
Scripted Step-based Visualizations: A Pilot Study

Aleksi Lukkarinen a, Lassi Haaranen b and Lauri Malmi c

Aalto University, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland

Keywords: Visualization, Client, Server, Messaging.

Abstract: Software visualization has numerous educational applications that focus on illustrating code, structure, be-
havior, and/or evolution of software. However, there are few available solutions that (1) illustrate arbitrary
high-level concepts according to the scripts specified by the instructor and (2) can be easily integrated into
various existing learning materials. To evaluate the feasibility of such a tool, we developed a proof-of-concept
system that can be used as a part of many web-based course materials and that is supported by Acos content
server. As a pilot study, we introduced the tool in an introductory web development course to visualize mes-
saging between clients and servers. We analyzed the usage log data and student questionnaire data and the
results were mostly positive, which prompts for further research on the subject.

1 INTRODUCTION

Software visualization is a broad research area that
aims to develop useful visual presentations of, for in-
stance, program code, structure, behavior, and evo-
lution of computer software. Many applications of
software visualization are targeted to professional
software developers and system administrators who
seek to investigate and visualize both statistics of
large-scale software projects and relationships be-
tween their parts. On the other hand, educational soft-
ware visualization has been actively researched in the
fields of program visualization and algorithm visu-
alization, where the applications are mainly targeted
for introductory courses in programming, data struc-
tures, and algorithms. These are highly important tar-
get areas; however, computer science also deals with
higher-level abstract concepts presented with many
other types of visualizations, such as various process
diagrams and Unified Modeling Language diagrams.
Such diagrams are often static, and they are typically
created and manipulated with generic drawing tools
or tools that support certain specific diagram types.
In this paper, we explore this more abstract domain
for dynamic computer science visualizations.

We formulate our research goal as follows: We
seek to develop a free and open-source software plat-
form that empowers teachers to create visualizations

a https://orcid.org/0000-0002-3827-6243
b https://orcid.org/0000-0002-6500-6425
c https://orcid.org/0000-0003-1064-796X

of arbitrary high-level concepts in computing educa-
tion, such that
• have interactive elements based on

teacher-made scripts
• are easily integrable into web pages and

learning management systems
• enable logging of students’ activities
• are shareable between colleagues
• are versionable using regular

version control systems
• can be created with a relatively low

learning curve, and
• can be augmented and tailored to

specific use cases.

According to the above goal, we developed a pi-
lot application for a web development course: An
interactive widget that visualizes messaging and the
related processes between an Internet browser and
a web server. In this paper, we present our visualiza-
tion platform and discuss the teacher’s point of view
in using it—the advantages that the platform offers for
creating novel interactive learning content. To sup-
port our proof-of-concept, we also present the results
of a small pilot evaluation study, where we posed the
following research questions:

RQ 1. How do students use the visualizations?

RQ 2. How do students experience
the visualizations?

The rest of this paper is structured as follows: In
Section 2, we discuss work related to our visualization

240
Lukkarinen, A., Haaranen, L. and Malmi, L.
Scripted Step-based Visualizations: A Pilot Study.
DOI: 10.5220/0010454502400247
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 2, pages 240-247
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



platform. We continue by discussing the platform and
its usage in Section 3 as well as presenting the eval-
uation study and answering our research questions in
Section 4. Finally, we conclude our work and present
ideas for future work in Section 5.

2 RELATED WORK

In this section, we discuss related research and multi-
ple existing software tools and contrast them with the
set of requirements given in the Introduction.

Computer science education has a long tradition
of using visualizations to clarify concepts and ideas
for students: A well-known example of early edu-
cational applications of software visualization—turtle
graphics and physical robots drawing with pens Pa-
pert (1980)—takes us back to the end of the 1960s.

Typical educational applications of software visu-
alization include illustrating data structures as well as
executing individual algorithms or entire programs,
for instance, line-by-line, by the logical step, or as
a whole (e.g., Shaffer et al., 2010; Sorva et al., 2013).
Most of these solutions have been developed espe-
cially as specialized visualizations, but often other ap-
proaches are used for software visualization purposes,
as well. Such approaches include (1) various static
diagrams (e.g., flow, entity-relationship, and those of
Unified Modeling Language), (2) charts (bar, line,
pie, etc.) for statistical information of the software,
(3) graphs for relationships, as well as (4) different
forms of animations with varying options for interact-
ing with the visualization. Three-dimensional models
and virtual reality have been researched, as well (e.g.,
Averbukh et al., 2019; Milne and Rowe, 2004).
General-purpose Visualizations. Whereas the
above software usually targets a single specific use
case, our visualization platform is not tailored for
any specific domain. Rather, it is a general-level
solution for creating visualizations for the Internet
browser. Obviously, many other more or less similar
approaches are available. Probably the most primitive
option would be to code a visualization as a series
of Hypertext Markup Language (HTML) pages and
related resources. Graphics could be static images,
animated image files,1 and video files. Furthermore,
JavaScript libraries2 can be used to create animation
and dynamic visualizations directly to web pages. Vi-

