C++ Web Framework: A Web Framework for Web Development using
C++ and Qt

Herik Lima'? and Marcelo Medeiros Eler!
1Um'versity of Sdao Paulo (EACH-USP), Sdo Paulo, SP, Brazil
2xp Inc., Sdo Paulo, SP, Brazil

Keywords: Web, Framework, Development, C++.

Abstract:

The entry barrier for web programming may be intimidating even for skilled developers since it usually in-

volves dealing with heavy frameworks, libraries and lots of configuration files. Moreover, most web frame-
works are based on interpreted languages and complex component interactions, which can hurt performance.
Therefore, the purpose of this paper is to introduce a lightweight web framework called C++ Web Framework
(CWF). It is easy to configure and combine the high performance of the C++ language, the flexibility of the Qt
framework, and a tag library called CSTL (C++ Server Pages Standard Tag Library), which is used to handle
dynamic web pages while keeping the presentation and the business layer separated. Preliminary evaluation
gives evidence that CWF is easy to use and present good performance. In addition, this framework was used
to develop real world applications that support some business operations of two private organizations.

1 INTRODUCTION

Web Applications have been adopted as the de facto
platform to support business operations of all sort of
organizations for a long time. This has been even
more stimulated by the availability of modern frame-
works and tools (Chaubey and Suresh, 2001) along
side with the growth of technologies related to Soft-
ware as a Service (Tsai et al., 2014), Cloud Comput-
ing (Buyya et al., 2009) and Mobile Platform Ap-
plications (Charland and Leroux., 2011; Freitas and
Maia, 2016). The benefits of Web Applications are
indeed very attractive for companies of all sizes and
sectors, but the increasing complexity of web applica-
tions and the underlying development infrastructure
comes with a price.

According to Sinha et. al (Sinha et al., 2015),
programming for the web may be quite intimidat-
ing because writing even conceptually simple appli-
cations requires inordinate amount of effort: learning
multiple languages; diving into details of low level
frameworks/libraries (e.g. JSF and Strutts for Java-
based Web frameworks, Ruby on Rails are Ruby-
based, Grails is Groovy-based, .NET Framework,
CakePHP is for PHP-based frameworks, and Lift is
for Scala (del Pilar Salas-Zarate et al., 2015)); keep-
ing libraries and frameworks updated and compati-
ble (Raemackers et al., 2014), dealing with several

76

Lima, H. and Eler, M.
C++ Web Framework: A Web Framework for Web Development using C++ and Qt.
DOI: 10.5220/0010457700760087

configuration files; and writing glue code to make
multiple layers inter-operate (Vuorimaa et al., 2016).
In addition, many web frameworks present poor doc-
umentation (Constanzo and Casas, 2016; Constanzo
and Casas, 2019).

Those peculiar characteristics of web devel-
opment environments have many practical conse-
quences. First, the entry barrier for web programming
is high even for skilled programmers due to the com-
plex configuration (Sinha et al., 2015; Swain et al.,
2016; Tuan et al., 2016), which can make the learning
curve too steep. Next, web applications may present
low maintainability once finding and fixing bugs, cre-
ating new features, integrating solutions and keeping
configuration files, frameworks and libraries updated
and compatible may require a lot of effort. Some so-
lutions try to use single pages that contain business
and presentation layer logic to reduce complexity, but
it also render application less maintainable (Shklar
and Rosen, 2004; Srai et al., 2017). Finally, sev-
eral web frameworks rely on a heavy combination of
other frameworks, components and libraries and on
interpreted languages and scripts, which may jeopar-
dize the overall performance of the application and
increase computational resource consumption. Al-
though performance is not the main concern of web
development, there might be applications or specific
functions that requires good performance (e.g. trad-

In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 76-87

ISBN: 978-989-758-509-8

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



C++ Web Framework: A Web Framework for Web Development using C++ and Qt

ing systems).

Despite the fact that C++ is a well known language
that presents high performance and low resource con-
sumption (Game, 2021), and it is one of the four most
used programming language in the world (TIOBE,
2021), it has not been used to develop web applica-
tions (Millares, 2015). So far, few approaches have
been proposed to support web development using the
C++ language. In particular, CGI (Common Gate-
way Interface) solutions offer a standard protocol for
web servers to execute programs like console applica-
tions that runs on the server and generate web pages
dynamically (CGI). There are, however, other solu-
tions available, such as POCO Libraries (Obiltschnig,
2005), C++ Server Page (CSP), Wt (Dumon and De-
forche, 2008), Crow ! e QWebApp (Frings, 2010).
All of them, however, make business, control and pre-
sentation layer entangled for the sake of simplifica-
tion, however it renders applications less adaptable,
maintainable and reusable (Srai et al., 2017).

In this context, this paper introduces a new web
development framework called C++ Web Framework
(CWF) which was built to mitigate many of the issues
related to web development (e.g complex configura-
tion, steep learning curve, low maintainability, limited
performance, and high computational resource con-
sumption(del Pilar Salas-Zarate et al., 2015; Sinha
et al., 2015; Swain et al., 2016; Raemaekers et al.,
2014; Shklar and Rosen, 2004; Srai et al., 2017)) by
providing developers with a lightweight infrastructure
to develop web applications using the C++ program-
ming language. CWF was built upon the Qt> frame-
work, a cross-platform framework for the develop-
ment of desktop, embedded and mobile applications
in C++.

CWEF is lightweight because it uses only one con-
figuration file and relies on a few libraries provided
by the Qt framework. Web applications implemented
in a compiled language such as C++ and upon the op-
timized infrastructure provided by Qt tend to use less
computational resources such as memory and proces-
sor, and to present high performance. A tag library
called CSTL (C++ Server Pages Standard Tag Li-
brary) was created to generated dynamic web pages
that keeps the presentation and the business layer sep-
arated. Architectural and design decisions concerning
our solution is presented in Section 3.

