
Automatic Extraction of a Document-oriented NoSQL Schema

Fatma Abdelhedi1,2 a, Amal Ait Brahim1, Hela Rajhi1, Rabah Tighilt Ferhat1
and Gilles Zurfluh1 b

1IRIT, Toulouse Capitole University, Toulouse, France
2CBI² - TRIMANE, Saint Germain-En-Laye, France

Keywords: Big Data, NoSQL, MDA, QVT, Schemaless, Reverse-engineering, Schema-extraction.

Abstract: The NoSQL systems make it possible to manage Databases (DB) verifying the 3Vs: Volume, Variety and
Velocity. Most of these systems are characterized by the property schemaless which means absence of the
data schema when creating a DB. This property provides undeniable flexibility by allowing the schema to
evolve while the DB is in use; however, it is a major obstacle for developers and decision makers. Indeed, the
expression of queries (SQL type) requires precise knowledge of this schema. In this article, we provide a
process for automatically extracting the schema from a NoSQL document-oriented DB. To do this, we use
the MDA (Model Driven Architecture). From a NoSQL DB, we propose transformation rules to generate the
schema. An experiment of the extraction process was carried out on a medical application.

1 INTRODUCTION

The last few years have seen the explosion of data
generated and accumulated by increasingly lot of
computing devices. The DBs thus formed are
designated by the expression "Big Data" which refers
to the so "3V" minimum rule: volume, variety and
velocity (Chen & Zhang, 2014). This rule
characterizes a DB of several terabytes containing
data of various types and formats such as texts, tables,
highly structure documents. In addition, this data is
often captured at very highly frequency and must
therefore be filtered and aggregated in real time to
avoid necessary saturation of storage space.

Classical implantation of techniques based mainly
on the relational principle, have limitations lot of
managing massive DB (Angadi et al., 2013). Thereby,
new data storage and manipulation systems have been
appeared. Grouped under the term NoSQL (Han et al.,
2011), these systems are much greeted to manage
large volumes of data with flexible schemas. They
also provide great scalability and good response of
time performance (Angadi et al., 2013).

a https://orcid.org/0000-0003-2522-3596
b https://orcid.org/0000-0003-3570-9792
1 https://db-engines.com/en/ranking/document+store
2 https://www.omg.org/mda/

Most NoSQL DBMS are characterized by the
property of the schemaless which corresponds to the
absence of the data schema when doing a DB. This
property appears in all NoSQL systems such as
MongoDB, CouchDB, HBase and Neo4j. Note,
however, that it is absent in some systems as
Cassandra and Riak TS. The property schemaless
offers undeniable flexibility by allowing the schema
to evolve readily. For example, adding new attributes
to an existing line is done without modifying other
lines of the same type previously stored.

In this article, we study the process of extracting
the schema from a schemaless NoSQL document-
oriented DB. We have chosen the specific vocabulary
of the document-oriented NoSQL system MongoDB
which is the most used in the industry1. Our process
uses MDA 2 (Model Driven Architecture) which
provides a formal frame for model transformations
(Bézivin & Gerbé, 2001).

The rest of the paper is structured as follows.
Section 2 presents the medical application which
justifies the interest of our work. Section 3 reviews
the state of the art. Section 4 presents our contribution
which consists in formalizing with MDA the process

192
Abdelhedi, F., Brahim, A., Rajhi, H., Ferhat, R. and Zurfluh, G.
Automatic Extraction of a Document-oriented NoSQL Schema.
DOI: 10.5220/0010433501920199
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 192-199
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

of extracting the schema from a schemaless NoSQL
DB. Section 5 details the development of our
prototype and describes the experimentation and
validation of our process. Finally, section 6 concludes
the paper and announces future works.

2 CASE STUDY

In this section, we present the case study which
motivated our work as well as its development.

2.1 NoSQL Database

Our work is motivated by the development of a
medical application within the framework of an
industrial contract; this application will also allow us
to illustrate the concepts and mechanisms used. This
involves the establishment of scientific programs
dedicated to the following of a specific pathology.
Each program can being together around fifty
European hospitals (hospitals, clinics and specialized
care centers).

