T., Spichkova, M., and Harland, J. (2019). Cul-
tural influence on requirements engineering activities:
a systematic literature review and analysis. Require-
ments Engineering, pages 1–24.

Alshayban, A., Ahmed, I., and Malek, S. (2020). Ac-
cessibility issues in android apps: state of affairs,
sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineer-
ing (ICSE), pages 1323–1334. IEEE.

Andersen, T. O., Bansler, J. P., Kensing, F., and Moll, J.
(2017). From prototype to product: Making partici-
patory design of mhealth commercially viable. Stud
Health Technol Inform, 233:95–112.

Avazpour, I., Grundy, J., and Grunske, L. (2015). Spec-
ifying model transformations by direct manipulation
using concrete visual notations and interactive recom-
mendations. Journal of Visual Languages & Comput-
ing, 28:195–211.

Avazpour, I., Grundy, J., and Zhu, L. (2019). Engineering
complex data integration, harmonization and visual-
ization systems. Journal of Industrial Information In-
tegration, 16:100103.

Barnett, T., Pearson, A. W., Pearson, R., and Kellermanns,
F. W. (2015). Five-factor model personality traits
as predictors of perceived and actual usage of tech-
nology. European Journal of Information Systems,
24(4):374–390.

Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beck-
with, L., Kwan, I., Peters, A., and Jernigan, W.
(2016). Gendermag: A method for evaluating soft-
ware’s gender inclusiveness. Interacting with Com-
puters, 28(6):760–787.

Carcedo, M. G., Chua, S. H., Perrault, S., Wozniak, P.,
Joshi, R., Obaid, M., Fjeld, M., and Zhao, S. (2016).
Hapticolor: Interpolating color information as haptic
feedback to assist the colorblind. In Proceedings of
the 2016 CHI Conference on Human Factors in Com-
puting Systems, pages 3572–3583.

Cruz, S., da Silva, F. Q., and Capretz, L. F. (2015). Forty
years of research on personality in software engineer-
ing: A mapping study. Computers in Human Behav-
ior, 46:94–113.

Curumsing, M. K., Fernando, N., Abdelrazek, M., Vasa,
R., Mouzakis, K., and Grundy, J. (2019). Emotion-
oriented requirements engineering: A case study in
developing a smart home system for the elderly. Jour-
nal of Systems and Software, 147:215–229.

Fensel, A., Tomic, D. K., and Koller, A. (2017). Contribut-
ing to appliances? energy efficiency with internet of
things, smart data and user engagement. Future Gen-
eration Computer Systems, 76:329–338.

Garvie, C. and Frankle, J. (2016). Facial-recognition soft-
ware might have a racial bias problem. The Atlantic,
7.

Grundy, J. (2020). Human-centric software engineering
for next generation cloud-and edge-based smart living
applications. In 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing
(CCGRID), pages 1–10. IEEE.

Grundy, J. and Grundy, J. (2013). A survey of australian hu-
man services agency software usage. Journal of tech-
nology in human services, 31(1):84–94.

Grundy, J. and Hosking, J. (2002). Developing adaptable
user interfaces for component-based systems. Inter-
acting with computers, 14(3):175–194.

Grundy, J., Hosking, J., and Mugridge, W. (1998). Support-
ing large-scale end user specification of workflows,
work coordination and tool integration. Journal of
Organizational and End User Computing (JOEUC),
10(2):38–48.

Grundy, J., Khalajzadeh, H., and Mcintosh, J. (2020). To-
wards human-centric model-driven software engineer-
ing. In ENASE, pages 229–238.

Grundy, J., Mouzakis, K., Vasa, R., Cain, A., Curumsing,
M., Abdelrazek, M., and Fernando, N. (2018). Sup-
porting diverse challenges of ageing with digital en-
hanced living solutions. In Global Telehealth Confer-
ence 2017, pages 75–90. IOS Press.

Grundy, J. and Zou, W. (2004). Auit: Adaptable user in-
terface technology, with extended java server pages.
Multiple User Interfaces. John Wiley & Sons, New
York, pages 149–167.

