
Using Syntactic Similarity to Shorten the Training Time of Deep
Learning Models using Time Series Datasets: A Case Study

Silvestre Malta1,2 a, Pedro Pinto2,3 b and Manuel Fernández Veiga1 c

1University of Vigo and AtlanTTic Research Center, Spain
2ADiT-Lab, ESTG - Instituto Politécnico de Viana do Castelo, Portugal

3INESC TEC, R. Dr. Roberto Frias, Porto, Portugal

Keywords: Neural Networks, Machine Learning, NLP, LSTM, RNN, GRU, CNN, Word2Vec, Mobility Prediction,
Training Time Optimization.

Abstract: The process of building and deploying Machine Learning (ML) models includes several phases and the training
phase is taken as one of the most time-consuming. ML models with time series datasets can be used to predict
users positions, behaviours or mobility patterns, which implies paths crossing by well-defined positions, and
thus, in these cases, syntactic similarity can be used to reduce these models training time. This paper uses
the case study of a Mobile Network Operator (MNO) where users mobility are predicted through ML and the
use of syntactic similarity with Word2Vec (W2V) framework is tested with Recurrent Neural Network (RNN),
Gate Recurrent Unit (GRU), Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)
models. Experimental results show that by using framework W2V in these architectures, the training time
task is reduced in average between 22% to 43%. Also an improvement on the validation accuracy of mobility
prediction of about 3 percentage points in average is obtained.

1 INTRODUCTION

In the past few years, due to the availability of large
datasets and exponential increase of computational
power, Machine Learning (ML) has been used in
fields such as self driving cars, speech and image
recognition, medical diagnosis, cybersecurity, etc.
However, to take the advantages of ML, a set of tasks
must be accomplished to deploy these algorithms.
These tasks can be organized as in Fig. 1. Initially
a ML problem and a solution must be proposed. The
second task is to collect and transform data to feed the
model. Then, it is necessary to choose a model, train it
and evaluate the results. Finally, there is a prediction
and deployment task. Train a model major task can be
grouped in different sub-tasks: model training, model
evaluation and hyperparameter tuning. After training
the model and evaluating the results, a hyperparame-
ters tuning task is needed as each ML problem is dif-
ferent. These training sub-tasks must be repeated un-
til the optimum set of hyperparameters is determined

a https://orcid.org/0000-0002-5274-3733
b https://orcid.org/0000-0003-1856-6101
c https://orcid.org/0000-0002-5088-0881

to minimize the error and have predictions as close as
possible to actual values.

Define a ML
problem

and propose
a solution

Collect and
Transform

Data

Choose
Model

Train a
Model

Train Evaluate
Hyper-

parameter
Tuning

Prediction
and De-

ployment

Figure 1: ML tasks.

This paper focuses on specific ML problems in-
volving mobility prediction, i.e. intended to predict
the position of an object or person within a path,
useful for epidemic control, intelligent transporta-
tion management, urban planning, location-based ser-
vices, management of cellular network resources, etc.
Thus, a particular case study is assumed where a
Mobile Network Operator (MNO) intends to pre-
dict user mobility. This ML problem uses the mo-
bility data of a set of users passing through mo-
bile cells of a MNO and predicts the next cell in a
path. MNOs collect relevant data from their networks,
systems and users. The data collected from users
may be obtained from smart phone sensors, Global
Positioning Systems (GPS), Global System for Mo-

Malta, S., Pinto, P. and Veiga, M.
Using Syntactic Similarity to Shorten the Training Time of Deep Learning Models using Time Series Datasets: A Case Study.
DOI: 10.5220/0010515700930100
In Proceedings of the 2nd International Conference on Deep Learning Theory and Applications (DeLTA 2021), pages 93-100
ISBN: 978-989-758-526-5
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

