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Abstract: One of the key priorities of technologies is performance. In the area of transportation, performance is typically 

intertwined with increased mobility and reduced costs. Congestion alleviation which is a persistent challenge 

faced by many cities is a priority. The use of infrastructure is inherently inefficient, resulting in higher vehicle 

fuel consumption and pollution. This in turn burdens commuters and businesses. Therefore, solving this issue 

is of prime significance because of the potential benefit. Many technologies have been and are being 

developed. These include adaptive traffic signals and various dynamic traffic control strategies. This paper 

introduces a platooning controller that keeps relatively small time gaps between consecutive vehicles to 

increase mobility, and eventually reduce travel costs. This controller also accounts for complex dynamic and 

kinematic restrictions controlling vehicle motion. The controller is tested in a virtual environment on 

highways in downtown Los Angeles. A drop-in travel time, delay, fuel consumption was observed across the 

area for connected automated vehicles (CAVs) and non-connected vehicles, at various market penetration 

rates (MPRs). Reductions of up to 5%, 9.4%, and 8.17% in travel time, delay, and fuel consumption, 

respectively are observed. These observations are observed for all vehicles platooned and non-platooned. 

1 INTRODUCTION 

A dynamic phenomenon that requires sophisticated 

modelling is roadway traffic. Nevertheless, different 

properties can be observed directly. These properties 

include (1) the density of the traffic stream (k): the 

number of vehicles per unit length per road or lane; 

and (2) the space-mean velocity (u): the density 

weighted average velocity of the traffic stream. 

Congestion is intertwined with high density and slow 

space-mean speeds. Through designing technologies 

that direct traffic and use the infrastructure as 

efficiently as possible, researchers are attempting to 

reduce traffic congestion. Wireless networking 

advancements, ground breaking driver assistance 

systems (Bevly et al., 2017) have made ideas 

developed on paper become a reality.   Platooning is 

one of these ideas. Platooning is basically a group of 

cars traveling at the same speed and keeping limited 

space in between and is usually referred to as 
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cooperative adaptive cruise control (CACC). This 

basic idea has the potential to boost transportation. Its 

perceived benefits are efficient mobility, lower fuel 

consumption, reduction in CO2 emissions, and 

increased highway capacity. Particular attention was 

and is still being allocated to the development of 

platoons. The work of Deng and Ma (Deng & Ma, 

2014) utilized Pontryagin’s maximum principle 

(PMP) to develop a platooning algorithm for trucks. 

They claim up to 30% reduction in fuel consumption 

on the deceleration regime and up to 3.5% in the 

acceleration regime. 

Al Alam et al. (Alam, Gattami, & Johansson, 

2010) were inconclusive with respect to fuel 

consumption reduction for platooned large vehicles 

equipped with a commercial adaptive cruise control 

(ACC). However, they reported a maximum energy 

saving ranging from 4.7 to 7.7% with maximum 

savings corresponding to a time gap of 1 s.  They 

acknowledged that a short time gap results in 

maximum drag reduction, yet it comes with 
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challenges (i.e., feedback and communication delays) 

which in turn threaten the safety as well as the 

comfort of passengers.  

Carl et al. (Bergenhem, Shladover, Coelingh, 

Englund, and Tsugawa, 2012) reported various 

platooning projects, namely, safe road trains for the 

environment (SARTRE) (an European platooning 

project), partial automation for truck platooning 

(PATH) (a California traffic automation 

program),  grand cooperative driving challenge 

(GCDC) (cooperative driving initiative), and  

SCANIA platooning and energy ITS. They 

emphasized the importance of connectivity V2X 

which involves vehicle to vehicle (V2V) and vehicle 

to infrastructure (V2I) communication, as well as 

vehicular and non-vehicular sensors in allowing 

platooning to address the issues of synchronization 

and vehicle longitudinal and lateral stability. 

Increased safety and reduced emissions were reported 

by Davila et al. (Davila & Nombela, 2012) in the 

SARTRE project. Virtual testing showed that better 

engineered vehicle aerodynamics results in less 

energy consumption. Platooning automation is 

expected to enhance safety since 95% of accidents are 

primarily caused by humans (Brown, 2005).  