Preliminary evaluation gives evidence that this
framework is easy to use and understand, which
makes it a good choice as an entry level web frame-
work. It was also found that the CWF applications
present good performance. In particular, two real

Thttps://github.com/ipkn/crow
Zhttps://www.qt.io/

world applications were developed using this frame-
work and they have been running for several months.
This first set of evaluations motivates further improve-
ment and assessment of the CWF.

This paper is organized as follows. Section 2 dis-
cuss the basic requirements we collected to develop
our web framework and the correspondent architec-
tural and design decisions we made to provide devel-
opers with a suitable solution for the development of
we applications. Section 3 presents the CWF in de-
tails and provides examples of how to instantiate a
new web application. Section 4 shows preliminary
evaluations we have conducted to asses the CWF —
user evaluation, performance evaluation and usage in
real world scenarios. Section 5 discuss some related
work. Finally, Section 6 presents the concluding re-
marks and future directions.

2 REQUIREMENTS,
ARCHITECTURAL AND
DESIGN DECISIONS

The overall concept and structure of a web application
is quite simple. A web application is a software that
runs on a web server to provide their clients with dif-
ferent types of services, such as web-mail or online
shopping. The web application handles requests re-
ceived from its client and sends back an answer. Such
communication is based on a agreed protocol, such as
HTTP (Hyper Text Transfer Protocol).

As web applications have became more complex,
handling clients requests also become more com-
plex and, in many cases, requires the interaction with
many components, services and other applications.
Therefore, it is expected that a web framework pro-
vides web developers with several other facilities to
make it easy to build complex and robust web ap-
plications. Considering such scenario, we decided
that the CWF would implement the following re-
sources in its first versions: support to MVC (Model
View Controller) architecture, session management,
filters, web services, XML and JSON manipulation,
secure HTTPS, data base access and ORM (Object-
Relational-Mappers).

Many architectural and design decisions were
made during the CWF development to mitigate some
of the issues related to web development aforemen-
tioned. The general idea was to implement a flexible
but yet a lightweight solution for developing web ap-
plications. We briefly discuss some of our decisions
as follows.

77



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

Programming Language. We decided to imple-
ment the CWF using the C++ language and provide
support to the development of web applications us-
ing C++ for many reasons: high performance and low
usage of computational resources (Ramana and Prab-
hakar, 2005; Hundt, 2011; Game, 2021); it is a widely
used programming language — it is one of the top four
most used language in the world (TIOBE, 2021); it is
constantly updated and no conflict is introduced with
previous versions; and many issues related to older
versions of the language, such as memory leaks, have
been solved in recent versions.

Underlying Framework. Many resources and fa-
cilities required by web applications are not natively
supported by programming languages. Therefore,
web applications require external libraries to imple-
ment many of its functionalities. Such libraries are
usually provided or orchestrated by web frameworks.
Therefore, we decided to built the CWF upon the Qt
framework for many reasons: it provides several li-
braries that can be used to develop a web application
(e.g. socket, XML and JSON manipulation, reflec-
tion, data base access, and so forth); it is constantly
updated and new versions are compatible with older
versions; it is cross-platform as it can run on Win-
dows, Linux, Mac, Android, iOS, tvOS, watchOS,
WinRT and embedded environments; it is widely used
by C++ developers and big companies; and it has a
detailed and good quality documentation.

Configuration Files. When many configuration
files must be set it makes the development and evo-
lution process more complex (Sinha et al., 2015; del
Pilar Salas-Zarate et al., 2015; Vuorimaa et al., 2016).
Therefore, CWF requires the developer to set a sin-
gle configuration file in which 19 options are avail-
able. Details on the configuration files are presented
in Section 3.

Separation between Business and Presentation
Layer. Entangling business and presentation layer,
although it has been a simple solution adopted by
many approaches to present dynamic information,
makes applications less understandable, testable and
maintainable. Therefore, we created the CSTL (C++
Server Pages Standard Tags Library), a tag library that
generates dynamic content but keeping the presenta-
tion and the business layer separated. It was largely
inspired by the JSTL (JavaServer Pages Standard Tags
Library) from the Java EE platform.

Application Container. Typically, web applica-
tions run on web containers (e.g. TOMCAT, IBM

78

WebSphere, JBoss) that run on web servers. However,
CWF applications cannot be deployed to web contain-
ers currently available in the market, unless it is im-
plemented under protocols such as CGI or FastCGI,
but it would hurt performance. Therefore, we decided
to create a specific web container for the CWF appli-
cations and make each application its own web con-
tainer. That way, CWF applications can run on any
platform in which Qt framework can run.

Java Servlets Inspiration. CGI-based solutions
tend to present low performance and high use of com-
putational resources. FastCGI is a solution that try
to reduce the overhead related to interfacing between
web server and CGI programs, but it does not com-
pletely solve the overhead issues. Java servlets, on
the other hand, can handle requests in an optimized
way by using a pool of threads to deliver better per-
formance and save computational resources. Thus,
CWEF controllers handle requests based similarly to
Java Servlets solutions.

3 THE C++ WEB FRAMEWORK
(CWF)

The C++ Web Framework (CWF)? was devised to
support the development of web applications using
the C++ language and the Qt framework. Qt is
a cross-platform application development framework
for desktop, embedded and mobile. Qt is not a
programming language by its own. It uses a pre-
processor called MOC (Meta-Object Compiler) that
extends the C++ language and parses the source files
written in Qt-extended C++ to generate sources that
can be compiled by any standard compliant C++ com-
piler.