93

bile Communications (GSM), social-media apps with
geo-spacial recording, location estimation extracted
using wireless Local Area Network (LAN) proto-
cols or Radio Frequency Identification (RFID) (Jeung
et al., 2014) which generate datasets such as CRAW-
DAD (Kotz et al., 2005) or GeoLife (Zheng et al.,
2011). The dataset used in this case study was Mo-
bile Data Chalenge (MDC) that has been provided by
Nokia Research Center and Idiap (Kiukkonen et al.,
2010)(Laurila et al., 2013). Datasets that have time
series characteristics, i.e., each event has time period
attached, can be trained by Recurrent Neural Net-
works (RNNs) as they allow to model temporal dy-
namic behavior or natural language. Gate Recurrent
Unit (GRU) and Long Short-Term Memory (LSTM)
are modified versions of RNN giving them the ability
to extend the data memory, by using internal mech-
anisms called gates that can regulate the flow of in-
formation, fostering its results when predicting time
series data.

As stated in (Miranda and Von Zuben, 2015), from
all the ML tasks the model training is one of the most
time-consuming. Since the scenario intends to pre-
dict mobility in a MNO, the user’s path composed by
cells can be converted into a sentence composed by
words and, therefore, ML can be taken as an Nat-
ural Language Processing (NLP) problem that can
be solved using word embedding frameworks such
as Word2Vec (W2V) (Mikolov et al., 2013). W2V
receives text as input and outputs a set of feature
vectors representing the words in a numerical form.
Words with similar context have similar embeddings
and thus, they are close in the resulting vector space.

This paper proposes the use of W2V to reduce the
training time of a ML mobility prediction problem. A
set of four architectures combining ML models based
on RNN, GRU, LSTM and Convolutional Neural Net-
work (CNN) were defined and trained with and with-
out W2V, and their training time and mobility accu-
racy was obtained and compared.

The experimental results show that by using the
pre-trained weights obtained from W2V, models
present a shorter training time in average and an im-
provement on validation accuracy when predicting
next cell ID where user will be connecting to.

2 RELATED WORK

There are research works focused in reducing the
time to build and deploy ML models. As stated
in (Shi et al., 2017), to address the huge computa-
tional challenge in Deep Learning (DL), many tools
have been developed to exploit hardware features

such as multi-core CPUs and many-core GPUs to
shorten the training and inference time, however those
tools exhibit different features and running perfor-
mance when they train different types of deep net-
works on different hardware platforms, making it dif-
ficult for end users to select an appropriate pair of
software and hardware. The authors present a bench-
mark with tree major types of Deep Neural Network
(DNN): Fully Connected Feed-Forward Neural Net-
works (FCNs), CNNs and RNNs, comparing their
running performance with four state-of-the-art GPU-
accelerated tools: Caffe (Jia et al., 2014), CNTK (Mi-
crosoft Azure, 2017), TensorFlow (Abadi et al., 2015)
and Torch (Collobert et al., 2008). They concluded
that (1) in general, the performance does not scale
very well on many-core CPU; (2) no obvious single
winner was observed on CPU-only platforms; and (3)
all tools can achieve significant speedup using con-
temporary GPUs. In (Reif et al., 2011) the authors
presented a method for predicting the run-time of a
classification algorithm comparing the computation
time of several algorithms. In (Kretowicz and Biecek,
2020) the authors deeply test to find the best defaults
values of hyperparameters on a set of different ML
algorithms, and computational learning time was also
benchmarked to find best hyperparameter configura-
tion. In (Miranda and Von Zuben, 2015) authors de-
veloped a method for pre-training neural networks
that can decrease the total training time for a neural
network while maintaining the final performance by
partitioning the training task in multiple training sub-
tasks with sub-models.

RNNs were designed for classification predic-
tion problems along temporal sequences of data and
GRUs and LSTMs derived from the RNN architec-
ture. In (Wickramasuriya et al., 2017) authors pro-
pose RNNs models to train sequences of Received
Signal Strength (RSS) values to predict Base Station
(BS) associations with the end user. In (Yang et al.,
2018) authors propose a model based on RNN and
GRU that can joint social networks and mobile tra-
jectories to capture both short-term and long-term se-
quential contexts. In (Wang et al., 2018) authors pro-
pose an intelligent dual connectivity mechanism for
mobility management using an LSTM algorithm to
deal with more frequent handovers in fifth-generation
(5G) mobile communication system due to Ultra-
dense network deployment. CNN models have been
shown to be effective for NLP in semantic parsing. In
(Yih et al., 2014) authors propose a semantic parsing
framework where a first layer based on CNN, projects
each word within a context window to a local contex-
tual feature vector, so that semantically similar word-
n-grams are projected to vectors that are close to each