Other nationally funded projects targeting 

platooning technologies were also unveiled. Within 

the framework of the Japanese national intelligent 

transportation system (ITS) project, Tsugawa et al. 

(Tsugawa, Kato, & Aoki, 2011) created a system that 

could assist vehicles to platoon automatically. They 

showed that experiments on three fully autonomous 

trucks operating at a speed of 80 km/h and a distance 

gap of 10m (i.e., time gap of 0.45 s) results in 14% 

fuel savings and hence a decrease in CO2 emissions. 

In another study, a series of platooning tests on 

large vehicles were performed. Michael et al. 

(Lammert, Duran, Diez, Burton, & Nicholson, 2014) 

tried different vehicle mass, speeds as well as distance 

gaps in search for the optimum configuration 

resulting in the highest energy consumption 

reduction. This combination turned out to be a 

cruising velocity of 88 km/h (55 mph) and a 9.1 m (30 

ft) gap distance for a fuel saving of 6.4%. This 

percentage is significant given the modest initial 

investment. The unintended effects of platooning on 

trucks, were highlighted by Ellis et al. (Ellis and 

Gargoloff, 2015). They stressed the significant 

aerodynamic drag reduction. However, if the gap-

distance is low (i.e., 5m), the air flow through the 

engine is greatly decreased, resulting in the 

continuous fan activation which in turn reduced 

potential fuel economy. Different platooning 

configurations for large vehicles on highways were 

tested by Vegendla et al. (Vegendla, Sofu, Saha, 

Kumar, & Hwang, 2015). Using computational fluid 

dynamics, up to 23% reduction in fuel consumption 

can be achieved by trucks traveling in a platoon. Yet, 

two trucks traveling side by side on highways 

consume 11% more. 

Beside the technologies developed for heavy duty 

vehicles similar technologies were and are being 

developed for passenger cars. For instance, Stanger 

and Del Re (Stanger and del Re, 2013) developed a 

linear predictive control model that directly optimizes 

the fuel consumption of the vehicles inside the 

platoon. A simplified car-following model was 

adopted, and a quadratic approximation of the fuel 

consumption was chosen, they claim a 20% reduction 

in fuel. Other elaborate models were also proposed. 

For example, using a non-linear vehicle model, 

Schmied et al. (Schmied et al, 2015) have developed 

a non-linear model predictive control (NMPC) logic 

that takes into account various non-linear constraints. 

It is important to mention here that the nonlinear 

nature of the model presents a computational burden 

preventing its real-time implementation. 

Nevertheless, the controller was tested using a 

hardware-in-the-loop (HIL) configuration and the 

authors claimed 13% reduction in fuel consumption 

as well as 24% reduction in NOx emissions. With the 

benefits provided by the platoon, it is important to 

note some of the disadvantages it has. These 

drawbacks are partly related to the extreme case. 

Specifically, long platoons and platoons that are near 

an entrance ramp do cause merging failures and 

congestion, where the incoming vehicles find no 

proper gap to merge (Wang, Maarseveen, Happee, 

Tool, and Arem, 2019).  

The present effort delivers a platooning logic 

principally inspired by a change of variables. It 

extends the literature in the following aspects: (1) it 

considers platoons of arbitrary lengths; (2) the 

platoons are formed and broken in a dynamic fashion; 

(3) realistic vehicle dynamics are considered in the 

plattoning and (4) the algorithm is tested on a large-

scale virtual implementation. In order to simplify the 

analysis, and primarily due to the lack of an 

aerodynamic drag coefficient function that 

determines the subject force on the trailing vehicle 

when the two considered vehicles are of significantly 

different sizes (i.e., a truck and a car), this paper 

addresses platoons composed only of passenger 

vehicles. Buses and trucks are not considered. The 

same algorithm will operate with all types of vehicles, 

given that the correct dynamic behaviour information 

associated with the considered vehicle is available. In 

the following section, we detail the dynamic forces a 
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vehicle can be subject to as well as the dynamic and 

kinematic constraints. Details of the controller and 

the simulation setup are presented in the same section. 

In the third section, results are presented and finally 

concluding remarks and future work are presented. 

2 METHODOLOGY AND 

FORMULATION 

In this section, the vehicle dynamic model, associated 

constraints, the proposed platooning controller as 

well as the test settings are presented.  