The combination of the flexibility of the Qt frame-
work and the power of the C++ language is one of the
appealing characteristics of the CWF. Developers can
use the Qt facilities to access databases, create web
services, parse XML and JSON, use testing frame-
works, and so forth. Developers can also use external
libraries. Accordingly, the web applications devel-
oped in this environment are intended to present the
following characteristics:

* High performance since it is based on the C++
language and it doesn’t use interpreted languages

* Low use of computational resources (memory and
processor)

* It requires only a simple configuration file

3https://github.com/HerikLyma/CPPWebFramework



C++ Web Framework: A Web Framework for Web Development using C++ and Qt

* Dynamic content can be presented using dynamic
pages created with CSTL (see Section 3.5)

* Separation between the presentation (HTML, for
example) and the business layer (back-end code)

The CWF may be especially appealing for C++ de-
velopers that want to develop web applications but
cannot afford learning a new programming language
or dealing with heavy frameworks. In fact, a recent
study* has shown that the population of C++ devel-
opers is past 5 million people, which is one of our
motivation to develop a framework suitable for this
specific population.

3.1 The CWF Architecture

Figure 1 shows an overview of the architecture of
the CWF. A CWF application (CppWebApplication)
is built upon the Qt framework and libraries, and the
C++ language. The application is wrapped by its own
web server or container (CppWebServer), so the de-
veloper does not need to deploy the web application
in a web container such as Apache Tomcat, for ex-
ample. This is very useful to keep the infrastructure
simple and to avoid security and conflicts issues. The
servlets inside the Controllers components answer the
client requests and present dynamic content through
web pages and CSTL (C++ Server Pages Standard
Tag Library). The servlets can also use standard C++
classes. The details of each component of the CWF and
simple usage examples are presented as follows.

Response

| Web Pages + CSTL |
| Controllers |
| CPPWebServer |
| CPPWebApplication |
| Qt Libraries |
| c |

Figure 1: Overview of the CWF architecture.

Developers must use the Qt environment to create
CWF applications. The new project must use the Qt
modules core, network and xml and import folders
cwf and server from the CWF. If the application uses
a database connection, for example, it must also im-
port the sql module.

“https:/adtmag.com/articles/2018/09/24/developer-
€Cconomics-survey.aspx

Figure 2 shows an example of how the folder hi-
erarchy of a CWF application will look like for a
simple Hello World application: HelloWorld is the
main folder of the project; HelloWorld.pro is the
Qt project file; Sources stores all source code of
the project; Other files stores all supporting files;
server/config keeps the configuration file of the
project; cppwebserverpages keeps the default pages
of the project (index.html, 403 and 404, for example);
log keeps the server’s log information; and ss1 stores
the files to configure the HTTPS protocol. Listing 1
shows an example of the file CppWeb.ini to set the
configuration of the CWF web server, which is built-
in each application.

+ [ Helloworld
= HellowWorld.pro
~ [ Sources
e« main.cpp
+ [i@ Other files
~ = server/config
v 9 cppwebserverpages
v [ log
v B ssl

CPPWeb.ini
Figure 2: The folder structure of a CWF application.

Listing 1: CppWeb.ini file.

[config]
host=127.0.0.1
port=8080

maxThread=200

cleanuplnterval =60000
timeOut=60000
maxUploadFile=500000000
path=/CPPWebFrameworkTest/server/
suffix =. xhtml
logFilePath=/config/log/
sslKeyFile=/config/ssl/my.key
sslCertFile=/config/ssl/my.cert
indexPage=/config/cppwebserverpages/index
accessCPPWeblIni=false
accessServerPages=false

As mentioned before, CWF application requires only
one configuration file. The details of each ele-
ment of the CppWeb.ini file is presented as fol-
lows: host and port set the IP and the port num-
ber the web server will use, respectively; maxThread
sets the maximum amount of thread the server is al-
lowed to create; cleanupInterval sets the period-
icity to clean sessions; timeOut sets the maximum
amount of time the server can use to answer a re-
quest; sessionExpirationTime sets the time a ses-
sion takes to expire; maxUploadFile sets the max-

79



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

imum size of a request; path points to the server
folder; suffix sets the suffix to be added to the
page requests; logFilePath points to a log file;
sslKeyFile points to a .key file and sslCertFile
points to a . cert file, which are related to digital cer-
tifications; indexPage sets the main and first page
of the project to be shown; accessCPPWebIni sets
whether the CPPWeb.ini file can be remotely ac-
cessed; accessServerPages sets whether the default
pages of the CWF can be accessed.

3.2 CppWebApplication and
CppWebServer

The class CppWebApplication is the main class
of the web application. It encapsulates the
CppWebServer and other core classes of the Qt
framework. The CppWebApplication creates a
server using the parameters (e.g. host, port) set
by the developer and the application can be ac-
cessed using the address host:port. Listing 2 shows
a view that is called by the web application pre-
sented in Listing 3. The CppWebApplication re-
ceives argc and argv as parameters. A server is
created using argc,argv and the path to the server
working directory. The HelloWorldController is
added to the server, which is started in the sequence.
After that, this application can be accessed using
the address host:port. Listing 3 also shows the
class HelloWorldController, which inherits from
CWE: :Controller and overrides the method doGet o
answer requests by sending the view helloworld.view
as answer.

Listing 2: A simple view using HTML.
<htmlI>
<body>
Hello World!
</body>
</html>

Listing 3: A simple view using HTML.

#include <cwf/cppwebapplication.h>
class HelloWorldController : public CWF:: Controller

public:
void doGet(CWF:: Request &request ,
CWF:: Response &response) const override
{

request. getRequestDispatcher (”/pages/helloworld.view”)
.forward(request, response);
}

s

int main(int argc, char sxargv[])

{
CWF:: CppWebApplication server (argc, argv, "/server”);
server.addController<HelloWorldController >("/hello”);
return server.start ();

}

80

3.3 Controllers

The CWF controllers (or servlets) were strongly in-
spired by the Java servlet, which allow handling
requests and generating dynamic content. Imple-
menting controllers in the CWF is straightforward:
the developer has to create an extension of the
CWF::Controller and override the virtual meth-
ods: doGet, doPost, doPut, doDelete, doTrace and
doOptions. Each method receives two parameters
which are references to Request, which keeps infor-
mation concerning a request, and Response, which
provide the mechanisms to answer a request.