DeLTA 2021 - 2nd International Conference on Deep Learning Theory and Applications

94

other in the contextual feature space. In (Kim, 2014)
authors used simple CNN on top of pre-trained word
vectors for sentence-level classification tasks. Re-
sults show that their baseline model with all randomly
initialized words did not performed well on its own,
while with the use of pre-trained vectors, performance
gains where obtained. LSTM, CNN and GRU have
been used in (Tang et al., 2015), to encode the intrin-
sic relations between sentences in the semantic mean-
ing of a document. They modelled documents repre-
sentation in two steps. Firstly using CNN or LSTM
to produce sentence representations from word rep-
resentations and secondly the GRU is used to adap-
tively encode semantics of sentences and their inher-
ent relations in document representations. These rep-
resentations are used as features to classify the senti-
ment label of each document. Results show that GRU
outperforms standard RNN in document modeling for
sentiment classification.

As explained in (Hashimoto et al., 2015),
embedding-based models are proposed to tackle clas-
sification problems using lexical relation-specific fea-
tures on a large unlabeled corpus, allowing to explic-
itly incorporate relation-specific information into the
word embeddings. In (Zayats and Ostendorf, 2018)
the authors proposed a novel approach for modeling
threaded discussions on social media using a graph-
structured bidirectional LSTM using W2V lexical ca-
pabilities in experiments with a task of predicting
popularity of comments in forum discussions. In (Fan
et al., 2018) the authors used W2V to build their
Loc2vec model, which provided contextual features
to CNN and bidirectional LSTM networks to predict
next location of vehicles.

The works surveyed do not explore syntactic simi-
larity embeddings techniques applied to cell paths us-
ing RNN, GRU, LSTM or CNN, in order to reduce
training time.

3 METHODOLOGY

Assuming that the case study is a ML model to pre-
dict mobility, and that training task is one of the most
time consuming task, MDC dataset was selected to be
used in a set of ML architectures to assess training
time and mobility prediction accuracy.

MDC dataset includes data from smartphones of
185 volunteers collected over 18 months in the Swiss
Geneva lake region. MDC collected user logs with a
total of 99166 unique cell towers which permitted to
obtain the identification from the BSs that each user
was connected in his daily trajectory. The MDC was
anonymized and each user has his unique location set,

thus, it is not possible to correlate data from multi-
ple users. Then, the focus was set on individual loca-
tion trajectory data, extracting features as cell ID and
time, and with the repeated contiguous cell IDs on
the historical movements removed. As feature for the
model, cell ID has been chosen to transform this iden-
tifier into a unique string, allowing to build a set of
phrases which were used as input to W2V. As stated
in (González et al., 2008), each individual is char-
acterized by a time-independent travel characteristic,
having a high degree of temporal and spatial regular-
ity there is a significant probability to return to a few
highly frequented locations. As presented in Table 1,
9 users were randomly chosen from MDC dataset and
divided in 3 subsets range, each user dataset contains
trajectories being the size defined by Number of Cells
(#Cells) that represents the number of cells. The vari-
able Number of Unique Cells (#UCells) was defined
to represent unique cells contained in each user sub-
set dataset, e.g. a path containing a cell trajectory with
C1-C2-C1-C3 has a #Cells of 4 and a #UCells of 3 and
the variable Number of Paths (#Paths) represents the
#Paths per user subset dataset.

