
An Asynchronous Federated Learning Approach for a Security Source
Code Scanner

Sabrina Kall1 and Slim Trabelsi2
1EPFL, Lausanne, Switzerland

2SAP Labs France, Mougins, France

Keywords: Federated Learning, Machine Learning, Cyber Threat Intelligence, Password Detection, Privacy, Security,
Threat Awareness, Personalization.

Abstract: Hard-coded tokens and secrets leaked through source code published on open-source platforms such as Github
are a pervasive security threat and a time-consuming problem to mitigate. Prevention and damage control can
be sped up with the aid of scanners to identify leaks, however such tools tend to have low precision, and
attempts to improve them through the use of machine learning have been hampered by the lack of training
data, as the information the models need to learn from is by nature meant to be kept secret by its owners. This
problem can be addressed with federated learning, a machine learning paradigm allowing models to be trained
on local data without the need for its owners to share it. After local training, the personal models can be merged
into a combined model which has learned from all available data for use by the scanner. In order to optimize
local machine learning models to better identify leaks in code, we propose an asynchronous federated learning
system combining personalization techniques for local models with merging and benchmarking algorithms
for the global model. We propose to test this new approach on leaks collected from the code-sharing platform
Github. This use case demonstrates the impact on the accuracy of the local models employed by the code
scanners when we apply our new proposed approach, balancing federation and personalization to handle often
highly diverse and unique datasets.

1 INTRODUCTION

The recent explosion of data resources has opened up
a world of possibilities for machine learning, which
relies on large amounts of data to improve its accu-
racy. However, gathering the data for training remains
a challenge, especially as data owners become more
aware of the security and privacy risks involved in
sharing potentially sensitive information. Cleaning
and labelling the data is also a bottleneck, often re-
quiring human intervention.

Federated learning provides a solution to these
problems. Instead of pooling data, machine learn-
ing models are brought to the local machines of the
data owners. The owners can personally label their
smaller, to them better-known datasets, and train the
models on their machines, then share the resulting
weights with the central node. The central node
merges the weights to create a final global model
which has learned from all the available data (Yang
et al., 2019), (Li et al., 2020), (Kairouz et al., 2019),
(McMahan et al., 2017). This process has already

been shown to work efficiently in real-world systems
such as Google’s next-word prediction learning task
for smartphone keyboards (Yang et al., 2018). How-
ever, federated learning also presents its own set of
challenges, in particular the lack of control offered to
clients, whose behavior is often dictated by the cen-
tral node, and the heterogeneity of the data between
edge node datasets.

We begin by addressing the issue of control. In
many federated learning processes, scheduling and
participation are dictated by the central node rather
than the clients. Of course in certain contexts, such as
extremely large systems with weak clients, this makes
sense. It would be prohibitively inconvenient, for ex-
ample, to ask smartphone users to decide whether
they want to share their keyboard data every single
time Google decides to retrain its next-word predic-
tion model. However, in a process with a smaller
set of more powerful data owners, these clients might
want to decide on a case-by-case basis when and
whether to contribute to learning. Motivations for this
decision can range from having a particularly vulner-

572
Kall, S. and Trabelsi, S.
An Asynchronous Federated Learning Approach for a Security Source Code Scanner.
DOI: 10.5220/0010300305720579
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 572-579
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



able dataset at a given iteration to not having enough
data or hardware capability at the time chosen by the
central server.

We also address the issue of data heterogeneity
across edge nodes. Federated learning clients tend
to have non-identically distributed data between each
other, with each participant having their own unique
patterns and particularities in its data, which can make
a generic global model a lose-lose solution. Our final
goal is therefore to create a set of local models that
work best for their respective clients, rather than the
optimal global model which federated learning sys-
tems usually aim for.

In this paper, we introduce an asynchronous feder-
ated learning process in which control of the learning
process has been shifted from the central server to the
edge nodes, reflecting a power dynamic more rem-
iniscent of a decentralized network than of the typ-
ical master-slave system. Clients can join or leave
the training process and share their weights with the
server as they please, to allow them to account for
particularly sensitive datasets they might prefer not to
share. They can also locally personalize the global
model to tailor it to the particular needs of their data.