The primary objective of such a program is to
collect significant data on the course of the disease
over time, to study its interactions with opportune
diseases and to assess the influence of its treatments
in the short and medium. The duration of a program
is done when it is launched and can be between three
and ten years. The data collected by several
establishments as part of a multi-year program
present the characteristics generally accepted for Big
Data (the 3 Vs), (Douglas, 2001). Indeed, the volume
of medical data collected from daily patients can
reach, for all establishments and over three years,
several terabytes. On the other hand, the nature of the
data entered (measurements, radiography,
scintigraphy, etc.) is diverse and may vary from one
patient to another depending on their status health.
Finally, some data is produced continuously by
sensors; they must be processed almost in time real
because they can be integrated into time emotive
processes (measures crossing a threshold that would
involve the intervention of an emergency practitioner,
for example). Patient following requires the storage
of various data such as the recording of consultations
carried by out practitioners, test results, prescriptions
for drugs and specific treatments. We therefore stored
all of this data in a schemaless NoSQL system.

Thus, to develop requests corresponding to this
type of analysis over time, doctors need to know the
schema of the DB.

2.2 Development Framework

To meet the needs of this medical application, a
software has been developed in Java language and
uses MongoDB NoSQL system. This DBMS offers
stability and provides satisfactory data access
performance for the application. The DB has been
designed by developers; it is fed from predefined
transactions that are implemented by health personnel
from touch tablets.

3 RELATED WORK

Several research works have proposed processes to
extract the schema from a NoSQL schemaless DB,
mainly for document DBs like MongoDB. Thus, a
process has been proposed in (Klettke et al., 2015) to
extract the schema from a collection of JSON
documents stored on MongoDB. The returned
schema is itself in JSON format; it is obtained by
browsing the DB and identifying the names of the
attributes that appear in the documents. Attributes are
associated with atomic types, lists, or structured
documents.

A similar work (Izquierdo & Cabot, 2016)
proposes a process for generating a NoSQL model
from a collection of JSON documents. This process
consists in (1) first extracting the model from each
document by replacing pairs (Key, Value) by pairs
(Key, Type) and (2) subsequently unifying all the
models obtained to have a single model for the whole
collection. The generated model is in JSON format.

In the article (Sevilla Ruiz et al., 2015), the
authors propose another process of extracting the
schema in a document NoSQL DB. The returned
result is not a unified schema for the whole DB, but it
gives the different versions of document schemas
(according to the names and types of the attributes)
for each collection. The extraction process is
composed of two successive steps. The first one
browses the DB and, for each distinct schema version,
generates a document in a collection called "Model".
In the second step, the process provides a model of
each version by instantiating the JSON metamodel.

We can also cite the work of (Gallinucci et al.,
2018) which proposes a process called BSP (Build
Schema Profile) to classify documents in a collection
by applying rules corresponding to user requirements.
These rules are expressed through a decision tree
whose nodes represent the attributes of the
documents; the edges specify the conditions on which
the classification is based. These conditions reflect
either the absence or presence of an attribute in a

Automatic Extraction of a Document-oriented NoSQL Schema

193

document or its value. As in the previous article
(Sevilla Ruiz et al., 2015), the result returned by this
approach is not a unified schema but a set of schema
versions; each one is common to a group of
documents.

In addition, the article by (Comyn-Wattiau &
Akoka, 2017) proposes a process for extracting a
schema from requests for inserting objects and
relations in a graph NoSQL DB. The proposed
process is based on an MDA architecture and applies
two types of transformations to the queries. The
process consists of two steps. The first one consists in
building a graph (Nodes + Edges) from Neo4J
queries. The second step consists in extracting from
the graph an Entity-Relationship model by
transforming nodes with the same label into entity
classes and edges into association.

In (Maity et al., 2018), the authors describe the
transition from a document or graph NoSQL DBs to
a relational schema. The process groups together all
documents (or objects) that have the same field
names. For each class of objects thus obtained, it
generates a table with the field names as attributes and
the field values as lines.