As MDC dataset has approximately 18 months of
mobility data for each user, time is implicit in each in-
put data variable used in the learning process and the
output variable is treated as a classification problem,
where the cell ID predicted is one among all the cell
IDs used during each user trajectory. To preserve the
order of cell sequences and tackle the user mobility
as a time series data problem, each user dataset was
divided in samples paths of 5 cells. The sliding win-
dow transformation technique presented in Fig. 2 was
used to divide trajectories in smaller paths were: (1)
X represents 5 time steps containing a cell ID in each
time step, and (2) Y represents the next predicted cell
ID. As of W2V input data, each user subset dataset
is divided in sliding windows that are handled as sen-
tences and each sentence is composed of cell IDs that
are handled as words.

 X Y
[34, 76, 96, 34, 11] [50]
[76, 96, 34, 11, 50] [23]
[96, 34, 11, 50, 23] [10]
[34, 11, 50, 23, 10] [96]
[11, 50, 23, 10, 96] [??]

Figure 2: Division of trajectory in sliding windows of 5
cells per path.

A set of ML architectures were designed to be
tested and treat sequential data, and therefore, they
based on the following models: RNN, GRU, LSTM,
and hybrid CNN+LSTM. The four designed architec-
tures are presented in Fig. 3 and consist of Simple Re-

Using Syntactic Similarity to Shorten the Training Time of Deep Learning Models using Time Series Datasets: A Case Study

95

Table 1: Subsets range and users subset datasets defined.

Subset #UCells subset range User subset dataset #UCells #Cells #Paths

SA 700-1299
UA 726 34645 34641
UB 917 35604 35600
UC 1192 61833 61829

SB 1300-2449
UD 1331 48099 48094
UE 1758 27624 27620
UF 2415 43418 43414

SC 2500-3700
UG 2488 67895 67891
Uh 3502 48499 48494
UI 3638 64303 64299

current Neural Network (SRNN), Simple Gate Recur-
rent Unit (SGRU), Stacked Long Short-Term Mem-
ory (SLSTM), and Convolutional Long Short-Term
Memory (CLSTM).

RNN

Softmax Dropout

Flatten

Softmax

GRU LSTM Conv1D

MaxPooling1D

Dropout Dropout

LSTM

Dropout LSTM

DropoutTimeDistributed

TimeDistributedFlatten

FlattenSoftmax

Softmax

SRNN SGRU SLSTM CLSTM

Embedding Embedding Embedding Embedding

Figure 3: ML architectures.

These ML architectures were trained with and
without W2V pre-trained weights in a classification
problem to predict the user mobility, and training time
was compared. To produce a distributed representa-
tion of words in W2V two models are available: Con-
tinuous Bag-Of-Words (CBOW) or Skip Gram. The
difference between both is that with CBOW a group
of context words is used to predict the target word
and with Skip Gram, given a target word, the context
words are predicted. By analogy #Cells represents the
number of words and #UCells the number of unique
words in each user subset dataset representing a tra-
jectory. After pre-processing the trajectory for each
user, W2V creates a cell ID embeddings using Skip
Gram architecture, resulting in a vector space where
cell IDs that are neighbours are close to each other
in the space. Fig. 4 presents the lower dimensional
space with the cell IDs from 18 months of trajec-

tories carried by user UA that are plotted with 726
unique cell IDs. As word embedding is hard to vi-
sualize (Molino et al., 2019), t-distributed Stochastic
Neighbor Embedding (T-SNE) tool (Van Der Maaten
and Hinton, 2008) was used to plot the high dimen-
sional data using a dimension reduction while keeping
the relative pairwise similarities of the corresponding
low-dimensional points in the embedding.

Figure 4: Global neighboring relation between cell IDs and
user path example.

The experiments were performed using a work-
station with 32GB of RAM memory, featuring an In-
tel I7 quad core processor and a GPU Nvidia Quadro
M1200 with 4GB of RAM. As ML platform, Ana-
conda (Anaconda Software Distribution, 2020) with
Keras (Chollet et al., 2015) & TensorFlow 2.0 (Abadi
et al., 2015) was used.