1 Examples: Graphics Interchange Format (GIF), Ani-
mated Portable Network Graphics (APNG), WEBP, and Free
Lossless Image Format (FLIF).

2 Examples: General-purpose libraries, such as jQuery
and Anime.js, as well as more specialized ones, such as
Chart.js and D3.js.

sualizations as animated images and videos can be
created and converted to suitable formats with regu-
lar graphics applications and video editors.

Developing visualizations by coding the necessary
infrastructure from scratch or by tapping into exist-
ing libraries, however, requires significant effort: One
must learn the necessary technologies and then apply
them, which takes time, might be tedious, or might
not even be worth the effort. An alternative option
is to exploit technologies that have been designed
for authoring learning material. Unfortunately, sev-
eral solutions, which supported Internet browsers and
were popular in the past, have become obsolete3 dur-
ing the recent years, partly due to emerging newer
technologies, such as HTML5. Still, many other op-
tions are available.

One possibility for delivering visualizations that
have low interaction would be to create slideshows us-
ing conventional presentation graphics applications,
such as Google Slides, LibreOffice Impress, Microsoft
PowerPoint, and Apple Keynote. The native file for-
mats of these applications—or, for instance, Portable
Document Format conversions of the slide sets—can
be linked on web pages to be downloaded and viewed
outside the Internet browser. Furthermore, Power-
Point for Microsoft Windows allows exporting pre-
sentations to both video files and animated Graphics
Interchange Format files, that can be made available
in a similar fashion.

Presentations can also be embedded to web pages.
For instance, the cloud version of PowerPoint enables
users to generate HTML chunks for embedding pre-
sentations to web pages in IFRAME elements. In ad-
dition, lightweight solutions, such as WebSlides, ex-
ist to aid creating slideshows by manual coding, and
slide sets can be shared via (social) sharing platforms,
such as Scribd, SlideShare, SlideServe, and Speaker
Deck. For embedding videos, (social) video sharing
platforms, such as Google YouTube and Vimeo, might
also be helpful.

The above kinds of presentation graphics appli-
cations are available for most educators, but it might
be impossible or impractical to customize the results,
for instance, to implement a detailed usage logging
facility for collecting learning analytics about stu-
dents’ usage of the generated dynamic learning re-
sources. In addition, many of these tools are com-

3 Examples of obsolete authoring technologies: Adobe
(FutureWave/Macromedia) Flash (Adobe Inc., 2021),
Adobe (Macromedia) Shockwave (Adobe Inc., 2019), Mi-
crosoft ActiveX (in Internet Explorer 11, e.g., Microsoft
Corporation, 2021a), Microsoft Silverlight (Microsoft Cor-
poration, 2021b), Oracle (Sun) Java Applets (Oracle Corpo-
ration, 2020), and SumTotal Systems (Asymetrix) Toolbook
(e.g., SumTotal Systems, LLC, 2021).

Scripted Step-based Visualizations: A Pilot Study

241



mercial whereas, in some contexts, using commercial
solutions can be out of the question due to reasons
such as principles, legislation, or a lack of funding.

A more advanced option for non-specialized vi-
sualization tools is using various eLearning author-
ing solutions.4 They can enable creating non-linear
course materials with multiple exercise types to be
transferred to various learning management systems.
The results often resemble slideshows or videos but
are more interactive than conventional slide decks.
However, also these solutions carry the above com-
plications, including the time and effort necessary to
learn the tool itself. In addition, they can be more ex-
pensive than their simpler alternatives, which is why
free and open-source options might be preferred.
Protocol Visualizations. Whereas our visualization
platform is not tailored for any subject area, we pi-
loted it in a case study concerned with visualizing the
concept of communication between web browsers and
web servers. Tools that visualize protocols at a simi-
lar abstraction level than the visualizations in our pi-
lot study include NetPrIDE (Crescenzi et al., 2005)
for network protocols and GRASP (Schweitzer et al.,
2006; Schweitzer and Brown, 2007) for security pro-
tocols. In addition, there are numerous professional-
level network analysis and visualization tools (e.g.,
Awodele et al., 2015; Fuentes and Kar, 2005; Hall
et al., 2003) that, unfortunately, do not lend them-
selves well for illustrating high-level concepts for
novices due to their complexity as well as different
design goals and features.