On the other hand, in (Baazizi et al., 2017), the
authors propose a process for extracting the schema
from a large collection of JSON documents using the
MapReduce system. The Map phase consists in
extracting the schema of each document in the
collection by inferring pairs (key, type) from pairs
(key, value). The Reduce phase consists in unifying
all the schemas produced in the Map phase in order to
provide a global schema of all the documents in the
collection. In another article (Baazizi et al., 2019), the
same authors proposed to extend this process by
integrating the parameterization of the extraction at
the Reduce phase. Thus, the user can choose either to
unify all the schemas of the documents in the
collection, or to unify only the schemas having the
same fields (names and types).

Through this related work section, it appears that
these solutions only partially answer our problem.

The process we propose aims at extracting a
schema from a document NoSQL DB. We chose the
MongoDB system that was used in the development
of the medical application presented in section 2. In
addition, MongoDB is the most widely used NoSQL
DBMS in the world as shown by a recent study by
DB-Engines (DB-Engines Ranking, n.d.). Our
process extracts the descriptions of the collections as
well as some types of links present in the application.

3 Object Management Group (OMG):

http://www.omg.org/

4 EXTRACTING THE NoSQL
SCHEMA

The goal of this article is to automate schema
extraction from a document-oriented schemaless
NoSQL DB. This schema indicates the names of the
collections, the names of the fields as well as their
types as is done in the relational DBs where the
schema is provided by the system. To do this, we
propose the ToNoSQLSchema process that allows to
automatically extract the schema after a scan of the
DB. It is about a “cold extraction”, i.e., the process is
the totality of the DB at time t and the schema
describes the data structures at time t. A
complementary "hot extraction" has been developed
and allows the schema to be updated to consider the
development of the DB.
To develop and automate our ToNoSQLSchema
process, we use the OMG 3 Model Driven
Architecture (MDA) which provides a formal frame
for the automation of schema processing (Hutchinson
et al., 2011). The objective of this design is to
separately describe the specifications functional and
the specifications implementation of an application
on a given platform; to do this, it uses three sitters
representing the levels abstract of the application.
These are (1) the requirements schema (CIM for
Computation Independent Model) in which IT
considerations appear, (2) the analysis and design
schema (PIM for Platform Independent Model)
independent of aspects technical execution platforms
and (3) the code model (PSM for Platform Specific
Model) specific to a specific platform. Since the input
to our process is a NoSQL DB and its output
corresponds to a physical schema, we only retain the
PIM level. We develop the inputs / outputs with the
Ecore language and the model transformations using
the QVT (Query View Transformation) standard
defined by the OMG.

The advantage of using the MDA architecture lies
mainly in the generalization of our process
ToNoSQLSchema. Indeed, the formalization of
inputs / outputs by meta models (sections 4.1 and 4.2)
as well as the use of QVT notations, ensure a certain
independence from the specificities of NoSQL
systems, current and future. Warning: for the sake of
consistency of the article, we have used the term
model from the MDA vocabulary to denote the result
of a modeling process; we use the term schema.

By applying a series of QVT transformations on
an existing schemaless DB, our ToNoSQLSchema

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

194

process (Figure 1) produces a schema explicitly
describing the structured data.

Figure 1: Our ToNoSQLSchema process.

In the following sections, we define the
ToNoSQLSchema process by presenting
successively the source, the target, and the
transformation rules.

4.1 The Source: A Document-oriented
NoSQL Database

A document-oriented DB is made up of collections;
each of which contains together of documents. A
document consists of an aggregate of fields in the
form of couple (Field-name, Value). A value can be
atomic, multivalued, or structured (i.e., composed of
other). To make a link between the collections, the
developer can use a field called field reference to a
principle proposed in (MongoDB, 2018). This field is
a structure of the form: (identifier of the referenced
document, name of the targeted collection) if the link
is monovalued. On the other hand, to express a
multivalued link, the reference field takes the form
([identifiers of the referenced documents], name of
the targeted collection). Note, however, that the
MongoDB system does not check referential integrity
when feeding the DB; this verification remains the
responsibility of the data entry software.
The source, i.e. the DB, is described by a meta- model
(Figure 2) formalized with the standardized language
Ecore.