Fig. 5 presents the four Neural Network (NN)
models that were tested using the ML architectures
defined in Fig. 3, i.e.:

• SRNN versus SRNN+W2V

DeLTA 2021 - 2nd International Conference on Deep Learning Theory and Applications

96

• SGRU versus SGRU+W2V

• SLSTM versus SLSTM+W2V

• CLSTM versus CLSTM+W2V

Features
Extration

MDC
Dataset Word2Vec

Encoded
Cell ID

Sequences

Train
Dataset

Evaluation Model Prediction

Embedding

SRNN
SRNN+W2V

SGRU
SGRU+W2V

SLSTM
SLSTM+W2V

CLSTM
CLSTM+W2V

Test
Dataset

Pre-Trained
Weights

Figure 5: ML architectures.

Features were extracted from each subset dataset
and paths prepared to be used as input sentences in
W2V. Then encoded cell IDs sentences were divided
into two datasets with 75% to be used in the training
process and 25% to test the training process. All ar-
chitectures were configured to use softmax function
to normalize the output of the NN to a probability
distribution over the unique cells in each trajectory
that are the predicted output labels. To stop the train-
ing once the model performance is not improving,
EarlyStopping was activated with a patience value of
100 epochs and mindelta of 0.001% in validation ac-
curacy, i.e., if there is no improvement in the last 100
epochs, training will be stopped. In each train, time
counter was started just before the model training and
stopped after the model fit, training time from each
test were kept for further analysis.

4 RESULTS AND ANALYSIS

Results were divided in 2 tables: Table 2 presents the
results from simple models (SRNN, SGRU) and Ta-
ble 3 presents the results from more complex models
(SLSTM, CLSTM). In both Tables the data has been
upwardly ordered by #UCells per user subset dataset
and, for each test, the number of epochs, training time

(TT) in seconds and validation accuracy (ValAcc) in
percentage are shown. Table 4 compiles the aver-
age results obtained in the 4 tested architectures and
presents the differences with regard to the use of W2V
in terms of number of epochs, training time (TT) in
seconds and validation accuracy (ValAcc) in percent-
age.

The results presented in Table 2 and Table 3 show
a trend where datasets with lower #UCells values re-
sult in a shorter training time and higher validation
accuracy, this is due to the fact of the computational
cost of training a multilabel classifier may be strongly
affected by the number of labels.

As seen in Table 4 architectures SRNN+W2V,
SGRU+W2V, SLSTM+W2V, CLSTM+W2V have
improved in terms of lower training time and higher
validation accuracy. The training time reduction ra-
tio is in architecture SRNN+W2V from 32% to 54%
(43% in average), in SGRU+W2V from 10% to 57%
(43% in average), in SLSTM+W2V from 16% to 49%
(33% in average) and in CLSTM+W2V from 8% to
41% (22% in average). Globally comparing the ar-
chitectures, the training time reduction ratio is in av-
erage 36%. In terms of validation accuracy there is
also an improvement: in SRNN+W2V from 1 per-
centage point (pp) to 6 pps (3 pps in average), in
SGRU+W2V from 0 pp to 4 pps (2 pps in average),
in SLSTM+W2V from 1 pp to 2 pps (1 pp in aver-
age) and in CLSTM+W2V from 2 pps to 12 pps (7
pps in average), globally architectures improved the
validation accuracy in average by 3 pps.

2536

3085

7450

4547

1410
1644

4596

3523

0

1000

2000

3000

4000

5000

6000

7000

8000

SRNN SGRU SLSTM CLSTM

T
ra

in
in

g
 T

im
e
 (

s)

Without W2V With W2V

Figure 6: Average training time per architecture.

66% 67% 68%

41%

69% 69% 69%

48%

0%

10%

20%

30%

40%

50%

60%

70%

80%

SRNN SGRU SLSTM CLSTM

V
a
li

d
a
ti

o
n

 A
cc

u
ra

c
y
 (

%
)

Without W2V With W2V

Figure 7: Average validation accuracy per architecture.

Using Syntactic Similarity to Shorten the Training Time of Deep Learning Models using Time Series Datasets: A Case Study

97

Table 2: Architectures SRNN and SGRU training-related metric comparison without and with W2V.