We design this process specifically to be used with
SAP’s machine learning scanner, known as the Cre-
dential Digger1, a code review aide which allows
users to identify sensitive information such as pass-
words or access tokens in their Github repositories
that need to be removed before the code is pushed to
the platform. The scanner requires training data that
is by nature extremely private and difficult to obtain,
as few people would willingly hand over their pass-
words, especially labelled as such, which is why we
turn to federated learning. Working with the Creden-
tial Digger’s text-based machine learning models, we
show the viability of our process on a real-world case
using the Credential Digger to scan test data collected
from selected public Github repositories.

2 USE CASE

With more than 100 million repositories, GitHub2 is
the world’s largest hosting platform for collaborative
software development and version control. At least 28
million of these repositories are publicly accessible,
and a 2019 survey of 13% of them revealed that, at a
conservative estimate, over 100’000 repositories con-
tain sensitive information such as passwords or access
tokens, with thousands of leaks more being published
each day (Meli et al., 2019).

1https://github.com/SAP/credential-digger
2https://www.github.com

While there exist scanners such as TruffleHog3

to identify these leaks so that they can be removed,
these tools have been found to suffer from a high rate
of false positives (Meli et al., 2019), flooding users
with hits incorrectly identified as sensitive informa-
tion and concealing the true leaks in the metaphorical
haystack.

To remedy this problem, SAP developed the Cre-
dential Digger, a scanner using machine learning to
classify hits into actual leaks and false positives to
make it easier for developers to find and remove sen-
sitive information from their repositories before they
are published. The tool first scans a repository using
regular expressions to identify potential leaks, then
feeds each hit into two shallow neural networks for
text classification, which analyze the path (for exam-
ple to exclude documentation) and the code snippet to
decide whether it is a true secret or a false positive, as
seen in Figure 1. Once the scanner has classified the
hits, they are displayed to the user, who can manually
fix their code, validating the labels in the process and
generating a new labelled training set for the models.
Currently, the tool is trained using both real and syn-
thetic data. However, the volume and the diversity of
the real data is not sufficient to cover all the program-
ming languages and the coding styles of the develop-
ers. Since it is hard for a single research team to man-
ually gather, classify and label the required amount
of training data, the federated learning approach with
different external contributors appears to be the best
solution to reach a decent amount of exploitable train-
ing data.

We started by testing a traditional asynchronous
federated learning process, which gave us wildly
divergent results when applying the final averaged
model to local clients due to their heterogeneity. For
this reason, we developed a new approach enhanc-
ing the existing solutions and algorithms in order to
provide more accurate models tailor-made for each
client.

3 RELATED WORK

There has been extensive work in recent years in the
field of federated learning (Yang et al., 2019), (Li
et al., 2020), (Kairouz et al., 2019), particularly since
the Google keyboard experiment of 2016 (McMahan
et al., 2017), (Yang et al., 2018), (Sprague et al.,
2019). Federated learning comes in synchronous and
asynchronous flavors, with different types of schedul-
ing for the federated nodes. We ourselves use an asyn-

3https://github.com/dxa4481/truffleHog

An Asynchronous Federated Learning Approach for a Security Source Code Scanner

573



Figure 1: Architecture of the Credential Digger Tool.

chronous process, allowing clients to participate in
their own time.

Personalization of machine learning models
(Mansour et al., 2020), (Wang et al., 2019) currently
focuses mostly on synchronous learning. Techniques
such as data interpolation and model interpolation
help clients adapt generic global models to their own
specific use cases by respectively retraining models
on their own data or averaging their results with lo-
cally trained models before use. We incorporate these
two methods in our learning process to allow edge
nodes to tailor their models to their specific data,
overcoming the issue of heterogeneity among client
datasets.

A further avenue of research goes into different
merging algorithms to combine client models at the
server (McMahan et al., 2017), (Xie et al., 2019),
(Sahu et al., 2018), (Wang et al., 2020), (Yurochkin
et al., 2019). This ranges from the original FedAvg
algorithm, which merges the weights layer-wise, to
more complex and case-specific formulas such as
FedProx (Sahu et al., 2018) or FedMa (Wang et al.,
2020). After testing several of these algorithms, we
have found empirically that in our case, the best solu-
tion is the FedAsync (Xie et al., 2019) algorithm.