Crescenzi and Innocenti (2002) have suggested
a taxonomy specifically focused on tools for visual-
izing network protocols. However, as our need for vi-
sualizations is of more general nature instead of spe-
cializing (and being limited), for instance, to network
protocol visualization, considering it using a special-
ized taxonomy, such as the above one, as well as com-
paring the tool itself to other network protocol visual-
ization tools, is of little use.
Scriptable Visualizations. For our visualization plat-
form, teachers create the visualizations as textual
scripts (more of this in the next section) to fit their
own teaching materials. Hundhausen and Douglas
(2000) provide a differing example, in which, to in-
crease the level of student engagement, students cre-
ate scripts for low-fidelity visualizations themselves
using the authors’ ALVIS system and SALSA lan-
guage. An obvious third possibility would be the
scripts to be created by some third party, such as an
Internet-based community or an external supplier of
the visualization system.

4 Examples: Adobe Captivate, Articulate Storyline 360,
Lectora, and iSpring Suite.

Another example of scriptability could be the pre-
sentation file formats based on Extensible Markup
Language (XML). Even though the .pptx files of
PowerPoint are binary packages, they contain XML
files that can be generated manually or programmati-
cally to realize visualizations. However, binary pack-
ages, such as PowerPoint’s native files, are not ideal
to be stored into version control systems. Moreover, it
can be tedious to learn the details of PresentationML
(Microsoft Corporation, 2017) as well as to produce
it and the binary packages manually. Finally, this spe-
cific format obviously enables the creation of Power-
Point presentations only.
Learning Objects. The visualizations realized by
using our platform can be thought as learning ob-
jects (LO). Standards and other specifications exist for
many aspects related to LOs. For instance, LOs can
be described based on the Learning Object Metadata
standard (IEEE Computer Society, 2020), and com-
munication between clients and servers could exploit
specifications such as Shareable Content Object Ref-
erence Model (Advanced Distributed Learning Initia-
tive, 2009) and Learning Tools Interoperability (IMS
Global Learning Consortium, 2021). However, our
platform is intended to exist inside learning objects
as a part that enables creating them, and such higher-
level specifications are not of primary relevance here.

3 THE PLATFORM

Our visualization platform, currently dubbed as
CSMV for Client-Server Messaging Visualizer, is
based on scripts that 1) describe the content of the
visualization exactly as it will be presented and 2) are
used to configure the platform. As mentioned earlier,
for our platform, the scripts are tailored by the instruc-
tor to fit their own teaching materials.

A second characteristic of CSMV is that the visu-
alizations are divided into static steps, between which
the student can move one at a time. This allows them
to explore the animation on their own pace and back-
track, if needed, to understand some steps better. Con-
tinuous animation from the beginning to the end with-
out interaction between the visualization and the stu-
dent was not considered important in this phase and is
not currently supported.

As the idea of CSMV is not to facilitate visualiz-
ing “data” in the sense of measurements from simu-
lations or the real world, applying a data-based ref-
erence model (e.g., Aaltonen and Lehikoinen, 2005;
Brodlie and Mohd Noor, 2007; Chi, 2000; Maletic
et al., 2002; Schulz et al., 2016) is not beneficial in
general. However, to position CSMV with other visu-

CSEDU 2021 - 13th International Conference on Computer Supported Education

242



Can I please GET a resource?
GET / HTTP/1.1
Host: some.server.com
...

Simplified GET request
Please use the buttons below to browse through the steps of communication.

Beginning Back Forward

Browser Web Server

Step 2/4

Figure 1: An example of a visualization step.

alization solutions, we can consider it, for instance, in
terms of the model of Maletic et al. (2002). From it,
we only need the two final phases. The instructor pre-
pares the Visual Structures (configured in the script)
and the user transforms the Views by moving between
the steps of the visualization.

We implemented CSMV to work in a modern In-
ternet browser.5 Figure 1 presents the user interface
created by the visualization platform while a step of
a visualization is being displayed. One web page can
have several of them, each independent with their own
visualization. One can add the platform to a web page
by (1) including the necessary JavaScript and Cascad-
ing Style Sheet files as well as (2) adding an anno-
tated DIV element for each visualization on the page
as placeholders for their user interfaces.