2.1 Vehicle Dynamic Model and 
Constraints 

Vehicles on the road are subject to various external 
forces and constraints. These include, dynamic 
forces, such as tractive and resistive forces, velocity, 
and acceleration constraints (H. Rakha, Pasumarthy, 
P., and Adjerid, S., 2009).  The tractive force is 
defined in Equation (1), the resistive force is the sum 
of the aero dynamic resistance Ra (Equation (2)), 
rolling resistance Rr (Equation (3)) and grade 
resistance Rg (Equation (4)). Therefore, the upper 
bound for the acceleration is given by Equation (5) 
(Hesham Rakha & Ahn, 2004; H. Rakha, Lucic, 
Demarchi, Setti, & Aerde, 2001). The variables 
introduced in Equations (1)-(7) are summarized in 
Table 2. 
 

𝐹 = min (
3600𝜂𝑑𝑃

𝑣
,𝑚𝑡𝑎𝑔𝜇) (1) 

𝑅𝑎 =
𝜌𝐶𝑑𝐶ℎ 𝐶𝑓 𝐴𝑓𝑣

2

2
 (2) 

𝑅𝑟 = 𝑚𝑔𝐶𝑟0(𝐶𝑟1𝑣 + 𝐶𝑟2) 
 

(3) 

𝑅𝑔 = 𝑚𝑔𝐺 
 

(4) 

𝑎𝑚𝑎𝑥(𝑡) =
𝐹(𝑡) − 𝑅𝑎(𝑡) − 𝑅𝑟(𝑡) − 𝑅𝑔(𝑡)

𝑚
 (5) 

The airflow subject to the current vehicle might 

be altered due to the presence of another vehicle in 

front. We introduce the drag corrective factor 𝐶𝑓  to 

capture the impact of platooning on the vehicle drag 

coefficient (Equation (6)) (Hussein and Rakha, 2020). 

𝐶𝑓 = {
𝑎 𝐺𝑏 + 𝑐   𝑖𝑓 𝐺 ≤ 𝐺0
1              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

where, 𝐺 is the gap in meters and 𝑎, 𝑏, and 𝑐 are 
calibrated constants. The critical gap value, 𝐺0 
depends on the type of the vehicle. Table 1 presents 
the different parameters that can be used in the model 

depending on the position of the vehicle in the platoon. 
For further details about this model the reader is 
referred to the work in (Hussein and Rakha, 2020).  

Table 1: Values of the parameters for Equation (6), for 

various vehicle positions in the platoon, based on (HUSSEIN 

& RAKHA, 2020). 

Vehicle 

position 

Parameters 

𝑎 𝑏 𝑐 𝐺0 (𝑚) 

Lead -0.89 -1.67 1.02 - 

Middle -0.90 -0.51 1.14 39.62 

Trail 0.60 0.12 1.14 79.75 

 

The maximum deceleration a vehicle can experience 

is given by Equation (7) 
 

𝑎𝑚𝑖𝑛  =  −(𝐺 + 1)𝑔 𝜇 𝑏𝑒 (7) 

Table 2: Description of the various variables. 

Variable Description 

𝜂𝑑  driveline efficiency (unitless) 

𝑚𝑡𝑎 mass of the vehicle on the tractive axle (kg) 

𝑃 vehicle power (kW) 

𝑔 gravitational acceleration (m/s2) 

𝜇 coefficient of road adhesion or the coefficient of 
friction (unitless) 

𝜌 air density at sea level (kg/m3) 

𝐶𝑑 vehicle drag coefficient (unitless) 

𝐶ℎ altitude correction factor (unitless) 

𝐶𝑓 Drag a correction factor (unitless) 

𝐴𝑓  vehicle frontal area (m2) 

𝐶𝑟0 rolling resistance constant that varies as a function 
of the pavement type and condition (unitless) 

𝐶𝑟1 second rolling resistance constant (h/km) 

𝐶𝑟2 third rolling resistance constant (unitless) 

𝑚 total vehicle mass (kg) 

𝐺 roadway grade (unitless) 

𝑏𝑒 braking efficiency 

 

where 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 are the absolute bounds for the 

acceleration of the vehicle. However, when there are 

other vehicles on the road collision avoidance is of 

utmost importance. Therefore, another constraint on 

the acceleration is introduced. This constraint has the 

exclusive role of decelerating the vehicle to a velocity 

that of the vehicle ahead of it while at the same time 

keeping adequate spacing. To avoid collision, the 

minimum deceleration is given by Equation       (8). 