Listing 4 shows an example of a controller cre-
ated for handling sessions. The only rule that de-
velopers must comply with to register an information
within a session is that the class containing the in-
formation must be an extension of Q0bject. Method
fi11QObject is used to set the attributes of the ob-
ject usr, whose values are received via input form.
Method getSession is used to obtain the current ses-
sion and method addAttribute includes an object
into the current session.

Listing 4: Example of the usage of a session.

class LoginController : public CWF:: Controller

public:
void doGet(CWF:: Request &req,
CWF:: Response &resp) const override
{

req.getRequestDispatcher (”/pages/login.view”)
.forward(req, resp);

void doPost(CWF:: Request &req,
CWF:: Response &resp) const override
{

QString login(req.getParameter(”login”));
QString pwd(req.getParameter (”passwd”));
if (login == "user” && pwd == "pwd”)

User #usr = new User;

req. fillQObject (usr);

req.getsession (). addAttribute ("usr”, usr);

req.getRequestDispatcher (”/pages/home. view”)
.forward(req, resp);

else

req.getDispatcher (”/pages/login.view”)
.forward(req, resp);
}
}
}

All controllers must be registered so the server can
know that they exist and how to answer the requests
for each controller. This task can be easily done
using the methods addController from the class
CppWebApplication. A possible drawback of this
approach is that CWF applications would be less flex-
ible since controllers could not be changed or added
dynamically. However, it is possible to use the dy-
namic linking facilities provided by the Qt frame-
work, which can also help reducing resources con-
sumption.



C++ Web Framework: A Web Framework for Web Development using C++ and Qt

3.4 Filters

In web applications, filters are used to intercept
requests before they reach a controller.  They
can pre-process requests and check, for example,
whether a user session is still valid. In CWF, fil-
ters can be added by creating instances of Filter
and overriding the method doFilter. As the con-
trollers, filters also need to be registered within the
CppWebApplication.

Listing 5 shows an example of the usage of filters
in the CWF. This filter checks whether the user is au-
thenticated and whether the session is still valid. If
the session is invalid, the filter will redirect the user to
the authentication page. Otherwise, it will present the
requested resource.

Listing 5: Example of the usage of a filter.
class SessionValidatorFilter:public CWF:: Filter

public:
void doFilter (CWF:: Request &req,
CWF:: Response &resp , CWF: FilterChain &chain)
{

QString url(req.getRequestURL ());
if (url.endsWith(”.css”) || url.endsWith(”.png”))

chain.doFilter(req, resp);

}

else if (url != ”/login”)

QObject #0bj = req.getSession (). getAttribute ("usr”);
if (obj == nullptr || reg.getSession ().isExpired())

req. getRequestDispatcher (”/pages/login.view”)
.forward(req, resp);

}

else

{
}

else

{

chain.doFilter(req, resp);

chain. doFilter(req, resp);

}
I

3.5 The Web Pages and the CSTL

The CSTL (C++ Server Pages Standard Tag Library)
is a tag library created to generated dynamic content
but keeping the presentation and the business layer
separated. It was inspired by the JSTL (JavaServer
Pages Standard Tag Library) library from the Java
platform. The CSTL allows using C++ objects within
xhtml pages using tags instead of programming in-
structions. So far, the CSTL designed for the CWF
has the following tags: out, for, and if. Even though
there are only three (3) tags currently, their combina-
tion are flexible and powerful enough to allow build-
ing several kinds of web applications. The complete
specification of the CSTL can be found in the CWF

repository>.

There are some rules to use the CSTL: 1) all ob-
jects must be an extension of QObject; ii) all meth-
ods used by the CSTL must be in the section public
slots; iii) it is only possible to retrieve information
from the objects, not set values; iv) the return of the
methods used by the CSTL must be a C++ primitive
type, or std:string, or QString.

Listing 6 shows an example of a class that can be
used within view pages. Notice that the class cos-
tumer inherits from QObject and the getter methods
are declared within the public slot section. The
declaration of the setter methods are hidden.

Listing 6: A class prepared to be used by the CSTL.

class Customer : public QObject
Q-OBJECT
private:
int id;
char gender;
QString name;
QString address;
public:
explicit Customer(QObject *xo = nullptr): QObject(o)
{}
public slots:
int getld () const { return id; }
char getGender() const { return gender; }
QString getName() const { return name; }

Listing 7 shows a controller that passes a list of
objects to the view page. Following, Listing 8
presents the usage of the list of objects received.
When using the CSTL, methods are called us-
ing #{class.method} as a template and the val-
ues are shown using the tag out. The tag for
can be used to iterate over a collection of objects
over numeric values (e.g, <for var="i" from="1"
to="10" increment="1">). In this example, the tag
for is used to access each object within the customer
list received from CustomerServlet. In this exam-
ple, the tag if imposes a condition: only male cus-
tomers (gender=="M") will be shown.

Listing 7: Passing objects to web pages.

class CustomerServlet : public CWF:: HttpServlet
public:
virtual ~CustomerServlet(){}
void doGet(CWF:: HttpServletRequest &req,
CWEF:: HttpServletResponse &resp)
{

CWF:: QListObject qListObject;

qListObject.setAutoDelete (true);

qListObject.add (customerOne);

qListObject.add (customerTwo );

qListObject.add(customerThree );

qListObject.add(customerFour);

req.addAttribute ("customersList”, &qListObject);

req.getRequestDispatcher(”/pages/customer”).
forward (req, resp);

Shttps://github.com/HerikLyma/CPPWebFramework

81



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

Listing 8: Using the CSTL tag for.