The essential high-level architecture of CSMV is
presented in Figure 2 below. The User Interface (UI)
consists of the Visualization Content and the related
controls, the latter of which are buttons for browsing
the visualization. The UI is backed by JavaScript code
that includes a Model—a state machine that contains,
among other things, instructions for visualizing indi-
vidual steps (S1,S2, . . .Sn) of the visualization and up-
dates the UI based on user’s input. When a web page
that uses CSMV is loaded into a web browser, CSMV
reads the provided configuration, finds the DIV ele-
ments that correspond the configured visualizations,
and initializes both the UI and the Model for each vi-
sualization.

From the instructor’s point of view, creating visu-
alizations is relatively straightforward since they are
defined as simple JavaScript files that set a value of
one variable (see Listing 1 below). This value is a list
of setting blocks—one for each visualization on an
HTML page. For each visualization, there are essen-
tially three types of information: general settings, ac-
tors (such as text, code, and images) to be used in the
visualization, and steps that contain instructions for

5 The development language is EcmaScript 6 that is tran-
spiled into EcmaScript 5 by using Babel. Of third-party
run-time libraries, CSMV uses jQuery. The build process is
automatized with Gulp.

User Interface

U
se
r's

C
om

m
an
ds

Update Requests UI Updates

In
iti
al
iz
at
io
n

D
at
a

Model

S1 S2 Sn

Controls
Visualization
Content

Figure 2: The essential architecture of CSMV.

using those actors.
After initial planning, the instructor defines both

the actors and the steps that form the visualization.
For actors, there are a few configurable presets, such
as the Browser and Web Server boxes visible in Fig-
ure 1 above. In addition, actors containing text and
graphics can be defined as chunks of unrestricted
HTML code. The visualization sequence is then com-
posed step-by-step by applying available operations
to the actor definitions. At the moment, three actor
operations are available: hiding and showing them as
well as setting their positions in terms of absolute co-
ordinates. In the lack of a visualization editor, all of
this is manual work. One can ease it a little by using
the provided debugging settings for displaying bor-
ders of actors and ignoring visibility.

document.CSMesVisSetupData = [
{

name: "",
title: "",
description: "",

debug: {},
// Control size , buttons , etc.:
environment: {},
// Actors in the visualization:
actors: [],
// Instructions for the actors:
steps: [],

},
{ · · · }, // next visualization
...

];

Listing 1: A configuration file stub of CSMV.

Due to the multiple learning protocols available
in Acos content server6 (Sirkiä and Haaranen, 2017),
embedding the visualizations to the learning material
itself is typically straightforward. Whether using LTI
or some of the more university-specific protocols, the
visualizations can be reused in different courses or re-
peated within a single course. Finally, because the
visualization objects and steps are JavaScript entities,

6 See: https://github.com/acos-server/acos-server

Scripted Step-based Visualizations: A Pilot Study

243



it is possible to implement customized functionality.
For example, clicking a particular object could affect
the visualization in some way, such as by skipping
certain steps or by launching a questionnaire.

4 THE PILOT STUDY

To evaluate the feasibility of the scripted step-based
visualizations and the visualization platform CSMV
(Section 3), we piloted them during Spring 2020 on
an introductory course in web application develop-
ment. The course is an open online course targeted
mainly for adult learners interested in web develop-
ment. Experience in programming is not required
and, in general, the course is built with life-long learn-
ing in mind.7 127 students enrolled on this course
implementation, including high-school students, pro-
fessionals with jobs related to web development, and
people who intend to change career.

Learning goals of the above course include the
following: (1) Basic principles of web pages using
Hyper-Text Markup Language and Cascading Style
Sheets. (2) Event-driven programming in Internet
browsers using JavaScript. (3) Client-server model
in web development with Hyper-Text Transfer Proto-
col (HTTP) as well as Asynchronous JavaScript and
XML (AJAX). (4) Simple server-side applications us-
ing NodeJS.
Study Arrangements. The course had eight rounds
of content and exercises, of which two contained our
visualizations. At the beginning of the reading ma-
terial for the fifth round was a visualization called
Simple Get, and at the end of the material there was
a more elaborated Detailed Get visualization. At the
beginning of round seven, the Simple Get was pre-
sented again as a recapitulation, after which the third
visualization—Simple AJAX—was shown.

Simple Get visualization had four steps and illus-
trated a request–response pair when a client requests
the default web page from a web server using HTTP
(Figure 1). Detailed Get had essentially the same con-
tent but also included an additional step to explain the
processing of the request on the web server. Simple
AJAX had eight steps and continued from Simple Get
by visualizing an AJAX call triggered by a pressed
button on the downloaded web page.