Finally, there exist several frameworks for feder-
ated learning, most notably Tensorflow Federated 4

and PySyft 5. We tested both of them, but ultimately
found it difficult to integrate our pre-existing machine
learning models and to adapt the relatively inflexi-
ble set-ups to our specific use case, which is why we
make our own from scratch.

4 IMPLEMENTATION

We implement our asynchronous federated learning
system in the following way. Clients receive generic

4https://www.tensorflow.org/federated
5https://github.com/OpenMined/PySyft

models trained on synthetic data from a central server.
When they have access to fresh data, these clients can
retrain their local model and share its weights with
the server. The server can then merge the received
model weights with the old model weights and, if it
is not deteriorated according to a server benchmark,
redistribute the merged model weights to all the other
clients to let them profit from the additional training
as well. Below is a breakdown of each of the compo-
nents of the learning process.

4.1 Architecture

We build our federated learning system as a network
of Credential Digger scanners at client nodes, con-
nected by a trusted central server. We consider our
edge nodes in this scenario to be development teams.
Developers run the Credential Digger on their repos-
itories, which shows them the suspected secrets and
proposes labels for them. Labels are either ”new dis-
covery” or ”false positive”. If the users wish to do
so, they can then manually fix faulty labels as they go
through the results to safeguard their repository. This
generates a new training dataset of code snippets with
manually corrected labels which can be used to re-
train the models. We assume that the users have the
necessary computing power to handle local retraining
and a sufficiently good network access to send and re-
ceive model weights to and from the central authority
running perpetually on a server safely accessible to
the developers. We also assume that none of the edge
nodes are malicious.

When the central server receives new model
weights from a client, it merges the weights with those
of its most recent model, and redistributes the new
weights to all its clients, the developers. These devel-
opers can update their tool and run a personalization
process on the models using their local datasets to tai-
lor the model to their local settings. We assume that
repositories within development teams will have sim-
ilar data. For example, a specific team will probably

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

574



use the same programming languages, paths, token
types and even passwords and dummy values across
repositories. The whole process can be seen in Figure
2.

One of the particularities our learning process
must account for is that for our models, a good re-
call is more important than a good precision. Indeed,
a false positive, for example a placeholder, being mis-
taken for real information is less serious than a real
secret being dismissed as a false positive by the mod-
els, as this makes it more likely for a user to overlook
a potentially dangerous leak. We therefore use pre-
cision, recall and f1-scores to benchmark our models
and design our algorithm to safeguard recall. Before
sharing new model weights, the server and edge nodes
alike test the models on the original synthetic dataset
to ensure that results are not degraded.

4.2 Benchmarking

The benchmarking function determines whether a
new model is good enough to be shared with the other
participants of the federated learning process. We
adapt it to our use case for the Credential Digger,
which needs a high recall to prevent the user from
overlooking potentially dangerous leaks. Our bench-
mark is described in Algorithm 1. The new model is
tested on all the available data of the model owner.
In the server’s case, this is the synthetic data used to
train the base model. Clients can use this synthetic
data as well as the local dataset provided by the user.
We compute the recall and the f1 score and verify that
neither is deteriorated. This way, we make sure that
recall is not abandoned in favor of precision. If the
new model is found to be at least as good as the old
model, it can be shared.

Algorithm 1: Federated Learning: compare.

Data: old model, new model, local data
1 recall ok = recall(old model , local data) 6

recall(new model, local data)
2 f1 score ok = f1(old model, local data) 6

f1(new model, local data)
3 return recall okay AND f1 score ok

4.3 Server-side Merging

Updating the central server weights with a client’s
new weights is done using the server side of the asyn-
chronous federated averaging algorithm FedAsync
(Xie et al., 2019). We found it empirically to be
the most effective merging algorithm for the Cre-
dential Digger’s shallow neural network models, as
well as the simplest. It consists of adding together

the weights of models layer-wise, with each model’s
weights scaled by a factor determined by the staleness
of the client model. Indeed, staleness is an important
characteristic to consider during asynchronous fed-
erated learning. If, for example, client a submits a
model based on the server model at round 5, but other
clients have already updated the server model multi-
ple times, so that it is now at round 15 (having been
incremented at each successive update), merging the
new server model with client a’s model has the poten-
tial to cause divergence because the weights are too
different. We therefore mitigate the power of client
a’s weights using a staleness function.