𝑎𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  =
𝑏𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠
2

(𝑏𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑔 𝐺𝑟 )
       (8) 

where, 𝑏𝑑𝑒𝑠𝑖𝑟𝑒𝑑   is the desired deceleration level,  
 

𝑏𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠=
(𝑣𝑛

2 − 𝑣𝑛−1
2 + √(𝑣𝑛

2 − 𝑣𝑛−1
2 )2)

4 (𝑥𝑛−1 − 𝑥𝑛 − 𝑠𝑗)
 

(9) 
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where, 𝑣𝑛 is the velocity of the current vehicle, 𝑣𝑛−1 

is the velocity of the vehicle ahead of it, 𝑥𝑛  is the 

position of the current vehicle, 𝑥𝑛−1 is the position of 

the vehicle ahead, and 𝑠𝑗  is the spacing at jam 

conditions. 𝑏𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠  is the deceleration level 

needed for the following vehicle to reduce its speed 

to that of the vehicle in front with the stopping 

distance being equal to the distance gap separating 

them. Therefore, the acceleration of any given vehicle 

needs to satisfy the following conditions. 
 

{
𝑎𝑛(𝑡) ≤  𝑎𝑚𝑎𝑥(𝑡)                                     𝑖𝑓 𝑎𝑛  > 0

𝑎𝑚𝑖𝑛(𝑡) ≤  𝑎𝑛(𝑡) ≤  𝑎𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝑡)       𝑖𝑓 𝑎𝑛 ≤ 0 
 (10) 

 

The RPA car-following model (Hesham Rakha, 

Pasumarthy, & Adjerid, 2009) accounts for the 

constraints on the acceleration in the perspective of 

velocity. The velocity of the vehicle following 

another one needs to satisfy the condition presented 

in Equation (11), (Bichiou & Rakha, 2019). 

 

𝑣𝑛(𝑡 + ∆𝑡) = 𝑚𝑖𝑛

{
  
 

  
 

𝑣𝑛(𝑡) + 𝑎𝑚𝑎𝑥(𝑡) ∆𝑡

−𝑐1 + 𝑐3𝑢𝑓 + 𝑠𝑛(𝑡 + ∆𝑡) − √𝐴

2 𝑐3

√𝑣𝑛−1(𝑡 + ∆𝑡)2 + 2 𝑏𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (𝑠𝑛(𝑡 + ∆𝑡) −
1

𝑘𝑗
)

 (11) 

 

where,  

               𝑐1 =
𝑢𝑓

𝑘𝑗 𝑢𝑐
2 (2 𝑢𝑐 − 𝑢𝑓), 

𝑐2 =
𝑢𝑓

𝑘𝑗 𝑢𝑐
2 (𝑢𝑐 − 𝑢𝑓)

2
, 

𝑐3 =
1

𝑞𝑐
−

𝑢𝑓

𝑘𝑗𝑢𝑐
2, 

𝑠𝑛(𝑡 + ∆𝑡) = 𝑠𝑛(𝑡) + [𝑣𝑛−1(𝑡) − 𝑣𝑛(𝑡)]∆𝑡 +
0.5𝑎𝑛−1(𝑡)∆𝑡

2, 

𝐴 = [𝑐1 + 𝑐3𝑢𝑓 − 𝑠𝑛(𝑡 + ∆𝑡)]
2

−  4 𝑐3[𝑠𝑛(𝑡 + ∆𝑡) 𝑢𝑓 − 𝑐1𝑢𝑓 − 𝑐2] 
 

𝑢𝑓  is the free flow velocity, 𝑢𝑐  is the velocity at 

capacity ( 𝑢𝑐 ≈ 0.85 𝑢𝑓  based on empirical 

observations), 𝑘𝑗  is the jam density, and 𝑞𝑐  is the 

saturation flow rate. The car following model 

presented in Equation (11) is enforced at all times 

throughout the simulation. 