We used Acos content server (Sirkiä and Haara-
nen, 2017) to host the client-side files and store the
usage logs. The logging facility recorded the events
generated by CSMV, so that we were able to examine

7 For the regular students of our university, we provide
a more extensive course in web application development.

the presses of the movement buttons in the user in-
terface of CSMV. From the logged sessions, we had
to filter out the valid ones—those that were inside
the official availability times of the rounds,8 were
not empty, and contained events for movement but-
ton presses in addition to, for instance, other clicks as
well as window focuses and blurs.
Usage of the Visualizations. Our first research ques-
tion concerned the usage of the visualizations we in-
corporated to the above target course, and our results
are based on analyzing the usage logs of the visualiza-
tions. This is useful, for instance, to discover whether
visualizations are viewed in full and if students review
the material later, as well as to assess the attentive-
ness of the students, as in an earlier study of Sirkiä
and Sorva (2015).

To start with, for Simple Get we found 59 valid
sessions. The shortest ones were approximately 5 sec-
onds and contained only one button press. For the
second and third step, the step-specific average dura-
tion was about seven seconds. In 34 sessions (58 %),
the visualization was watched from the beginning to
the end exactly once, and in 5 sessions (8 %) exactly
twice. Two sessions (3 %) contained essentially three
passes over the visualization, and the other sessions
were some variations of going backwards and for-
wards. The realized step transition sequences varied
between 2 and 16 steps in length. In eleven sessions
(19 %), the student went back from the third step after
they first arrived in it.

Next, Detailed Get was associated with 69 valid
sessions starting from 10 seconds. The step-specific
average length of the three middle steps was about
twelve seconds. In 55 sessions (80 %), the visu-
alization was watched once, and the other sessions
contained variations of going back and forth. The
length of the step transition sequences varied from
4 to 13 steps.

Finally, 65 valid sessions were recorded for Sim-
ple AJAX—the longest of the visualizations with
8 steps. Here the session durations increased from
approximately 8 seconds upwards. The average step-
specific duration of the six middle steps was slightly
over three seconds. 32 sessions (49 %) represented
watching the visualization exactly once and 2 sessions
exactly twice. Interestingly, in 18 sessions (28 %) the
user did not proceed beyond the fifth step, which was
the first of the additional content compared to Simple
Get. The rest of the sequences varied in step order.

8 The rounds had deadlines, after which the content was
still browsable but no exercise points were given anymore.
Thus, most students viewed the visualization during the
time the round was officially active.

CSEDU 2021 - 13th International Conference on Computer Supported Education

244



The above results demonstrate some simple possi-
bilities for learning analytics that the platform will en-
able. However, this was a pilot study to test our frame-
work as a proof-of-concept, and the available data
logging had still restrictions for the analysis. First
of them was that user identifiers were not recorded,
which made us unable to relate sessions to each in-
dividual user and analyze the behavior of individual
users over session boundaries. These limitations are
currently being resolved and more complete logging
will be carried out during the next spring implemen-
tation of the course.

Another limitation was the lack of specifying the
beginning and ending states in the visualizations. The
first step in our visualizations was automatically vis-
ible after the web page was loaded (i.e., the user did
not have to indicate the moment they started to use the
visualization), so we were unable to measure the ac-
tual time used for those steps. Similarly, as the last
steps were the final steps of the visualizations, we
were not able to identify the moments the users ceased
using the visualizations. Consequently, the total time
used for the visualizations could not be reliably mea-
sured. Furthermore, while we were able to measure
the duration of the middle steps, we obviously can-
not know what the user has really been thinking and
doing during that time (they might not have been re-
ally studying at all). In our analysis, we limited the
session duration to 700 seconds (11 2

3 min). For each
visualization, several sessions were longer than that.
Student Feedback. In our second research ques-
tion, we were interested in what the students think
about the visualizations, and we answer it based on
an end-of-course survey. Out of the 127 enrolled
students, 43 (34 %) both gave a research consent
and answered the survey question regarding CSMV.
We gathered feedback with a seven-point Likert scale
(from strongly disagree to strongly agree, with a neu-
tral option) with the statement “I found the client-
server visualizations useful for my learning.” 35 stu-
dents agreed with the presented statement on some
level: 25 agreed or strongly agreed and 10 students
somewhat agreed. Seven students chose the neutral
option, and only one disagreed with the statement
with somewhat disagree option.