4.2 The Target: A NoSQL Schema

The NoSQL schema generated by our process
describes the collections, their fields and the links
restrained in the DB. It is saved under MongoDB in a
set of documents. Each file contains the model
diagram of a collection. The documents are composed
of a lot of domains; each of them can be atomic,
structured, or multivalued. An atomic field is
presented in the form of a couple (Name, Type) where
Type contains Integer, Boolean or String. A
structured field is made up of an aggregate of fields

of any type. A multivalued field is composed of a set
of fields of the same type. We formalize these
concepts through the Ecore meta- model of Figure 3.

4.3 Transformations

After having formalized the concepts located at the
input of the process (document-oriented NoSQL DB)
and at the output (NoSQL model), we describe the
switch between automatic the two models in the form
of a sequence of transformation rules.
The following present the rules in natural language of
ToNoSQLSchema process.
R1: A NoSQL document-oriented DB is transformed
into a collection called DB_Schema.
R2: Each input collection is transformed into a
document. This includes a field noted
CollectionSchema which indicates the name of the set
concerned and that we find at the top in the target
schema. Note that each document contains a unified
schema for all that make up the input set. This means
that our process generates a single collection schema
grouping together all document fields that we have in
the collections input. We therefore do not consider
grouping together all document fields that we have in
the collections input. We therefore do not consider
several versions for the same input collection as it is
in (Sevilla Ruiz et al., 2015) and (Gallinucci et al.,
2018). Indeed, we are dealing with the case of
synonymous fields nor the case where a field has
different types depending on their values within the
same collection at the level of database input.
R3: For each atomic field, the pair (Field-name,
Value) is transformed into a couple in the set of the
target model like (Field-name, Type). In fact, the type
of a field is generated according to its value. For
example, if the value is of the form "xxx", then its
type is String; if the value is of the form [yyy, zzz,
etc.], then its type is [Integer], i.e., a set of Integers.
For example, the field Last-NameP: "DUPONT" is
transformed into Last-NameP: String.
R4: For structured field, the process goes through all
the fields that make it up. For each of them, if it is an
atomic field, then apply R3; if this is a structured field
then apply R4.
For example, the field Address: {Code: 1735, City:
"Paris"} is transformed into {Code: Integer, City:
String}.
R5: For a monvalued reference field, the pair
(document identifier, name of the collection) is
transformed into a pair (ObjectId, name of
collection).

Automatic Extraction of a Document-oriented NoSQL Schema

195

Figure 2: Meta-model describing the source of our process.

Figure 3: Meta- model describing the target of our process.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

196

R6: For a multivalued reference field, the pair
([document identifiers], name of the collection) is
transformed into a pair ([ObjectId], name of
collection).
We present in Figure 4 an example for applying these
rules.

5 DEVELOPMENT OF A
PROTOTYPE AND
VALIDATION

5.1 Technical Environment

In collaboration with the company TRIMANE, a
digital services company, we have developed a
schematic extraction software prototype according to
the principles outlined above. We briefly describe the
mechanisms that in the development we implemented
of ToNoSQLSchema. We use a technical middle
pertinent of modeling, meta-modeling and
transformation in accordance with the MDA
architecture. We therefore used the Eclipse Modeling
Framework (EMF) platform (Budinsky et al., 2004).
EMF provides a set of elements designed un
introducing a schema approach to development
within the Eclipse environment. Among the tools of
EMF, we used:

- Ecore: a meta-modeling language used for the
formation of meta models; Figures 2 and 3
illustrate the Ecore source and target meta models.

- XMI (XML Metadata Interchange): a standard
used to show schemas in XML format.

- QVT: a standardized language for voicing schema
transformations.

First, we tested our prototype on data from the
medical application presented in section 2.