2.2 Proposed Controller 

In order to sustain a constant time gap between two 

consecutive vehicles, the introduction of a controller 

is necessary. The controller’s objective is to maintain 

a constant/desired time gap ( ℎ𝑑𝑒𝑠 = 0.6 𝑠) (Loulizi, 

Bichiou, & Rakha, 2019). This can be achieved by 

driving the error function –which transforms the 

desired time gap to a distance gap between two 

consecutive vehicles– defined in Equation (12) to 

zero. This can be accomplished by allowing 

consecutive and corrective acceleration or 

deceleration inputs to following vehicle. One of the 

simple ways of achieving this is presented in 

Equation (13).  
 

𝑒𝑛(𝑡) = [𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝑠𝑗]

− ℎ𝑑𝑒𝑠 × 𝑣𝑛(𝑡) 
(12) 

𝑑

𝑑𝑡
(𝑒𝑛(𝑡)) = −𝜆 𝑒𝑛(𝑡) (13) 

  
where 𝜆  is a strictly positive real number. The 

solution to Equation(13) is given by  
 

 𝑒𝑛(𝑡) =  𝑒𝑛(0) 𝑒𝑥𝑝[−𝜆 𝑡]  

which guaranties that  𝑒𝑛(𝑡)  converges to zero as 

time increases, provided 𝜆  is strictly positive. 

Substituting Equation (12) into(13) leads to  

 

𝑎𝑛 =
−𝜆 𝑒𝑛(𝑡) + 𝑣𝑛−1 − 𝑣𝑛

ℎ𝑑𝑒𝑠
 (14) 

namely, 

𝑎𝑛(𝑡) =
1

ℎ𝑑𝑒𝑠
[−𝜆 (𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝑠𝑗)

+ 𝑣𝑛−1(𝑡)

+ (𝜆 ℎ𝑑𝑒𝑠 − 1)𝑣𝑛(𝑡)] 

(15) 

Equation (15) requires knowledge of the difference in 

position between two consecutive vehicles as well as 

their respective velocities, which can be achieved by 

having sensors on the vehicles or through V2V 

communication. The presented controller has one 

hyper-parameter (𝜆). The amount of data that needs 

to be transferred between the vehicles is minimum 

(i.e., the velocity and the position of the vehicle 

ahead). It is also possible to avoid this transfer of 

information by measuring the position and velocity of 

the vehicle ahead using radar. It is also important to 

note that the computed value for the acceleration 

𝑎𝑛(𝑡)  need to satisfy conditions presented in 

Equation (10).  

2.3 Simulation Setup  

In this paper we consider testing the proposed 

platooning controller on downtown Los Angeles, 

specifically, the highway stretches that traverse it 

from north to south and east to west. The total length 

selected for the platooning is approximately 123 km. 

The selected area is shown in Figure 1. 

The network was modelled using the 

INTEGRATION software (H. A. Rakha & Van 

Aerde, 2020a, 2020b). The vehicle dynamic model, 

dynamic constraints, and car-following model 

presented in Section 2.1 are implemented in the 
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software and are enforced all the time. The traffic 

demand was calibrated using loop detector data by 

computing the maximum likelihood static OD matrix 

using procedures described in (Van Aerde, Rakha, & 

Paramahamsan, 2003) and then adjusting the static 

OD matrix to compute the dynamic OD matrix using 

procedures described in (Yang and Rakha, 2019). A 

detailed description of the calibration effort can be 

found in (Du, Rakha, Elbery, and Klenk, 2018). This 

resulted in a total of approximately 144,000 trips over 

1-hour simulation. The selected highways do have 

different lane counts. This count ranges from 3 lanes 

to 6 lanes. For the purpose of this study, we selected 

the two most left lanes as the lanes where we activate 

platooning. In addition, we assumed a single vehicle 

type, that is the 2018 Toyota Camry LE 2.5, one of 

the most popular models sold in the USA. Its 

characteristics are simulated in INTEGRATION 

software. The fleet of Toyotas are subdivided into two 

classes: class 1 and class 2. Class 1 are the Toyotas 

that do not form or join a platoon (non-CACC 

equipped vehicles). Class 2 are the Toyotas that do 

form and if possible, join other created platoons 

(CACC-equipped vehicles). The ratio of class 2 with 

respect to class 1 was selected to be the variable to 

discern the effects of various MPRs.  