We also solicited open feedback regarding CSMV
with “Is there something else you’d like to say about
the client-server visualizations?” To this question,
we received 12 answers. One of these we categorized
as negative (“I struggled with these a bit”), seven as
neutral (e.g., “Concept is good but I didn’t benefit
from it that much”), and four as positive (e.g., “These
were helpful for more abstract topics”).

5 DISCUSSION

In this paper, we have described a visualization plat-
form, CSMV, that was developed according to the
research goal that we presented in the Introduction
earlier. As a general-purpose platform, it allows the
teacher to visualize a wide variety of subjects (e.g.,
network protocols). The teachers create visualizations
as textual scripts, after which they can easily exploit
them in learning management systems that allow the
usage of web pages that integrate custom JavaScript
and Cascading Style Sheets. For learning analytics,
CSMV supports logging of students’ activities, and is
also open-source9—free to be used and customized.

To evaluate CSMV, we also described a pilot
study in the context of visualizing messaging between
clients and servers. Our results from the study show
that from a technical perspective, CSMV functions as
expected. A minor shortcoming concerned logging
the durations of the first and the last steps—this is
fixed by simply adding a “starting” step and a “com-
pleted” step.
Pilot Study. Our research questions were concerned
with both how the visualizations in our pilot were
used and what the students thought about them. Re-
garding the first question, the analysis of the log data
confirms that the course participants actually used the
visualizations. Moreover, the average step viewing
time strongly suggests that they considered the steps
separately, reading the available content, instead of
just clicking through all steps quickly. Each interme-
diate step included a short text to read, and some steps
included a brief JavaScript code snippet.

Based on this pilot study, we found confirma-
tion that the visualizations are explored by students.
Furthermore, our end-of-course survey related to the
second question provided mostly positive feedback,
even if the visualization content was only used in two
rounds during the course.

What is particularly encouraging is that some of
the students not only viewed the steps once in a se-
quence but also went back and forth in the visualiza-
tions. This seems to indicate that especially these stu-
dents were actively engaged with the material instead
of just “skimming it through.” As Detailed Get vi-
sualization was only a slightly modified derivation of
Simple Get, it was to be expected that a larger number
of sessions (80 % compared to 58 %) contained only
a single pass-through of the visualization.

On the next implementation of the course during
Spring 2021, we will carry out a more comprehensive
study about the potential learning gains with our vi-

9 See: https://github.com/aleksi-lukkarinen/Client-
Server-Messaging-Visualizer

Scripted Step-based Visualizations: A Pilot Study

245



sualizations and the platform. Then, we are able to
combine the visualization log data with other course
performance data (e.g., weekly exercise points) and
investigate the actual learning gains.
Rich Learning Content. The type of visualization
that interacts with the student is what Brusilovsky
et al. (2014) call smart learning content (SLC). Their
three-dimensional classification of SLC systems, as
well as the position of CSMV in it, is illustrated in Fig-
ure 3. As CSMV accepts only pre-specified input in
the form of button presses to switch from step to step,
it is in the unintelligent end of the Input dimension.
Similarly, CSMV produces generic output, that is, the
same input produces the same output for all students;
this positions it to the unintelligent end of the Out-
put dimension. The characteristic that makes CSMV
“smart” in terms of this classification is that the pro-
cess to produce the output is—in its all simplicity—
fully computational: Our scripts are self-sufficient,
so while students study the visualizations, the un-
derlying scripts can be executed by the visualization
platform without any third-party intervention. Thus,
CSMV is located in the “intelligent” end of the Pro-
cess dimension.

The idea of scripts and steps might affect student
engagement with CSMV. For instance, Sorva et al.
(2013) suggested a two-dimensional engagement tax-
onomy (DET) that constructs its first dimension on
the basis of both an earlier taxonomy by Naps et al.
(2002) and its extension by Myller et al. (2009). In its
first dimension, Direct Engagement, CSMV currently
enables achieving the third level: Controlled View-
ing. In it, students can change the view—in this case,
move between the steps—but more advanced activity
(Responding, Applying, Presenting, Creating) is not
supported yet. However, a simple extension would

pre-specified free-form

ge
ne

ri
c

cu
st
om

iz
ed

fully com-
putational

non-com-
putational

INPUT

PRO
CE

SS

O
U
TP

U
T

OUR
PLATFORM

Figure 3: The position of CSMV in the smart learning con-
tent classification system of Brusilovsky et al. (2014).