Users SRNN SRNN+W2V vs SRNN SGRU SGRU+W2V vs SGRU
Epoch

#
TT
(s)

ValAcc
(%)

Epoch
#

TT
(s)(%)

ValAcc
(p.p.)

Epoch
#

TT
(s)

ValAcc
(%)

Epoch
#

TT
(s)(%)

ValAcc
(p.p.)

UA 419 1262 77% -176 -529 -42% +1 595 1751 78% -55 -177 -10% +1
UB 538 1715 78% -209 -682 -40% +2 643 1995 78% -323 -1007 -50% +2
UC 444 2430 71% -206 -1117 -46% +1 683 3568 72% -364 -1775 -50% 0
UD 503 2195 65% -164 -693 -32% +3 618 2725 66% -245 -1117 -41% +2
UE 625 1598 73% -272 -690 -43% +3 658 1777 73% -229 -615 -35% +3
UF 756 3152 61% -346 -1441 -46% +6 657 3004 63% -356 -1626 -54% +4
UG 552 3501 57% -272 -1728 -49% +4 660 4546 60% -373 -2581 -57% +2
UH 742 3607 54% -400 -1944 -54% +5 599 3305 56% -213 -1165 -35% +3
UI 522 3363 57% -200 -1306 -39% +4 688 5094 58% -391 -2905 -57% +4

Avg 567 2536 66% -249 -1126 -43% +3 645 3085 67% -283 -1441 -43% +2

Table 3: Architectures SLSTM and CLSTM training-related metric comparison without and with W2V.

Users SLSTM SLSTM+W2V vs SLSTM CLSTM CLSTM+W2V vs CLSTM
Epoch

#
TT
(s)

ValAcc
(%)

Epoch
#

TT
(s)(%)

ValAcc
(p.p.)

Epoch
#

TT
(s)

ValAcc
(%)

Epoch
#

TT
(s)(%)

ValAcc
(p.p.)

UA 619 2844 79% -169 -780 -27% +1 738 2497 47% -202 -671 -27% +3
UB 579 3113 78% -147 -785 -25% +1 637 2321 45% -164 -613 -26% +3
UC 402 4272 72% -65 -687 -16% +2 641 4076 45% -260 -1668 -41% +2
UD 413 3628 67% -106 -921 -25% +1 624 3200 43% -51 -264 -8% +5
UE 717 4684 74% -301 -1960 -42% +1 799 2625 41% -69 -229 -9% +12
UF 417 6198 65% -138 -2042 -33% +1 698 4371 38% -172 -1085 -25% +8
UG 451 10695 60% -199 -4700 -44% +1 651 6451 38% -120 -1205 -19% +8
UH 456 14289 56% -203 -6983 -49% +2 789 7433 35% -182 -1737 -23% +11
UI 429 17328 58% -170 -6825 -39% +1 617 7949 39% -136 -1741 -22% +8

Avg 498 7450 68% -166 -2854 -33% +1 688 4547 41% -151 -1024 -22% +7

Table 4: Global architectures average comparison - number of epochs (Epoch), training time (TT) and validation accuracy
(ValAcc).

Arch. Without W2V With W2V Differences
Epoch

#
TT
(s)

ValAcc
(%)

Epoch
#

TT
(s)

ValAcc
(%)

Epoch
#

TT
(s)(%)

ValAcc
(p.p.)

SRNN 567 2536 66% 317 1410 69% -249 -1126 -43% +3
SGRU 645 3085 67% 361 1644 69% -283 -1441 -43% +2

SLSTM 498 7450 68% 332 4596 69% -166 -2854 -33% +1
CLSTM 688 4547 41% 538 3523 48% -151 -1024 -22% +7

Avg. 599 4405 60% 387 2794 64% -212 -1611 -36% +3

43% 43%

33%

22%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

SRNN SGRU SLSTM CLSTM

T
ra

in
in

g
 T

im
e

R
ed

u
ct

io
n

 R
a

ti
o

 (
%

)

Architectures

Figure 8: Training time reduction ratio.

Fig. 6 shows the average training time in seconds
per architecture, it is stated that simple architectures
needed less time to train each dataset and that the use
of W2V reduced the training time.