5.2 Prototype Achievement

The prototype contains, in dedicated files, the
transformation rules expressed in QVT as well as the
meta- models in format for the source and the target
Ecore (Figures 2 and 3). To obtain the resulting
schema, it is necessary to apply the following steps:
Step1: we create a source and a target metamodel to
represent the concepts handled by our process
(Figures 2 and 3 respectively).
Step2: we build an instance of the source metamodel.
For this, we use the standard based XML Metadata
Interchange format.
Step3: we implement the transformation rules by
means of the QVT language provided within EMF as
shown in Figure 5.
Step4: we test the transformation rules by running the
QVT script created in step3. This script takes as input
the source model built in step2 and returns as output
a physical schema. The result is provided in the form
of XMI file.

5.3 Experimentation and Validation

To validate our process, it is necessary on the one
hand to check the descriptive quality of the generated
schema and on the other hand to show the usefulness
of this schema for users.

Figure 4: Example of transformations.

Patients: {
{
_id: ObjectId("6a2d2350ecb25a25bd86dc1"),
First-NameP : ["Lea", "Elodie"],
Last-NameP: "DUPONT",
Treating-Doctor:
 {
 $_id: ObjectId("112f1f77bce36cd799438722"),
 $Ref: Doctors
 }
}
… }
Doctors: {
{
_id: ObjectId("112f1f77bce36cd799438722"),
First-NameD: "David",
Last-NameD: "MAMAR",
},
… }

DB_Schema: {
{
CollectionSchema: Patients,
_id: ObjectId,
First-NameP: [String],
Last-NameP: String,
Treating-Doctor: {
 $_id: ObjectId,
 $Ref: Doctors
 }
},
{
CollectionSchema: Doctors,
_id : ObjectId,
First-NameD: String,
Last-NameD: String
}

}

Automatic Extraction of a Document-oriented NoSQL Schema

197

Regarding the descriptive quality of the schema,
our process is based on the MDA architecture. Thus,
the use of meta-models to extract the schema from the
DB guarantees the correct use of modeling
formalisms. We can therefore consider that the
schema produced by the ToNoSQLSchema prototype
describes well the data structures present in the DB.

Regarding the usefulness of a schema for
developers responsible for writing queries on the DB,
we implemented our prototype on test data in an
industrial environment. To carry out this
experimentation, we considered two applications, one
belonging to the medical field and the other to the
legal field. We sent test sets to sixteen developers (IT
consulting engineers) from TRIMANE, a digital
services company specializing in business
intelligence and Big Data. The aim was to test the
hypothesis that it is faster to write queries on a DB
when you have the data schema. Although the
verification of this hypothesis appears intuitive, the
experimentation provided us with indicators
corresponding to the query writing times.

Of the 32 test results returned by the 16
developers, the time taken to write queries by
category (with or without schema) was relatively
homogeneous. Thus, the absence of any schema
associated with a DB required the developer to
manually search for field properties and justifies the
average time of 49 minutes shown in Table 1. On the
contrary, the use of a schema facilitated the

understanding of the DB and led to a significant
reduction of the query writing time (- 27 minutes).

Table 1: Average time to write queries.

 Without schema With schema
Average time to

write the 10 queries 49 minutes 22 minutes

A schemaless NoSQL DB can contain various
data presenting complex structures and whose
semantics are often difficult to understand by
computer scientists themselves. Our schema
extraction system therefore provides an appreciable
facility allowing developers to write queries more
quickly.

5.4 Discussion

In this sub-section, we compare our solution with the
work presented in section3.

In (Klettke et al., 2015), (Izquierdo & Cabot,
2016), (Maity et al., 2018), (Baazizi et al., 2017)
(Baazizi et al., 2019), the authors propose processes
that take as input a single collection and do not
consider the links between objects. Similarly, the
works (Sevilla Ruiz et al., 2015) and (Gallinucci et
al., 2018) have the advantage of starting from a DB
composed by several collections. However, they do
not address the links between collections. On the

Figure 5: Extract of the QVT code.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

198

other hand, the works of (Comyn-Wattiau & Akoka,
2017) do not take into consideration structured
attributes because the graphical oriented system
Neo4J does not allow to declare this type of attributes.