be to include, for instance, multiple choice questions
between some steps, which would correspond to Re-
sponding level. The second dimension of DET is
about Content Ownership with the expectation that
a greater feeling of ownership increases caring and
thus the engagement. As CSMV, by design, delivers
only Given Content (the first level), it cannot reach
the three higher levels (Own Cases, Modified Content,
and Own Content) in this dimension.
Future Work. We intend to continue development
and research with CSMV. We are developing a more
comprehensive and overarching logging to overcome
the limitations with the logging in our pilot study. Af-
ter that, there are many directions to take CSMV. They
include (1) integrating various exercise types to vi-
sualizations; (2) actions for elements, including vari-
ables and conditions; (3) non-linear scripts; (4) step
and actor templates; (5) reusing steps; (6) defining
actors using Scalable Vector Graphics; and (7) adding
better animation capabilities.

In the future, we can study student engagement
more closely, which could be supported by increas-
ing the level of interactivity between the students and
the visualization. Of the above directions of devel-
opment, the exercises, actions, and non-linear scripts
have the potential to affect positively in this respect.
Also, using more elegant visuals and animating them
might have the same effect. Furthermore, it would
be of interest to understand more thoroughly how stu-
dents use the visualizations to create profiles of typ-
ical usage. This information could be related with
students’ learning gains, which could be measured in
terms of performance in added multiple choice ques-
tions and coding exercises incorporated into the corre-
sponding rounds. The results could aid in further de-
velopment of CSMV as well as in predicting students’
success and identifying their points of struggle.

REFERENCES

Aaltonen, A. and Lehikoinen, J. (2005). Refining visual-
ization reference model for context information. Pers
Ubiquit Comput, 9(6):381–394.

Adobe Inc. (2019). End of Life (EOL) for Adobe Shock-
wave. https://helpx.adobe.com/shockwave
/shockwave-end-of-life-faq.html;
Accessed: Feb. 16, 2021.

Adobe Inc. (2021). Adobe Flash Player End of Life.
https://www.adobe.com/products/flashplayer/end-of-
life.html; Accessed: Feb. 16, 2021.

Advanced Distributed Learning Initiative (2009). SCORM
2004 4th Edition. https://adlnet.gov/projects/scorm-
2004-4th-edition/; Accessed: Feb. 16, 2021.

CSEDU 2021 - 13th International Conference on Computer Supported Education

246



Averbukh, V., Averbukh, N., Vasev, P., Gvozdarev, I., et al.
(2019). Metaphors for Software Visualization Sys-
tems Based on Virtual Reality, AVR 2019. In De Pao-
lis, L. T. and Bourdot, P., editors, Augmented Real-
ity, Virtual Reality, and Computer Graphics, LNCS,
vol. 11613, pages 60–70, Cham, Zug, CH. Springer
International Publishing.

Awodele, O., Oluwabukola, O., Ogbonna, C., and Ajayi, A.
(2015). Packet Sniffer—A Comparative Characteris-
tic Evaluation Study. In Proc InSITE, pages 91–100,
Santa Rosa, CA, USA. Informing Science Institute.

Brodlie, K. W. and Mohd Noor, N. F. (2007). Visualiza-
tion Notations, Models and Taxonomies. In Lim, I. S.
and Duce, D., editors, Theory and Practice of Com-
puter Graphics 2007, Eurographics UK Chapter Proc,
pages 207–212, Goslar, DE. Eurographics Assoc.

Brusilovsky, P., Edwards, S., Kumar, A., Malmi, L., et al.
(2014). Increasing Adoption of Smart Learning Con-
tent for Computer Science Education. In Proc ITiCSE-
WGR, pages 31–57, New York, NY, USA. ACM.

Chi, E. H.-H. (2000). A Taxonomy of Visualization Tech-
niques Using the Data State Reference Model. In Proc
INFOVIS, pages 69–75, Piscataway, NJ, USA. IEEE.

Crescenzi, P., Gambosi, G., and Innocenti, G. (2005). Net-
PrIDE: An Integrated Environment for Developing
and Visualizing Computer Network Prot. In Proc 10th
ITiCSE, page 306–310, New York, NY, USA. ACM.

Crescenzi, P. and Innocenti, G. (2002). Towards a Taxono-
my of Network Protocol Visualization Tools. In Diehl,
S., editor, Software Visualization, LNCS, vol. 2269,
pages 241–255, Berlin, Heidelberg, DE. Springer
Berlin Heidelberg.

Fuentes, F. and Kar, D. C. (2005). Ethereal vs. Tcpdump: A
Comparative Study on Packet Sniffing Tools for Edu-
cational Purpose. J Comput Sci Coll, 20(4):169–176.