 

Figure 1: Downtown Los Angeles network, red represents 

freeway links for platooning. 

Vehicle’s fuel consumption is modelled using the 

VT-CPFM-1 model presented in Equation (16) (Ahn 

& Rakha, 2019), which is included in the 

INTEGRATION software. 
 

𝐹𝐶 = 𝛼0 + 𝛼1𝑃 + 𝛼2𝑃
2 + 𝛼3𝑣 (16) 

  

where, 𝑃 is the vehicle’s power and 𝑣 is the vehicle’s 

velocity. The vehicle’s power is the product of the 

force experienced by the vehicle and its velocity. 

𝑃 = 𝐹𝑒 𝑣 
(17) 

  

where, 

𝐹𝑒 = 𝑚𝑔𝐺 +
𝑚𝑔 cos(𝜃) 𝐶𝑅0𝐶𝑅2

1000
+ 𝑚 𝑎

+
𝑚𝑔 cos(𝜃) 𝐶𝑅0𝐶𝑅1

1000
 𝑣

+
1

2
𝜌 𝐶𝑑 𝐶ℎ 𝐴𝑓 𝑣

2 

(18) 

and 𝑎  is the vehicle’s acceleration, this model was 

validated in (Dion, Rakha, & Kang, 2004). The delay 

that can be experienced by vehicles is computed using 

Equation (19). 
 

𝑑𝑒𝑙𝑎𝑦 =∑
𝑢𝑓 − 𝑣

𝑢𝑓
 ∆𝑡

𝑡

 (19) 

 

where 𝑢𝑓 is the free flow velocity on a given link. 

3 RESULTS AND DISCUSSION 

In order to account for varying traffic conditions from 

one day to another, simulations with various random 

seeds were performed. First, we wanted to determine 

the best platooning configuration to adopt. A series of 

simulations were performed using the configurations 

listed in Table 3. 

Table 3: Tested platooning configurations. 

Config. Details 

A Platooning on all lanes of the highway  

B Platooning on all lanes of the highway – platoon size 
limited to 24 cars 

C Platooning on 1 lane  

D Platooning on 1 lane – platoon size limited to 24 cars 

E Platooning on 2 lanes – platoon size limited to 24 cars 

 

Noting that in some configurations of Table 2 (B, 

D, and E) platooning is enforced on individual links 

in a disconnected manner from the links that follow. 

The average link length is 500 m, the speed limit (i.e., 

platooning speed) is 25 m/s, the selected time gap is 

ℎ𝑑𝑒𝑠 = 0.6 𝑠  (Loulizi et al., 2019), and a single 

vehicle occupies 21 m. Therefore, 500 m contains 

approximately 24 vehicles. Platoons are formed in a 

dynamic manner. Any vehicle attempting to join a 

platoon can increase its velocity by up to 7% beyond 

the speed limit (i.e., platooning speed) for a maximum 

duration of 6.5 s. If the vehicle is unable to join the 

platoon within this time frame, a new platoon is 

formed with this vehicle as a lead vehicle. These 

parameters are user-specified and thus can be varied. 

The average results of five random seeds are 

presented in Table 4. It is clear from Table 4 that 

configuration E has the best performance. This 
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corresponds to travel time, delay and fuel 

consumption reduction of 7.74%, 13.6% and 11.42% 

respectively. This configuration stipulates that 

platooning is enforced on the two leftmost lanes while 

limiting the size of the platoon. Therefore, in the 

subsequent simulations, we will only consider 

configuration E.  

Table 4: Results for the configurations in Table 3. 

 Travel 
Time (s) 

Total 
Delay(s) Fuel (l) 

TT 
Change 

(%) 

Delay 
Change 

(%) 

Fuel 
Change 

(%) 

Base 1032.6 561.7 0.89    

A 1056.0 566.2 0.74 2.27 0.80 -16.48 

B 1085.7 587.2 0.84 5.15 4.54 -5.50 

C 993.3 513.4 0.88 -3.81 -8.60 -1.19 

D 1036.6 568.0 0.88 0.38 1.13 -0.72 

E 952.6 485.3 0.79 -7.74 -13.60 -11.42 

 

In order to further investigate the effectiveness of the 

platooning controller, we ran simulations with ten 

random seeds at different MPRs. An average of the 

results is presented in Table 5.  