Fig. 7 shows the average validation accuracy per
architecture. SRNN, SGRU, SLSTM obtained better
validation accuracy than CLSTM, the validation accu-
racy is higher when W2V is integrated by each archi-

tecture and CLSTM takes better advantage of using
W2V.

Fig 8 shows the training time reduction ratio ob-
tained by the usage of W2V which is positive in the
4 architectures and being more significant in simple
architectures.

Analyzing the global average values, it can be
concluded that in less complex architectures, such as
SRNN+W2V and SGRU+W2V, better results are ob-
tained both in training time and accuracy. In terms of
validation accuracy SRNN+W2V and SGRU+W2V
obtained the same values than SLSTM+W2V but in
average improvements obtained in training time are
10% higher. Comparing training time and validation
accuracy from architecture CLSTM+W2V, the gain is
lower in terms of training time (less 22% in average)
but although the validation accuracy is low, the gains
are 7 pps higher than CLSTM.

DeLTA 2021 - 2nd International Conference on Deep Learning Theory and Applications

98

5 CONCLUSIONS

When building and deploying a ML model, the train-
ing stage one is the most time-consuming. In order to
reduce the training time of models using time series
datasets, syntactic similarity can be used.

In order to test this assumption, this paper de-
signed a case study based on MNOs scenario used to
predict client mobility. In this case study, a set of ML
models, namely RNN, GRU, LSTM and CNN, were
tested with the integration of the W2V to reduce the
training time.

The experimental results show that as the num-
ber of labels that can be predicted increases, the train-
ing time also increases. When comparing the results
obtained for different architectures, the use of pre-
trained weights from W2V presented a training time
reduction ratio between 22% and 43% and improved
the validation accuracy between 1 pp and 7 pps result-
ing in an overall gain of 3 pps.

These results show that the integration of W2V
pre-trained weights at the initial training stage may
reduce the ML training time in other scenarios such
as forecasting mobility in networks, epidemic control,
transportation management, urban planning, location-
based services, or management of cellular network re-
sources.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,
and Zheng, X. (2015). TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Web site.
Software available from tensorflow.org (accessed on 1
February 2021).

Anaconda Software Distribution (2020). Anaconda soft-
ware distribution. Web site. Software available from
https://www.anaconda.com (accessed on 1 February
2021).

Chollet, F. et al. (2015). Keras. Web site. Software avail-
able from https://github.com/fchollet/keras (accesse-
don1 February 2021).

Collobert, R., Farabet, C., and Kavukcuoğlu, K. (2008).
Torch — Scientific computing for LuaJIT. NIPS Work-
shop on Machine Learning Open Source Software.

Fan, X., Guo, L., Han, N., Wang, Y., Shi, J., and Yuan,
Y. (2018). A Deep Learning Approach for Next Lo-
cation Prediction. Proceedings of the 2018 IEEE

22nd International Conference on Computer Sup-
ported Cooperative Work in Design, CSCWD 2018,
(May 2018):630–635.

González, M. C., Hidalgo, C. A., and Barabási, A. L.
(2008). Understanding individual human mobility
patterns. Nature, 453(7196):779–782.

Hashimoto, K., Stenetorp, P., Miwa, M., and Tsuruoka, Y.
(2015). Task-oriented learning of word embeddings
for semantic relation classification. CoNLL 2015 -
19th Conference on Computational Natural Language
Learning, Proceedings, pages 268–278.

Jeung, H., Lu, H., Sathe, S., and Yiu, M. L. (2014). Manag-
ing evolving uncertainty in trajectory databases. IEEE
Transactions on Knowledge and Data Engineering,
26(7):1692–1705.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093.

Kim, Y. (2014). Convolutional neural networks for sentence
classification. EMNLP 2014 - 2014 Conference on
Empirical Methods in Natural Language Processing,
Proceedings of the Conference, pages 1746–1751.

Kiukkonen, N., Blom, J., Dousse, O., Gatica-perez, D.,
and Laurila, J. (2010). Towards rich mobile phone
datasets: Lausanne data collection campaign.