Haggag, O., Haggag, S., Grundy, J., and Abdelrazek, M.
(2021). Covid-19 vs social media apps: Does privacy
really matter? 2021 International Conference on Soft-
ware Engineering.

Hazzan, O. and Tomayko, J. E. (2005). Reflection and ab-
straction in learning software engineering’s human as-
pects. Computer, 38(6):39–45.

Hidellaarachchi, D., Grundy, J., Hoda, R., and Madampe,
K. (2021). The effects of human aspects on the re-
quirements engineering process: A systematic litera-
ture review. IEEE Transactions on Software Engineer-
ing, (01):1–1.

Hirsch, C., Hosking, J., and Grundy, J. (2010). Vikibuilder:
end-user specification and generation of visual wikis.
In Proceedings of the IEEE/ACM international con-
ference on Automated software engineering, pages
13–22.

Hoda, R., Salleh, N., and Grundy, J. (2018). The rise and
evolution of agile software development. IEEE soft-
ware, 35(5):58–63.

Jim, A., Shim, H., Wang, J., Wijaya, L., Xu, R., Khala-
jzadeh, H., Grundy, J. C., and Kanij, T. (2021). Im-
proving the modelling of human-centric aspects of
software systems. In 16th International Conference
on Evaluation of Novel Approaches to Software Engi-
neering (ENASE2021), online, 26-27 April, 2021.

Kanij, T., Merkel, R., and Grundy, J. (2015). An empirical
investigation of personality traits of software testers.
In 2015 IEEE/ACM 8th International Workshop on
Cooperative and Human Aspects of Software Engi-
neering, pages 1–7. IEEE.

Khalajzadeh, H., Simmons, A. J., Abdelrazek, M., Grundy,
J., Hosking, J., and He, Q. (2020). An end-to-
end model-based approach to support big data ana-
lytics development. Journal of Computer Languages,
58:100964.

Khambati, A., Grundy, J., Warren, J., and Hosking, J.
(2008). Model-driven development of mobile personal

Impact of End User Human Aspects on Software Engineering

19



health care applications. In 2008 23rd IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, pages 467–470. IEEE.

Kumar, J. (2013). Gamification at work: Designing en-
gaging business software. In International conference
of design, user experience, and usability, pages 528–
537. Springer.

Lenberg, P., Feldt, R., and Wallgren, L. G. (2015). Behav-
ioral software engineering: A definition and system-
atic literature review. Journal of Systems and software,
107:15–37.

Lopez-Lorca, A. A., Miller, T., Pedell, S., Mendoza, A.,
Keirnan, A., and Sterling, L. (2014). One size doesn’t
fit all: diversifying” the user” using personas and emo-
tional scenarios. In Proceedings of the 6th Inter-
national Workshop on Social Software Engineering,
pages 25–32.

Madampe, K., Hoda, R., and Grundy, J. (2020). Towards
better understanding of agile teams through behavior
change models. In 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing Workshops (ASEW), pages 53–56. IEEE.

McElroy, J. C., Hendrickson, A. R., Townsend, A. M., and
DeMarie, S. M. (2007). Dispositional factors in inter-
net use: personality versus cognitive style. MIS quar-
terly, pages 809–820.

McManus, J. (2004). A stakeholder perspective within
software engineering projects. In 2004 IEEE Inter-
national Engineering Management Conference (IEEE
Cat. No. 04CH37574), volume 2, pages 880–884.
IEEE.

Miller, T., Pedell, S., Lopez-Lorca, A. A., Mendoza, A.,
Sterling, L., and Keirnan, A. (2015). Emotion-led
modelling for people-oriented requirements engineer-
ing: The case study of emergency systems. Journal of
Systems and Software, 105:54–71.

Newman, P., Ferrario, M. A., Simm, W., Forshaw, S., Fri-
day, A., and Whittle, J. (2015). The role of design
thinking and physical prototyping in social software
engineering. In 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, vol-
ume 2, pages 487–496. IEEE.