To overcome these limitations, we proposed a
more complete solution (ToConceptualSchema). This
solution considers two techniques to describe the
relationships between objects in the medical
application: structured attributes and links. Indeed,
our process considers two types of links (monovalued
and multivalued) between the collections of the
document-oriented database. In addition, it considers
all types of attributes, whether atomic, structured, or
multivalued.

6 CONCLUSION

Our work falls within the framework of Big Data
DBs. They currently focus on the schema extraction
mechanisms of a schemaless NoSQL database to
facilitate query expression.

In this article, we have proposed an automatic
process to extract the schema from a document
NoSQL DB. This process based on the MDA
provides a formal framework for the automation of
model transformation. It generates the DB schema by
applying a series of transformations expressed in
QVT language.

Our ToNoSQLSchema process is based on the
MDA architecture, which provides both a formal
framework and the ability to evolve DB systems. In
addition, it proposes the considering of monovalued
and multivalued association links between the
documents contained in the DB.

Currently we are studying a functionality to
maintain the schema obtained by the
ToNoSQLShema process. It is a question of
reflecting in the schema the structural evolutions of
the DB throughout its exploitation.

REFERENCES

Angadi, A. B., Angadi, A. B., & Gull, K. C. (2013). Growth
of new databases & analysis of NOSQL datastores.
International Journal of Advanced Research in
Computer Science and Software Engineering, 3(6).

Baazizi, M.-A., Colazzo, D., Ghelli, G., & Sartiani, C.
(2019). Parametric schema inference for massive JSON
datasets. The VLDB Journal, 28(4), 497–521.

Baazizi, M.-A., Lahmar, H. B., Colazzo, D., Ghelli, G., &
Sartiani, C. (2017). Schema inference for massive
JSON datasets.

Bézivin, J., & Gerbé, O. (2001). Towards a precise
definition of the OMG/MDA framework. Proceedings
16th Annual International Conference on Automated
Software Engineering (ASE 2001), 273–280.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., &
Merks, E. (2004). Eclipse modeling framework: A
developer’s guide. Addison-Wesley Professional.

Chen, C. P., & Zhang, C.-Y. (2014). Data-intensive
applications, challenges, techniques and technologies:
A survey on Big Data. Information Sciences, 314–347.

Comyn-Wattiau, I., & Akoka, J. (2017). Model driven
reverse engineering of NoSQL property graph
databases: The case of Neo4j. 2017 IEEE International
Conference on Big Data (Big Data), 453–458.

DB-Engines Ranking. (n.d.). DB-Engines. Retrieved
December 10, 2020, from https://db-
engines.com/en/ranking

Douglas, L. (2001). 3d data management: Controlling data
volume, velocity and variety. Gartner. Retrieved,
6(2001), 6.

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2018). Schema
profiling of document-oriented databases. Information
Systems, 75, 13–25.

Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on
NoSQL database. 2011 6th International Conference on
Pervasive Computing and Applications, 363–366.

Hutchinson, J., Rouncefield, M., & Whittle, J. (2011).
Model-driven engineering practices in industry.
Proceedings of the 33rd International Conference on
Software Engineering, 633–642.

Izquierdo, J. L. C., & Cabot, J. (2016). JSONDiscoverer:
Visualizing the schema lurking behind JSON
documents. Knowledge-Based Systems, 103, 52–55.

Klettke, M., Störl, U., & Scherzinger, S. (2015). Schema
extraction and structural outlier detection for JSON-
based NoSQL data stores. Datenbanksysteme Für
Business, Technologie Und Web.

Maity, B., Acharya, A., Goto, T., & Sen, S. (2018). A
Framework to Convert NoSQL to Relational Model.
Proceedings of the 6th ACM/ACIS International
Conference on Applied Computing and Information
Technology, 1–6.

MongoDB.(2018).https://docs.mongodb.com/manual/refer
ence/database-references/

Sevilla Ruiz, D., Morales, S. F., & Molina, J. G. (2015).
Inferring versioned schemas from NoSQL databases
and its applications. International Conference on
Conceptual Modeling, 467–480.

Automatic Extraction of a Document-oriented NoSQL Schema

199