The central server starts out with the base model,
the round t = 1 and the scaling factor α = 0.5, which
was found to be optimal for FedAsync. In order
to merge a client’s weights into the server model, a
server must receive two values from said client: the
model weights themselves, but also the round τ be-
longing to the latest server model its new model is
based on.

The server then mitigates the effects of any stale
client models by adapting αt using the polynomial
staleness function:

αt = (t − τ+1)−α (1)

Layers of the model are then merged in the fol-
lowing way:

merged layer = (1−αt)∗ server layert

+αt ∗ client layerτ

(2)

The merged layers form a new model which is
locally tested using the synthetic data on which the
base model was trained, and benchmarked accord-
ing to our compare algorithm shown in Algorithm
1. If the model passes the test, it becomes the new
server model, and the server round is updated by one:
t = t + 1. The server redistributes the weights of
the new model along with the round to all its known
clients. The process in its entirety is described in Al-
gorithm 2.

4.4 Client-side Model Personalization

We assume that clients will have datapoints that are
more similar to each other than to datapoints of other
clients. Indeed, developers all have their own coding
habits which depend on many factors, such as the cod-
ing language or the occurrences of given keywords.
This kind of variation means that the most optimized
model for each developer may differ, and that forcing
a generic global model might erase such subtleties. It
is therefore beneficial for a client to personalize the

An Asynchronous Federated Learning Approach for a Security Source Code Scanner

575



Figure 2: Federated Learning: Overview.

Algorithm 2: FedAsync with staleness.

Data: initial model weights
Result: a model created through the fedasync

algorithm
1 server weights = initial model weights
2 α = 0.5
3 for round t in 1,2,3,... do
4 get (client weights, τ) from some client
5 αt = (t − τ+1)−α

6 βt = (1−αt)
7 for l in 1 to nb layers in model do
8 merged weights[l] = αt *

server weights[l] + βt *
client weights[l]

9 end
10 if compare(server model, merged model,

synthetic data) == True then
11 t = t + 1
12 server weights = merged weights
13 share (server weights, t) with clients
14 end
15 end

global model using its available local data. We ap-
ply two personalization techniques, model interpola-
tion and data interpolation (Mansour et al., 2020), de-
scribed respectively in Algorithm 4 and 5. The per-
sonalization processes are applied consecutively as
described in Algorithm 3.

4.4.1 Model Interpolation

In model interpolation, we reuse FedAsync to locally
average the client’s previously personalized model, if
one exists, and the server’s newly offered model. To
scale the weights, instead of worrying about staleness,
we try out different values from a cover of the (0, 1)-
range, as explained in Algorithm 4.

Algorithm 3: Federated Learning: update.

Data: local model, global model, local data
Result: an updated local model

1 new model = average models(global model,
local model)

2 if compare(local model, new model) == True
then

3 local model = new model
4 end
5 new model = refine(local model, local data)
6 if compare(local model, new model) == True

then
7 local model = new model
8 share local model with server
9 end

Algorithm 4: Federated Learning: average models.

Data: old model, new model
Result: an averaged model at least as good

as the old model
1 if old model exists then
2 best model = old model
3 for λ in [0.2, 0.4, 0.6, 0.8] do
4 avg model = (1- λ) * old model + λ *

new model
5 if compare(best model, avg model)

then
6 best model = avg model
7 end
8 end
9 end

10 else
11 best model = old model
12 end
13 return best model

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

576



4.4.2 Data Interpolation

The process of data interpolation is fairly straight-
forward. Whenever new data is provided, the client
adds it to their local data and refines the model on the
entire dataset, trying out a range of batch sizes β to
find the best one. This process is detailed in Algo-
rithm 5.