<?xml version="1.0" encoding="iso —8859—-1" 7>
<htmI>

<body>
<table width="550px” border="1">
<tr>
<td width="100" height="40">
<b>Name</b>
</td>
</tr>

<for items="customersList” var="customer”™>
<if var="#{customer.getGender}” equal="M">
<tr>
<td height="25">
<out value="#{customer. getld}”™></out>
</ td>
<td height="25">
<out value="#{customer.getName} "></out>
</ td>
</ tr>
</if>
</for>
</table>
</body>
</htmI>

4 EVALUATION

A preliminary assessment of the CWF was carried out
to evaluate the framework considering three forms:
user evaluation, performance testing and applicability
in real world scenarios. The details of each evaluation
are presented as follows.

4.1 User Evaluation

The purpose of this evaluation is to check whether de-
velopers could install, configure and create dynamic
web pages using the CWF framework. Therefore, we
design an experiment as follows:

* Subjects: C++ developers with or without knowl-
edge in web development.

* Subjects Selection: an invitation was sent to all
developers or former students registered in the
database of an I.T. company that develops soft-
ware and provides training for C++ developers.

* Location: the experiments will take place on the
laboratories of the I.T. company that develops
software and provides training for C++ develop-
ers.

» Execution: experiments lasted four hours at most.
Subjects received instructions® on how to use the

6Unfortunately, extensive documentation was not avail-
able since it is in early stages of development and feedback

82

CWF framework to develop dynamic web appli-
cations during two hours. The following two
hours was used to execute four activities.

* Data Collection: we will collect the following in-
formation on each subject: education, experience
with software development in general and web de-
velopment, opinion on how easy was to install and
configure the CWF framework, and the time spent
to execute the proposed activities.

The four activities the users must carried out are the
following:

1. Create a controller, register it in the Web server
and implement the GET method. This method
must return and HTML page containing an input
field so that the user can insert a number and sub-
mit a form using the POST method.

2. Move all the HTML code written in the Controller
of the previous activity to a HTML page. Modify
the GET method so it calls this HTML page using
the CWF functions.

3. Implement the POST method of the Controller to
read the number sent through the input field, cal-
culate the factorial of that number and return a
HTML page with the result.

4. Use the Model View Controller pattern. Move all
HTML code of the POST method to a View and
use the CSTL to show the result.

In total, only 22 out of 1000 developers we invited
agreed to be part of the CWF evaluation. During the
experiment, the 22 participants received a two hour
training in which the basis of general web develop-
ment was explained in details, along with how to in-
stall, configure and implement dynamic web pages
using the CWF. After that, the participants had two
hours to install, configure and execute the four activ-
ities described before. Following they had to fill out
an online form with profile details and the time spent
in each activity. During the experiment, one partic-
ipant had technical problems with his computer and
one of them arrived late and missed the training part.
The data collected on these two participants were dis-
carded, hence we analysed the data on only 20 sub-
jects.

The participant’s profiles show the diversity of
education, experience in software and web develop-
ment. When it comes to education of the participants,
55% has a bachelor degree, 20% has also a certificate
program degree, 20% has a MSc. degree and 5% has
a PhD degree. Table 1 shows the experience of the

from this preliminary evaluation will be used to improve the
design and tailor the user documentation.



C++ Web Framework: A Web Framework for Web Development using C++ and Qt

Table 1: Experience of the participants (in years) when it
comes to software, web and C++ development.

Type of exp. >5y 3-S5y 1-3y <ly None
Sw Dev. 65% 0% 20% 10% 5%
Web Dev. 10% 10% 25% 5% 50%
C++ Dev. 30% 5% 35% 10% 20%

Table 2: Time spent to execute the activities (in minutes).
Act. <10 10-20 20-30 >30 Unsolved Expect.

1 15% 50% 25% 10% 0% 20-30
2 15% 55% 15% 15% 0% 20-30
3 55% 30% 10% 5% 0% 10-20
4 15% 25% 20% 30% 10% >30

participants regarding software development, web de-
velopment and C++ development. Notice that, even
though most participants has large experience in soft-
ware development, most of them does not have much
experience in web development.

After executing all proposed activities, all partici-
pants gave their opinion on how easy is to install and
configure the CWF framework. They also informed
how long they take to finish each activity. Around
25% of participants found the framework very easy
to install and configure, 55% found it easy, and 20%
found it moderately easy. We found this a satisfactory
response since most developers do not have much ex-
perience with web development.

Table 2 shows the results when it comes to time
spent to execute each one of the proposed activities.
For the first activity, it was expected that the partici-
pants would take from 20 to 30 minutes because they
had to install, configure and create a controller. Sur-
prisingly, 65% of the participants spent less than 20
minutes to finish the activity. In the second activity,
70% took less than 20 minutes to provide a solution,
less than the amount of time expected. For the third
activity, 85% finished the activity within the expected
time. The expected time to spent in the fourth activ-
ity was greater than 30 minutes since the participants
had to refactor the application into a MVC architec-
ture and use the CSTL. However, it was expected that
they would take less than two hours. Fortunately, 60%
of the participants finished the activity in less than 30
minutes, while 30% took more than 30 minutes but
less than two hours, which was the total time they had
to complete the four activities. In the forth activity,
10% of the participants were not able to finish to pro-
vide a satisfactory solution on time.

The number of samples are not enough to estab-
lish a significant correlation between the experience
in software development and/or web development and
the time spent to finish the proposed activities. How-
ever, a closer look at the data showed that experience

does not necessarily influences the time the partici-
pants took to execute the proposed activities.

4.2 Load Testing

We compared the performance of a CWF applica-
tion with the performance of a Java web applica-
tion. We decided to compare the performance of our
framework against the Java framework because, even
though they have different purposes and are based
on different set of technologies and components, be-
cause it is one of the most popular platforms to de-
velop web applications when good performance is
required (Millares, 2015). We also decided to de-
ploy Java applications on the Tomcat because it is one
of the most popular web server (Salnikov-Tarnovski,
2017). Our performance tests were inspired by the
performance comparisons already used to evaluate
web frameworks(TechEmpower, 2018).

