data over the years. Moreover, normalisation of the 
different  quality  images  on  spectrum  and  contrast 
allows  for  creating  segmented  categorical  maps  of 
different periods. It enables to analyse and interpret 
the results on different levels, where both generalised 
and granular data is available. The generalised results 
could be used to detect exceptional patterns by using 
a contour or  heat map, while for  the  granular level 
analysis, it is possible to review a map on a specific 
location, so that the experts could better understand 
and interpret the generalised results.  
ACKNOWLEDGEMENT 
This  research  was  supported  by  the  Research, 
Development  and  Innovation  Fund  of  Kaunas 
University of Technology (project grant No. 
PP91L/19). 
REFERENCES 
Al-Ruzouq,  R.,  Hamad,  K.,  Shanableh,  A., &  Khalil,  M. 
(2017). Infrastructure growth assessment of urban areas 
based  on  multi-temporal  satellite  images  and  linear 
features.  Annals of GIS,  23(3),  183–201. 
https://doi.org/10.1080/19475683.2017.1325935 
Albert,  A.,  Kaur,  J.,  &  Gonzalez,  M.  C.  (2017).  Using 
convolutional networks and satellite imagery to identify 
patterns  in  urban  environments  at  a  large  scale. 
Proceedings of the ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
Part F1296,  1357–1366.  https://doi.org/10.1145/ 
3097983.3098070 
Celik, T. (2009). Unsupervised change detection in satellite 
images  using  principal  component  analysis  and  κ-
means  clustering.  IEEE Geoscience and Remote 
Sensing Letters, 6(4), 772–776. https://doi.org/10.1109/ 
LGRS.2009.2025059 
Corbane, C., Syrris, V., Sabo, F., Pesaresi, M., Soille, P., & 
Kemper, T. (2020). Convolutional Neural Networks for 
Global  Human  Settlements  Mapping  from  Sentinel-2 
Satellite Imagery. ArXiv. 
de  Jong,  K.  L.,  &  Sergeevna  Bosman,  A.  (2019). 
Unsupervised  Change  Detection  in  Satellite  Images 
Using  Convolutional  Neural  Networks.  2019 
International Joint Conference on Neural Networks 
(IJCNN),  July,  1–8.  https://doi.org/10.1109/ 
ijcnn.2019.8851762 
Donaldson,  D.,  &  Storeygard, A.  (2016).  The view  from 
above:  Applications  of  satellite  data  in  economics. 
Journal of Economic Perspectives,  30(4),  171–198. 
https://doi.org/10.1257/jep.30.4.171 
Dornaika, F., Moujahid, A., El Merabet, Y., & Ruichek, Y. 
(2016).  Building  detection  from  orthophotos  using  a 
machine  learning  approach:  An  empirical  study  on 
image  segmentation  and  descriptors.  Expert Systems 
with Applications,  58,  130–142.  https://doi.org/ 
10.1016/j.eswa.2016.03.024 
Goyette,  N.,  Jodoin,  P.-M.,  Porikli,  F.,  Konrad,  J.,  & 
Ishwar, P. (2012). A new change detection benchmark 
dataset.  IEEE Workshop on Change Detection 
(CDW’12) at CVPR’12, 1–8. 
Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., 
& Ermon, S. (2016). Combining satellite imagery and 
machine  learning  to  predict  poverty.  Science, 
353(6301),  790–794.  https://doi.org/10.1126/ 
science.aaf7894 
Kanagamalliga,  S.,  &  Vasuki,  S.  (2018).  Contour-based 
object tracking in video scenes through optical flow and 
gabor  features.  Optik,  157,  787–797.  https://doi.org/ 
10.1016/j.ijleo.2017.11.181 
Krupinski, M., Lewiński, S., & Malinowski, R. (2019). One 
class SVM for building detection on Sentinel-2 images. 
1117635(November  2019),  6.  https://doi.org/10.1117/ 
12.2535547 
Längkvist,  M.,  Kiselev,  A.,  Alirezaie,  M.,  &  Loutfi,  A. 
(2016).  Classification  and  segmentation  of  satellite 
orthoimagery  using  convolutional  neural  networks. 
Remote Sensing,  8(4).  https://doi.org/10.3390/ 
rs8040329 
Liu,  Y.,  Han,  Z.,  Chen,  C.,  DIng,  L.,  &  Liu,  Y.  (2020). 
Eagle-Eyed Multitask CNNs for Aerial Image Retrieval 
and  Scene  Classification.  IEEE Transactions on 
Geoscience and Remote Sensing,  58(9),  6699–6721. 
https://doi.org/10.1109/TGRS.2020.2979011 
Marmanis,  D.,  Galliani,  S.,  Schindler,  K.,  Zurich,  E., 
Marmanis, D., Wegner, J.  D., Galliani, S., Schindler, 
K.,  Datcu,  M.,  &  Stilla,  U.  (2016).  Semantic 
Segmentation Of Aerial Images With An Ensemble Of 
CNNS 3D reconstruction and monitoring of 
construction sites using LiDAR and photogrammetric 
point clouds View project Earth Observation Image 
Librarian (EOLib) View project SEMANTIC 
SEGMENTATION O. III(July), 12–19. https://doi.org/ 
10.5194/isprsannals-III-3-473-2016 
Nahhas, F. H., Shafri, H. Z. M., Sameen, M. I., Pradhan, B., 
&  Mansor,  S.  (2018).  Deep Learning Approach for 
Building Detection Using LiDAR – Orthophoto Fusion. 
2018. 
Shermeyer,  J.,  &  Van  Etten,  A.  (2019).  The Effects of 
Super-Resolution on Object Detection Performance in 
Satellite Imagery. http://arxiv.org/abs/1812.04098 
Suraj, P. K., Gupta, A., Sharma, M., Paul, S. B., & 
Banerjee,  S.  (2018).  On monitoring development 
indicators using high resolution satellite images. 1–36. 
http://arxiv.org/abs/1712.02282 
Vakalopoulou,  M.,  Karantzalos,  K.,  Komodakis,  N.,  & 
Paragios,  N.  (2015).  Building  detection  in  very  high 
resolution  multispectral  data  with  deep  learning 
features. International Geoscience and Remote Sensing 
Symposium (IGARSS),  2015-Novem,  1873–1876. 
https://doi.org/10.1109/IGARSS.2015.7326158 
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. 
(2010).  Detecting  trend  and  seasonal  changes  in 
satellite  image  time  series.  Remote Sensing of