Algorithm 5: Federated Learning: refine.

Data: model, data
Result: the best possible model fit on the data

1 best model = model
2 for β in [16, 32, 48, 64] do
3 new model = model.fit on(data, β)
4 if compare(best model, new model) then
5 best model = new model
6 end
7 end
8 return best model

5 EVALUATION

We test our method in a real-world scenario: using the
Credential Digger to detect leaks in existing public
Github accounts. We apply our algorithm to both of
the available machine learning models, the model an-
alyzing code snippets as well as the model analyzing
file paths, and train them using manually harvested
data from Github. Throughout the training, we bench-
mark our federated learning process against the base
models trained using only synthetic data, as well as a
traditional learning process using all our training data.

5.1 Snippet Model

The goal of the snippet model is to analyze a pair of
words, a keyword and credential value, for example
("password", "snoopy"), and decide whether the
credential is real or not.

5.1.1 Dataset

We select at random five public Github accounts with
three repositories each, aiming for repositories whose
scan results return a decent number of potential
leaked credentials. The scan results are manually
labelled, written to file, and deleted after the end
of the simulation run to preserve the privacy of the
account holders. This yields a diverse dataset of
26’434 labelled code snippets. Furthermore, our base
model with which the server starts out is trained on
7478 generic (keyword, common password)

and (keyword, placeholder) combina-
tions, such as ("password", "snoopy") or
("token", "PUT_YOUR_TOKEN_HERE").

5.1.2 Simulation

We run a simulation of five clients, each representing
one of the Github accounts. At each round, one of the
clients picks one of the repositories of its account and
simulates a run of the Credential Digger and subse-
quent federated learning process on it. The resulting
model is tested at each client for that round using the
data from the account designated for testing.

5.1.3 Results

As can be seen in the results of Figure 3, our tai-
lored algorithm yields good results. The new real-
world data is too noisy and diverse for centralized
training to be effective, making the base model trained
on generic data imprecise, and the centralized model
trained on all our pooled data barely any better. How-
ever, the federated learning model, by personalizing
for each client and its dataset, manages to overcome
this challenge and improve the results.

A question we could ask ourselves is whether
sharing model weights through federated averaging is
useful in practice, or whether the improvement we see
is due solely to local personalization. To resolve this,
we look at the breakdown of the federated learning
process by client in Figure 5. We find that there are
variations in the recalls of clients when other nodes
share their weights, which tells us that there are in-
deed scenarios in which the federated averaging pro-
cess is impactful, with clients reacting to model up-
dates made by their peers.

5.2 Path Model

We then move on to test our path model, as seen
in Figure 1, which analyzes filepaths to determine
whether a file is likely to contain false positives, such
as test files or documentation.

5.2.1 Dataset

Once again, we select 5 random accounts from
Github, this time with 2 repositories each. Note that
repositories tend to contain fewer filepaths than snip-
pets, which reduces the size of our test dataset com-
pared to the snippet model evaluation. Path models
are also longer, giving us more data per datapoint,
meaning we must be cautious of overfitting. Dur-
ing labelling, each time a file contains even a single
true positive, it is marked as a true positive. In order

An Asynchronous Federated Learning Approach for a Security Source Code Scanner

577



Figure 3: Evolution of the models on a dataset of 26434 snippets over 15 rounds of federated learning, compared to an initial
base model of 7478 snippets and a centralized model trained on the whole training dataset.

Figure 4: Evolution of the models on a dataset of 314 filepaths over 10 rounds of federated learning, compared to an initial
synthetic base model of 1759 filepaths and a centralized model trained on whole training dataset.

to be considered a false positive, a file must contain
nothing but dummy discoveries. Our base model is
once again trained on a synthetic dataset with typical
test and documentation paths. The simulation occurs
analogously to the snippet model simulation.

5.2.2 Results

As shown in Figure 4, federated learning outperforms
the base model and even the centralized model thanks
to personalization, which, on the highly specific local
paths of repositories, greatly improves the local mod-
els. However, an analysis of the results suggests that
in this case, federated learning plays a far smaller role
than personalization, as filepaths tend to be extremely
specialized to their repositories.