Kotz, D., Henderson, T., and McDonald, C. (2005). Craw-
dad archive: a community resource for archiving wire-
less data at dartmouth. Web site. Archive available
from https://www.crawdad.org (accessed on 1 Febru-
ary 2021).

Kretowicz, W. and Biecek, P. (2020). MementoML: Perfor-
mance of selected machine learning algorithm config-
urations on OpenML100 datasets. pages 1–7.

Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet,
O., Do, T. M. T., Dousse, O., Eberle, J., and Miettinen,
M. (2013). From big smartphone data to worldwide
research: The Mobile Data Challenge. Pervasive and
Mobile Computing, 9(6):752–771.

Microsoft Azure (2017). The Microsoft Cogni-
tive Toolkit - Cognitive Toolkit - CNTK —
Microsoft Docs. Software available from
https://github.com/Microsoft/CNTK (accessed on
1 February 2021).

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. 1st International Conference on Learning Rep-
resentations, ICLR 2013 - Workshop Track Proceed-
ings, pages 1–12.

Miranda, C. S. and Von Zuben, F. J. (2015). Reducing the
Training Time of Neural Networks by Partitioning.

Molino, P., Wang, Y., and Zhang, J. (2019). Parallax: Vi-
sualizing and understanding the semantics of embed-
ding spaces via algebraic formulae. ACL 2019 - 57th
Annual Meeting of the Association for Computational
Linguistics, Proceedings of System Demonstrations,
pages 165–180.

Reif, M., Shafait, F., and Dengel, A. (2011). Prediction of
classifier training time including parameter optimiza-
tion. Lecture Notes in Computer Science (including

Using Syntactic Similarity to Shorten the Training Time of Deep Learning Models using Time Series Datasets: A Case Study

99

subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 7006 LNAI(June
2014):260–271.

Shi, S., Wang, Q., Xu, P., and Chu, X. (2017). Bench-
marking state-of-the-art deep learning software tools.
Proceedings - 2016 7th International Conference on
Cloud Computing and Big Data, CCBD 2016, pages
99–104.

Tang, D., Qin, B., and Liu, T. (2015). Document model-
ing with gated recurrent neural network for sentiment
classification. Conference Proceedings - EMNLP
2015: Conference on Empirical Methods in Natural
Language Processing, (September):1422–1432.

Van Der Maaten, L. and Hinton, G. (2008). Visualizing
Data using t-SNE. Technical report.

Wang, C., Zhao, Z., Sun, Q., and Zhang, H. (2018). Deep
Learning-based Intelligent Dual Connectivity for Mo-
bility Management in Dense Network. pages 1–5.

Wickramasuriya, D. S., Perumalla, C. A., Davaslioglu, K.,
and Gitlin, R. D. (2017). Base station prediction and
proactive mobility management in virtual cells using
recurrent neural networks. In 2017 IEEE 18th Wire-
less and Microwave Technology Conference, WAMI-
CON 2017, pages 1–6. IEEE.

Yang, C., Sun, M., Zhao, W. X., Liu, Z., and Chang, E. Y.
(2018). A Neural Network Approach to Joint Model-
ing Social Networks and Mobile Trajectories. Techni-
cal report.

Yih, W. T., He, X., and Meek, C. (2014). Semantic pars-
ing for single-relation question answering. 52nd An-
nual Meeting of the Association for Computational
Linguistics, ACL 2014 - Proceedings of the Confer-
ence, 2:643–648.

Zayats, V. and Ostendorf, M. (2018). Conversation Mod-
eling on Reddit Using a Graph-Structured LSTM.
Transactions of the Association for Computational
Linguistics, 6:121–132.

Zheng, Y., Fu, H., Xie, X., Ma, W.-Y., and Li,
Q. (2011). Geolife GPS trajectory dataset -
User Guide, geolife gps trajectories 1.1 edition.
Download available at https://www.microsoft.com/en-
us/download/details.aspx?id=52367 (accessed on 1
February 2021).

DeLTA 2021 - 2nd International Conference on Deep Learning Theory and Applications

100