The first three comparisons consisted in evaluat-
ing the performance of REST services designed to
calculate the following mathematical routines: facto-
rial, prime numbers and Fibonacci. The REST API
should receive a request via HTTP - GET method,
read the number parameter and process the math rou-
tine. After that, a JSON response should be created
including the result in a specific attribute. The last
comparison consisted in creating a REST services to
generate a dynamic HTML page with 10 thousand
chars. For each one of the four tests, 10 thousand
requests have been generated for the web service to
measure the processor and memory usage. All tests
were executed three times and a report was built con-
sidering the mean of the three executions.

All tests were executed in a client-server environ-
ment using two computers in a local network. The
server was a Laptop Samsung RV 411 running Ubuntu
17.10 (64 bits), SSD Kingston 120 GB, 8§ GB RAM
e and the Intel Core i5 M 480 2.67 GHz processor.
On the server side, we used the Process Monitor GCC
5.3.1, Jemalloc, Qt 5.10.1, CWF Commit 174, Java
1.8.0, Tomcat 8.0.51. All Java code was optimized
for the Tomcat server. On the C++ compiler, the opti-
mizer flag was set to -03, which is the highest value.
The client was a Laptop Samsung RV 420 running
Deepin 15.4.1 (64 bits), SSD Kingston 120 GB, 8
GB RAM and the Intel (R) Celeron (R) CPU B800
1.50 GHz processor. On the client side, the Weighttp
Commit 29 was used to perform the load testing. The
router to connect each computer on the network is an
Archer C7 Router AC 1750 - TP-LINK, and all com-
puters used wire connections. Log functions were dis-
abled in both the Java and the CWF server. Before
each test, both the server and the client were restarted

83



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

Table 3: Results of the comparison considering the calculation of the Factorial (10).

Test 1 Test 2 Test 3

CWF Java 8 CWF Java 8 CWF Java 8
RAM (start) (KB) 792,00 105.779,20 796,00 105.062,40 792,00 104.038,40
RAM (end) (KB) 1.228,80 154.828,80 1.228,80 133.632,00 1.228,80 147.968,00
Processor % (start) 0,00 0,00 0,00 33,00 0,00 28,00
Processor % (end) 17,00 94,00 17,00 91,00 17,00 81,00
Response time (ms) 628,00 3.019,00 667,00 3.011,00 641,00 3.865,00

to make sure all tests had the same start point. ments.

Table 3 shows the results obtained for the calcula-
tion of the factorial of the number 10. Table 4 shows
the results of the algorithm that checks whether num-
ber 999 is a prime number. Table 5 shows the results
of the test that consisted in finding the 20th number
of the Fibonacci sequence. Notice that in all tests,
the memory consumption at the CWF side was sig-
nificantly lower than at the Java side. CWF also used
much less processor than the Java application. In all
cases, the response time of CWF applications was
much faster.

In the last test, each application had to load a HML
page with 10 thousand chars. Table 6 shows the re-
sults of this test. Although the memory consump-
tion and the memory usage of the CWF application
have been significantly lower than the Java applica-
tion, there was no significant difference between the
response time, with a slightly advantage of the CWF
application.

It is very clear that the web application developed
with the CWF uses less memory and processor than
the Java application. This resulted was expected since
a simple web server is run for each CWF application
while Java applications run in heavy web servers such
as Tomcat, for example. CWF is also faster to attend
the requests. We believe it is important to show that
the CWF applications consumes less resource than
Java applications once it can lead to energy saving.
Some studies pointed out that memory usage may
represent more than 30 or 40% of the energy used
by a server (Barroso and Hoelzle, 2009; Appuswamy
et al., 2015). Nevertheless, further evaluation is re-
quired to know whether those results scale for bigger
and more complex applications.

4.3 Real World Scenarios

Two real world applications were developed using the
CWF. One application was developed by the creators
of the CWF to deliver a solution to a private company.
The other application was developed by an European
organization. The name of both organizations and
details on it are redacted due to non-disclose agree-

84

The first usage is a REST service implemented in
CWF that integrates the fiscal documents of 110 sub-
sidiaries of a private company. This services has been
running in this organization for at least 10 months
now and it is performing well. The second usage was
made by an European enterprise that develops soft-
ware and prototypes new ideas. This organization
used the CWF to develop four applications: two sim-
ple dynamic web pages; one application designed to
observe, record, analyze and create an activity chron-
icle; and one application to test neural networks. De-
tails on such scenarios cannot be presented in details
due to to non-disclose agreements.

The fact that the CWF has been used to create web
applications that are supporting real business opera-
tions is an evidence of its applicability in real world
scenarios. Although such web applications have been
running only for a few months, they have been deliv-
ering what was expected by their stakeholders.

4.4 GitHub Developers Community

The CWF is publicly available on GitHub’, where de-
velopers can give a star to the projects they appreci-
ate and make a copy (fork) of those they want to freely
modify to accommodate their own requirements with-
out affecting the original project. GiHub users can
also submit pull requests to fix issues they found or
to incorporate new features to the repository. In such
cases, all modifications need to be verified and ap-
proved before the new feature or fix can be integrated
into the original code.

So far, the CWF repository has received 344 stars
and has been forked 91 times®. In addition, seven pull
requests have been submitted by four distinct users.
Even though the interest of the developers community
in this framework is not expressive as for very pop-
ular web frameworks such as Django®(55600 stars,
23900 forks) or Flask!%(53900 stars, 14100 forks) for

7https://github.com/HerikLyma/CPPWebFramework
8Data collected on February 16th of 2021.
https://github.com/django/django
10https://github.com/pallets/flask



C++ Web Framework: A Web Framework for Web Development using C++ and Qt

Table 4: Results of the comparison considering the calculation whether 997 is a prime number.