Hall, J., Moore, A., Pratt, I., and Leslie, I. (2003). Multi-
Protocol Visualization: A Tool Demonstr. In Proc Mo-
MeTools, pages 13–22, New York, NY, USA. ACM.

Hundhausen, C. and Douglas, S. A. (2000). SALSA and
ALVIS: A Language and System for Constructing and
Presenting Low Fidelity Algorithm Visualiz. In Proc
IEEE VL, pages 67–68, Piscataway, NJ, USA. IEEE.

IEEE Computer Society (2020). IEEE Standard for Learn-
ing Object Metadata (1484.12.1-2020). Standard,
IEEE, New York, NY, USA.

IMS Global Learning Consortium (2021). Learning Tools
Interoperability. https://www.imsglobal.org/activity
/learning-tools-interoperability; Accessed:
Feb. 16, 2021.

Maletic, J. I., Marcus, A., and Collard, M. L. (2002). A Task
Oriented View of Software Visualization. In Proc 1st
VISSOFT, pages 32–40, Piscataway, NJ, USA. IEEE.

Microsoft Corporation (2017). Welcome to the Open XML
SDK 2.5 for Office | Microsoft Docs. https://docs
.microsoft.com/en-us/office/open-xml/open-xml-sdk;
Accessed: Feb. 16, 2021.

Microsoft Corporation (2021a). Lifecycle FAQ - Internet

Explorer and Microsoft Edge - Microsoft Lifecycle |
Microsoft Docs. https://docs.microsoft.com/en-us
/lifecycle/faq/internet-explorer-microsoft-edge;
Accessed: Feb. 16, 2021.

Microsoft Corporation (2021b). Silverlight End of Support.
https://support.microsoft.com/en-us/windows
/silverlight-end-of-support-0a3be3c7-bead-e203-
2dfd-74f0a64f1788; Accessed: Feb. 16, 2021.

Milne, I. and Rowe, G. (2004). OGRE: Three-Dimensional
Program Visualization for Novice Programmers. Educ
Inform Tech, 9(3):219–237.

Myller, N., Bednarik, R., Sutinen, E., and Ben-Ari, M.
(2009). Extending the Engagement Taxonomy: Soft-
ware Visualization and Collaborative Learning. ACM
Trans Comput Educ, 9(1):Article 7.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., et al.
(2002). Exploring the Role of Visualization and En-
gagement in Computer Science Educ. In Proc ITiCSE-
WGR, pages 131–152, New York, NY, USA. ACM.

Oracle Corporation (2020). Java SE Support Roadmap.
https://www.oracle.com/java/technologies/java-se-
support-roadmap.html; Accessed: Feb. 16, 2021.

Papert, S. (1980). Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, Inc., New York, NY,
USA. https://mindstorms.media.mit.edu/; Accessed:
Feb. 16, 2021.

Schulz, H.-J., Angelini, M., Santucci, G., and Schumann,
H. (2016). An Enhanced Visualization Process Model
for Incremental Visualization. IEEE Trans Vis Comput
Graph, 22(7):1830–1842.

Schweitzer, D., Baird, L., Collins, M., Brown, W., et al.
(2006). GRASP: A Visualization Tool for Teaching
Security Protocols. In Proc 10th CISSE, pages 75–81,
MD, USA. University of Maryland.

Schweitzer, D. and Brown, W. (2007). Interactive Visu-
alization for the Active Learning Classr. In Proc 38th
SIGCSE, pages 208–212, New York, NY, USA. ACM.

Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M.,
et al. (2010). Algorithm visualization: The state of
the field. ACM Trans Comput Educ, 10(3):Article 9.

Sirkiä, T. and Haaranen, L. (2017). Improving online learn-
ing activity interoperability with Acos server. Softw
Pract Exper, 47(11):1657–1676.

Sirkiä, T. and Sorva, J. (2015). How Do Students Use
Program Visualizations within an Interactive Ebook?
In Proc 11th ICER, pages 179–188, New York, NY,
USA. ACM.

Sorva, J., Karavirta, V., and Malmi, L. (2013). A Review
of Generic Program Visualization Systems for Intro-
ductory Programming Education. ACM Trans Comput
Educ, 13(4):Article 15.

SumTotal Systems, LLC (2021). Toolbook Knowledge
Base: Does Toolbook support Edge?
http://tb.sumtotalsystems.com/KBFiles/kb
/EdgeSupport.html; Accessed: Feb. 16, 2021.

Scripted Step-based Visualizations: A Pilot Study

247