Nouwen, M., Van Mechelen, M., and Zaman, B. (2015). A
value sensitive design approach to parental software
for young children. In Proceedings of the 14th Inter-
national Conference on Interaction Design and Chil-
dren, pages 363–366.

Obie, H. O., Hussain, W., Xia, X., Grundy, J., Li, L.,
Turhan, B., Whittle, J., and Shahin, M. (2021). A first
look at human values-violation in app reviews. 2021
International Conference on Software Engineering.

Osama, M., Zaki-Ismail, A., Abdelrazek, M., Grundy, J.,
and Ibrahim, A. (2020). Score-based automatic detec-
tion and resolution of syntactic ambiguity in natural
language requirements. In 2020 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), pages 651–661. IEEE.

Perez, C. C. (2019). Invisible women: Exposing data bias
in a world designed for men. Random House.

Rashid, Z., Melià-Seguı́, J., Pous, R., and Peig, E. (2017).
Using augmented reality and internet of things to im-
prove accessibility of people with motor disabilities in

the context of smart cities. Future Generation Com-
puter Systems, 76:248–261.

Roturier, J. (2015). Localizing Apps: A practical guide for
translators and translation students. Routledge.

Shamsujjoha, M., Grundy, J. C., Li, L., Khalajzadeh, H.,
and Lu, Q. (2021). Human-centric issues in ehealth
app development and usage: A preliminary assess-
ment. In 28th IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER
‘21), ERA Track, Online, 9-12 March, 2021. IEEE.

Sierra, J. S. and Togores, J. (2012). Designing mobile apps
for visually impaired and blind users. In The Fifth
international conference on advances in computer-
human interactions, pages 47–52. Citeseer.

Stock, S. E., Davies, D. K., Wehmeyer, M. L., and Palmer,
S. B. (2008). Evaluation of cognitively accessi-
ble software to increase independent access to cell-
phone technology for people with intellectual dis-
ability. Journal of Intellectual Disability Research,
52(12):1155–1164.

Strengers, Y. and Kennedy, J. (2020). The Smart Wife: Why
Siri, Alexa, and Other Smart Home Devices Need a
Feminist Reboot. MIT Press.

Taveter, K., Sterling, L., Pedell, S., Burrows, R., and
Taveter, E. M. (2019). A method for eliciting and
representing emotional requirements: Two case stud-
ies in e-healthcare. In 2019 IEEE 27th Interna-
tional Requirements Engineering Conference Work-
shops (REW), pages 100–105. IEEE.

Williams, D., Alam, M. A. U., Ahamed, S. I., and Chu, W.
(2013). Considerations in designing human-computer
interfaces for elderly people. In 2013 13th Interna-
tional Conference on Quality Software, pages 372–
377. IEEE.

Winter, E., Forshaw, S., and Ferrario, M. A. (2018). Mea-
suring human values in software engineering. In Pro-
ceedings of the 12th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Mea-
surement, pages 1–4.

Woodson, W. E., Tillman, B., and Tillman, P. (1992). Hu-
man factors design handbook: information and guide-
lines for the design of systems, facilities, equipment,
and products for human use.

Yusop, N. S. M., Grundy, J., Schneider, J.-G., and Vasa, R.
(2018). Preliminary evaluation of a guided usability
defect report form. In 2018 25th Australasian Soft-
ware Engineering Conference (ASWEC), pages 81–
90. IEEE.

Yusop, N. S. M., Grundy, J., Schneider, J.-G., and Vasa, R.
(2020). A revised open source usability defect classi-
fication taxonomy. Information and software technol-
ogy, 128:106396.

Yusop, N. S. M., Grundy, J., and Vasa, R. (2016). Re-
porting usability defects: a systematic literature re-
view. IEEE Transactions on Software Engineering,
43(9):848–867.

Zhao, D., Xing, Z., Chen, C., Xu, X., Zhu, L., Li, G., and
Wang, J. (2020). Seenomaly: Vision-based linting of
gui animation effects against design-don’t guidelines.
In 42nd International Conference on Software Engi-
neering (ICSE’20). ACM, New York, NY.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

20