Test 1 Test 2 Test 3
CWF Java 8 CWF Java 8 CWF Java 8
RAM start (KB) 792,00 103.116,80 792,00 103.731,20 792,00 109.772,80
RAM end (KB) 1.433,60 141.004,80 1.126,40 158.105,60 1.126,40 150.528,00
Processor % (start) 0,00 0,00 0,00 0,00 0,00 0,00
Processor % (end) 14,00 56,00 17,00 75,00 17,00 59,00
Response time (ms) 649,00 3.178,00 671,00 2.979,00 667,00 2.899,00

Table 5: Results of the test considering the calculation of Fibonacci (20).

Test 1 Test 2 Test 3
CWF Java 8 CWF Java 8 CWF Java 8
RAM start (KB) 796,00 103.833,60 792,00 107.008,00 792,00 103.833,60
RAM end (KB) 1.433,60 137.420,80 1.228,80 138.342,40 1.228,80 131.276,80
Processor % (start) 0,00 52,00 0,00 52,00 0,00 39,00
Processor % (end) 19,00 70,00 20,00 62,00 20,00 67,00
Response time (ms) 741,00 3.500,00 739,00 3.379,00 715,00 3.163,00

Table 6: Results considering the loading of dynamic web pages with 10000 chars.

Test 1 Test 2 Test 3
CWF Java 8 CWF Java 8 CWF Java 8
RAM start (KB) 792,00 104.345,60 792,00 102.502,40 792,00 104.550,40
RAM end (KB) 884,00 292.044,80 892,00 283.955,20 884,00 345.292,80
Processor % (start) 0,00 13,00 0,00 34,00 0,00 28,00
Processor % (end) 10,00 51,00 11,00 58,00 10,00 44,00
Response time (ms) 9.157,00 9.400,00 9.199,00 9.482,00 9.223,00 9.503,00

Python, we believe that the number of stars and forks
of the CWF repository may be an evidence of the
growing interest of developers in creating web appli-
cations using the C++ language.

S RELATED WORK

We have found in the literature initiatives to reduce
the complexity of developing web applications using
heavy frameworks available in the market. Many of
them are focused on devising new abstract layers in
which non expert web developers can easily develop
and integrate specific applications, but using currently
available web frameworks (Sinha et al., 2015; Swain
et al., 2016).

Even though C++ is a popular and well estab-
lished language that has high performance and low
resource consumption (Game, 2021), few approaches
have been proposed so far to support web develop-
ment using the C++ language (Obiltschnig, 2005;
Frings, 2010; Dumon and Deforche, 2008). Most of
such approaches entangle business, control and pre-
sentation layer to make web development simple, but,
over time, the application tend to become less adapt-

able, maintainable and reusable (Srai et al., 2017).

Particularly, one common approach is to run CGI
scripts in the Apache Server to generate web pages
dynamically. The drawback of such an approach is
that the HTML pages are generated within the C++
files, which is not a good practice since the presen-
tation and business layer will be entangled making
development, maintenance and testing difficult. The
same limitation afflicts the CSP (C++ Server Page)
and POCO (Obiltschnig, 2005) approaches, once they
propose to include C++ programming into the presen-
tation layer. In WebToolKit (Dumon and Deforche,
2008), everything is coded by the components of the
framework, which in turn generate the HTML files at
each request. Likewise, the presentation and business
layers are entangled.

The QtWebApp (Frings, 2010) is the web frame-
work that is most similar to the CWF. The main dif-
ference between the QtWebAPP and the CWF is the
CSTL proposed along with the CWF. The QtWebApp
also uses tags to develop dynamic web pages, but
they are very limited. They cannot handle iterations,
collections of objects and conditional sentences prop-
erly. Moreover, each tag must be previously config-
ured within a C++ file to define the behavior of the

85



ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

tag, which makes the implementation and the mainte-
nance more difficult than when a specification such as
the CSTL is available.

In addition to solutions based on C++, several
lightweight frameworks have been developed over the
years (Rogowski, 2017). For instances, Vapor and
Kitura (Patel, 2018) (Swift), Ruby on Rails, Django
and Flask (Python) are frameworks that provide de-
velopers with a foundation for the development of
web applications, APIs, or cloud platforms projects.
Such frameworks are also intended to reduce the
complexity of web development by proposing simple
structures that allows developers to focus on writing
the application rather than on configuration files, li-
braries, and so forth. Indeed, these frameworks lever-
age good practices of web development by promot-
ing suitable architectural styles and patterns that pro-
mote the separation of concerns that render appli-
cations more maintainable, such as the Model View
Controller (MVC).

As presented in this paper, the CWF is also in-
tended to make web development easier by allow-
ing developers to focus on coding the business rules
and by extending base classes provided by the web
framework. We did not compare the CWF with those
lightweight web frameworks because it was out of
the scope of our preliminary investigation and be-
cause they use languages interpreted such as Ruby
and Python. While these languages are flexible and
easy to use, they can be up to 300 times slower than
C++ (Game, 2021).

6 CONCLUSIONS

This paper presented a new web framework called
CWF, whose main purpose is to support the devel-
opment of web applications that combine the high
performance of the C++ language and the flexibil-
ity of the Qt framework. This framework requires
only one configuration file, which makes it easier to
create web applications. It also provides a tag li-
brary called CSTL (C++ Server Pages Standard Tag
Library), which generates dynamic web pages and
keeps the presentation and the business layer sepa-
rated.

Preliminary evaluation shows that, at least when
executing simple applications, the CWF outperforms
Java applications in the Tomcat web server. The user
evaluation gives evidence that the CWF is easy to use
and understand since many subjects were able to cre-
ate simple and complex web applications in C++ us-
ing the CWF. The CWF was also used to develop two
real world applications that has been running to sup-

86

port business activities for several months.