6 CONCLUSION

Leaked credentials on open-source code-sharing plat-
forms represent a pervasive cybersecurity threat for
developers, and a time-consuming one to mitigate.
Machine learning can help, but requires very sensi-
tive training data and a lot of localized fine-tuning.
Current federated learning platforms and applications
are mainly focused on a centralized, synchronous ap-
proach where the unique features of local models are
neglected and accuracy achieved with local users is

penalized. The current existing solutions are not ef-
ficient with our use case. In this paper we propose a
new approach that takes into consideration the speci-
ficity of the local clients and reflects it on the accuracy
of the local models. We build an asynchronous feder-
ated learning and personalization system to give ma-
chine learning models access to private training data
and improve them for use with the Credential Digger
scanning tool. Through this system, users can itera-
tively improve the detection of hard-coded tokens and
secrets in their code while reducing the privacy and
security risk to their local training data. We demon-
strate the use and effectiveness of our system on data
from real-world public Github repositories. As fu-
ture work, we can enhance our solution with improve-
ments on the fronts of privacy, in order to safeguard
locally trained models during transfer and merging
(for example with differential privacy, homomorphic
encryption of the weights or secure multi-party com-
putation (Kairouz et al., 2019)), vocabulary expan-
sion, and staleness. We can also explore the gener-
alization of our federated learning pattern to other use
cases.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

578



New data

Figure 5: Evolution of the federated model on 26434 code
snippets over 15 rounds of federated learning, broken down
by client.

ACKNOWLEDGEMENTS

Many thanks to the creators of the Credential Digger,
Dr. Marco Rosa, Sofiane Lounici, Carlo Negri and
Jarod Cajna at SAP Labs, and to Prof. Boi Faltings at
EPFL.

REFERENCES

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z.,

Cormode, G., Cummings, R., D’Oliveira, R. G. L.,
Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M.,
Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson,
B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Kho-
dak, M., Konečný, J., Korolova, A., Koushanfar, F.,
Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M.,
Nock, R., Özgür, A., Pagh, R., Raykova, M., Qi, H.,
Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu,
H., and Zhao, S. (2019). Advances and open problems
in federated learning.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020).
Federated learning: Challenges, methods, and fu-
ture directions. IEEE Signal Processing Magazine,
37(3):50–60.

Mansour, Y., Mohri, M., Ro, J., and Suresh, A. (2020).
Three approaches for personalization with applica-
tions to federated learning.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data. In
AISTATS.

Meli, M., McNiece, M. R., and Reaves, B. (2019). How
bad can it git? characterizing secret leakage in public
github repositories. In NDSS.

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A.,
and Smith, V. (2018). On the convergence of feder-
ated optimization in heterogeneous networks. CoRR,
abs/1812.06127.

Sprague, M. R., Jalalirad, A., Scavuzzo, M., Capota, C.,
Neun, M., Do, L., and Kopp, M. (2019). Asyn-
chronous federated learning for geospatial applica-
tions. In Monreale, A., Alzate, C., Kamp, M., Kr-
ishnamurthy, Y., Paurat, D., Sayed-Mouchaweh, M.,
Bifet, A., Gama, J., and Ribeiro, R. P., editors,
ECML PKDD 2018 Workshops, pages 21–28, Cham.
Springer International Publishing.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and
Khazaeni, Y. (2020). Federated learning with matched
averaging.

Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays,
F., and Ramage, D. (2019). Federated evaluation of
on-device personalization. ArXiv, abs/1910.10252.

Xie, C., Koyejo, S., and Gupta, I. (2019). Asynchronous
federated optimization. CoRR, abs/1903.03934.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated
machine learning: Concept and applications. ACM
Trans. Intell. Syst. Technol., 10(2).

Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F. (2018). Applied
federated learning: Improving google keyboard query
suggestions.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. (2019). Bayesian non-
parametric federated learning of neural networks. In
Chaudhuri, K. and Salakhutdinov, R., editors, Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 7252–7261, Long Beach,
California, USA. PMLR.

An Asynchronous Federated Learning Approach for a Security Source Code Scanner

579