Table 5: Average performance metrics. 

MPR 
(%) 

Travel 
Time (s) 

Total 
Delay 

(s) 

Fuel (l) 
TT 

Change 
(%) 

Delay 
Change 

(%) 

Fuel 
Change 

(%) 

0 986.2 519.5 0.862    

1 1008 538.2 0.873 2.19 3.60 1.28 

5 980 511.7 0.857 -0.67 -1.50 -0.59 

10 990 524.8 0.863 0.36 1.02 0.17 

15 1005 536.0 0.868 1.92 3.19 0.72 

20 1001 530.6 0.863 1.50 2.14 0.18 

30 948 481.7 0.831 -3.93 -7.27 -3.61 

40 961 497.2 0.836 -2.52 -4.28 -3.02 

50 979 513.9 0.840 -0.75 -1.07 -2.58 

60 945 481.8 0.813 -4.21 -7.25 -5.63 

70 954 488.8 0.811 -3.31 -5.91 -5.91 

80 937 470.7 0.791 -5.02 -9.40 -8.17 

90 968 497.9 0.801 -1.81 -4.16 -7.09 

100 995 522.8 0.809 0.85 0.64 -6.15 

 

Table 5 shows the average travel time, delay and 
fuel consumed for all vehicles in the network at 
various MPRs. We can clearly discern that up to an 
MPR of 20 % no significant advantage is provided by 
the CACC platooning. In fact, the performance 
metrics are about the same. Starting from an MPR of 
30%, we observe a reduction up to 5% in travel time, 
a reduction up to 9.4% in delay, and a reduction 
between up to 8.17% in fuel consumption. It is 
important to mention here that the RPA car-following 
model and collision avoidance (Hesham Rakha et al., 
2009) are enforced at all times between all the 
vehicles (platooned and non-platooned). This finding 
demonstrates that efficient movement of a subset of 

vehicles inside a large network leads to an improved 
mobility for the entire network. Figure 2,  

Figure 3, and Figure 4 present a scatter plot of the 

reduction in travel time, delay and fuel consumption 

reported in Table 5. Even though various seeds were 

used for the simulation, the plots stress the reduction 

in the mentioned performance metrics. The slope of 

the decline of the fuel consumption is steeper than the 

other measures of effectiveness. This is essentially 

due to the significant reduction in the aerodynamic 
 

 

Figure 2: Scatter Plot of the Travel Time Reduction 

Percentage as a Function of the MPR. 

 

Figure 3: Scatter plot of the delay reduction percentage as a 

function of the MPR. 

 

Figure 4: Scatter plot of the fuel consumption reduction 

percentage as a function of the MPR.  
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force to which the platooned vehicles are subjected 

and therefore the vehicle needs less energy to 

overcome that force. The slope for the reduction in 

travel time, delay, and fuel consumption are 

approximately -3.5%, -6.9%, and -9% respectively. 

The respective coefficients of determination (𝑅2) are 

0.23, 0.28, and 0.87 which further stresses the steep 

reduction in fuel consumption due to platooning. 

4 CONCLUSIONS 

In this paper, an input minimal platooning controller 

is presented. This logic takes into account various 

dynamic and kinematic constraints that vehicles 

experience. These include acceleration, velocity, and 

collision avoidance constraints. This controller was 

later applied on the highways in downtown Los 

Angeles in the INTEGRATION software. The results 

suggest a clear trend towards a reduction in system-

wide travel time, delay and notably fuel consumption. 

The average reduction in travel time for all the MPRs 

is up to 5%. The average reduction in delay as well as 

fuel consumption (and ultimately CO2 emissions) are 

up to 9% and 8%, respectively. These results are for 

the fleet of all vehicles, platooned and non-platooned 

traveling through the downtown area. This leads us to 

deduce that controlling the trips of a subset of 

vehicles inside a large network does have the 

potential to benefit other road users in a positive 

manner.  In the future work, we will be conducting a 

detailed investigation on the performance of this 

controller on a mixed platoon comprised of 

conventional, hybrid and electrical vehicles at various 

MPRs.  
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