We believe that the CWF is an appealing web
framework for those who want to develop applica-
tions with simplicity and high performance, espe-
cially C++ developers. Nevertheless, the power of the
C++ language combined with the richness of the Qt
framework is promising to provide developers with
an alternative to develop robust complex web appli-
cations, and yet with high performance. The CWF
might also be very useful for researchers that write
C++ code and eventually need to expose operations
online but cannot afford investing time to learn new
languages or web frameworks.

In future work, we intend to further evaluate the
CWF by building larger and more complex applica-
tions and by conducting further evaluation regarding
the CWF usability for both specialized and novel web
application developers. Furthermore, we aim at inves-
tigating the advantages and the drawbacks of evolving
web applications that was built based on the CWF. In
addition, we aim at producing a detailed documen-
tation to provide web developers with guidance on
the development of web applications since it is key
factor for the usability of the framework (Constanzo
and Casas, 2019). Finally, we intend to compare the
CWF with other lightweight frameworks, such as Va-
por, Django, Ruby Rails and Flask.

REFERENCES

Appuswamy, R., Olma, M., and Ailamaki, A. (2015). Scal-
ing the memory power wall with dram-aware data
management. In Proceedings of the 1lth Interna-
tional Workshop on Data Management on New Hard-
ware, DaMoN’15, New York, NY, USA. Association
for Computing Machinery.

Barroso, L. and Hoelzle, U. (2009). The datacenter as a
computer: An introduction to the design of warehous-
escale. Morgan Claypool.

Buyya, R., Yeo, C., Venugopal, S., Broberg, J., and Brandic,
1. (2009). Cloud computing and emerging it platforms:
Vision, hype, and reality for delivering computing as
the 5Sth utility. Future Generation Computer Systems,
25:599-616.

Charland, A. and Leroux., B. (2011). Mobile application
development: Web vs. native. Future Generation
Computer Systems, 9.

Chaubey, R. and Suresh, J. K. (2001). Integration vs. de-
velopment: an engineering approach to building web
applications. IEEE Multimidia, pages 171-181.

Constanzo, M. A. and Casas, S. (2016). Usability evalua-
tion of web support frameworks. In 2016 XLII Latin
American Computing Conference (CLEI), pages 1-0.

Constanzo, M. A. and Casas, S. (2019). Problem identifica-
tion of usability of web frameworks. In 20719 38th In-



C++ Web Framework: A Web Framework for Web Development using C++ and Qt

ternational Conference of the Chilean Computer Sci-
ence Society (SCCC), pages 1-8.

del Pilar Salas-Zarate, M., Alor-Hernandez, G., Valencia-
Garcia, R., Rodriguez-Mazahua, L., Rodriguez-
Gonzalez, A., and Cuadrado, J. L. L. (2015). Analyz-
ing best practices on web development frameworks:
The lift approach. Science of Computer Programming,
102:1-19.

Dumon, W. and Deforche, K. (2008). Wt: A web toolKkit.
Dr. Dobb’s Journal, 33:55-59.

Freitas, F. and Maia, P. H. M. (2016). A naked objects based
framework for developing android business applica-
tions. In Proceedings of the 18th International Con-
ference on Enterprise Information Systems - Volume
1: ICEIS,, pages 348-358. INSTICC, SciTePress.

Frings, S. (2010). Qtwebapp http webserver in c++.

Game, T. C. L. B. (2021). The computer language bench-
marks game.

Hundt, R. (2011). Loop recognition in c++/java/go/scala.
Technical report, Google, 1600 Amphitheatre Park-
way Mountain View, CA, 94043.

Millares, G. (2015). Top 5 programming languages used in
web development.

Obiltschnig, G. (2005). Poco c++ libraries.

Patel, A. (2018). Hands-On Server-Side Web Development
with Swift. Packt Publishing.

Raemaekers, S., van Deursen, A., and Visser, J. (2014). Se-
mantic versioning versus breaking changes: A study
of the maven repository. IEEE International Working
Conference on Source Code Analysis and Manipula-
tion.

Ramana, U. V. and Prabhakar, T. V. (2005). Some ex-
periments with the performance of lamp architecture.
IEEE, pages 916-920.

Rogowski, J. (2017). The comparison of the web applica-
tion development frameworks. ITCM.

Salnikov-Tarnovski, N. (2017). Most popular java applica-
tion servers (2017 edition).

Shklar, L. and Rosen, R. (2004). Web Application Architec-
ture Principles, protocols and practices. Wiley.
Sinha, N., Karim, R., and Gupta, M. (2015). Simplifying
web programming. In Proceedings of the Sth India
Software Engineering Conference, ISEC 2015, Ban-

galore, India, February 18-20, 2015, pages 80-89.

Srai, A., Guerouate, F., Berbiche, N., and Lahsini, H.
(2017).  Applying mda approach for spring mvc
framework. International Journal of Applied Engi-
neering Research, 12:4372-4381.

Swain, N. R., Christensen, S. D., Snow, A. D., Dolder,
H., Espinoza-Déavalos, G., Goharian, E., Jones, N. L.,
Nelson, E. J., Ames, D. P., and Burian, S. J. (2016). A
new open source platform for lowering the barrier for
environmental web app development. Environmental
Modelling & Software, 85(1):11-26.

TechEmpower (2018).  Techempower web framework
benchmarks.

TIOBE (2021). The tiobe programming community index
for february 2021.

Tsai, W., Bai, X., and Huang, Y. (2014). Software-as-a-
service (saas): Perspectives and challenges. Science
China Information Sciences, 57(5):1-15.

Tuan, A. D., Comyn-Wattiau, L., and Cherfi, S. S.-S. (2016).
Structuring guidelines for web application design-
ers. In Proceedings of the 18th International Confer-
ence on Enterprise Information Systems - Volume 1:
ICEIS,, pages 327-335. INSTICC, SciTePress.

Vuorimaa, P., Laine, M., Litvinova, E., and Shestakov, D.
(2016). Leveraging declarative languages in web ap-
plication development. Springer, 19.

87



