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Abstract: OMG’s PSCS specification extends the execution model of fUML by precise runtime semantics for UML com-
posite structures. With composite structures being a concept for describing structural properties of a model,
the majority of execution semantics specified by PSCS concern analysis and processing of static information
about the model’s fine-grained structure at runtime. Using Model-To-Text-Transformation to generate source
code, which serves as an input for PSCS’s actual execution environment, the runtime level of model execution
can be relieved by outsourcing analysis and processing of static information to the level of code generation.
By inserting this step of preprocessing, the performance of the actual model execution at runtime can be im-
proved. This paper introduces an implementation of the PSCS specification for C++ based on code generation
using Model-to-Text-Transformation. Moreover, it presents a set of test models validating the correct func-
tionality of the implementation as well as a performance benchmark. The PSCS implementation presented by
this paper was developed as a part of the MDE4CPP∗ project.

1 INTRODUCTION

With Model-driven Architecture (MDA), the Object
Management Group (OMG) provides a standardized
approach to Model-driven engineering (MDE) tech-
niques. MDE, and respectively Model-driven Soft-
ware Development (MSDS) focusing specifically on
software development processes, suggest using mod-
eling languages to describe, represent and analyze
complex (software-)systems on higher levels of ab-
straction and use them to generate artifacts (e.g.,
source code) automatically throughout the whole de-
velopment process. By that, model-driven approaches
aim to increase flexibility, reusability as well as effi-
ciency of development processes (Stahl and Völter,
2005).

In the domain of systems and software engineer-
ing, OMG’s Unified Modeling Language (UML) has
established as a de facto standard for modeling lan-
guages (Hutchinson et al., 2011). One of the main ob-
jectives of MDA is the ability to execute UML mod-
els. That means being able to create executable ap-
plications directly from conceptual models, either by

∗See https://www.tu-ilmenau.de/sse/forschung/
projekte/mde4cpp/

complete transformation or by simulating the models
using an execution environment (OMG, 2014). With
UML, however, mainly being designed to be widely
applicable for all sorts of systems and software, and
aiming to be a tool for describing conceptual models
rather than being some sort of compilable program-
ming language, UML lacks precise semantical spec-
ification of its modeling concepts and metamodel el-
ements (Bedini et al., 2017). This circumstance in-
tuitively contradicts the idea of being able to execute
UML models like compilable source code. In 2011
OMG released the initial version of the fUML speci-
fication (Semantics of a Foundational Subset for Ex-
ecutable UML Models), which specifies precise exe-
cution semantics for a minimal subset of UML activi-
ties and classes (OMG, 2011). fUML makes it possi-
ble to realize executable activity diagrams being one
of the most widely used UML concepts for modeling
behavior in the industry (Hutchinson et al., 2011). In
2015 the OMG extended fUML by PSCS (Precise Se-
mantics of UML Composite Structures), which speci-
fies runtime semantics for UML composite structures
(OMG, 2015).

Composite structures are used to model the struc-
ture of systems as complex part-whole relationships.
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Such composite structures (metaclass StructuredClas-
sifier) can be described as a topology of parts (meta-
class Property whose AggregationKind is composite)
that are linked through connectors (metaclass Con-
nector) to form the internals of their owning element
(e.g., a Class or a Component) in terms of a network.
A classifier may also define interaction points (meta-
class Port) to model communication interfaces be-
tween itself (or its internal parts) and its environment.
Ports are dedicated parts that encapsulate the behav-
ior of their owning classifier (metaclass Encapsulat-
edClassifier) and specify its provided and required in-
terfaces (OMG, 2017).

The PSCS specification defines runtime semantics
for executable UML models that include Structured-
Classifiers, as well as EncapsulatedClassifiers. Like
fUML, PSCS provides a metamodel that describes an
execution environment to realize those runtime se-
mantics defined in the specification. In terms of struc-
tural semantics, PSCS specifies the lifecycle manage-
ment of composite structures at runtime (i.e., creation
and destruction of instances of composite structures).
In terms of behavioral semantics, PSCS defines how
instances of composite structures communicate with
each other. More precisely, the behavioral seman-
tics of PSCS specify how communication, either syn-
chronously using operation calls or asynchronously
using signals is forwarded through a network of in-
terconnected runtime objects (OMG, 2019). While
the latter concerns dynamic aspects of a model which
have to be evaluated at runtime, the structural seman-
tics of PSCS mainly focus on the analysis and evalu-
ation of static information of a model. That is, for ex-
ample, evaluating how composite structures and their
internal topologies have to be instantiated, depending
on the definition of their structural properties in the
model (e.g., their parts and ports, their connectors,
involved multiplicities, etc.). The fact that such in-
formation is static for a model and does not change
during execution gives us the ability to outsource its
analysis and evaluation to a step of preprocessing be-
fore the actual execution happens and thus decrease
the amount of data processing required at runtime.

Of course, since PSCS (as well as fUML) is
designed-platform independent and makes no as-
sumptions about the environment it is implemented
in, all of PSCS’s functionality is encapsulated in its
metamodel classes which form a pure virtual machine
for executing models (OMG, 2019). The aim of the
PSCS implementation presented by this paper is to
make use of auto-generated, model-specific source
code to form the basis of the model execution as an in-
put for PSCS’s actual execution environment. By that,
the required functionality for executing PSCS models

concerning analysis and processing of static, struc-
tural information about the model (which is known
at generation time and does not change as long as
the underlying model does not change) can be out-
sourced from the execution environment itself to the
process of code generation. The described approach
should reduce computation overhead during execu-
tion because the evaluation of structural model infor-
mation (which is a significant part of PSCS’s runtime
functionality) is done only once during generation in-
stead of multiple times at runtime during the actual
model execution.

Section 2 shows the realization workflow of the
PSCS implementation that is introduced by this pa-
per and selected design challenges and how they were
solved. Section 3 presents how the implementation’s
conformance to the original specification and its cor-
rect functionality were validated as well as a perfor-
mance evaluation. The results of the validation pro-
cess and possible future work are ultimately discussed
in section 4.

2 METHODOLOGY

This section describes the design workflow and
the components that were implemented to realize a
model-driven implementation of the PSCS specifica-
tion. One of the major challenges was the porting of
PSCS’s concept of links, that connect runtime objects
to form a topology, to the level of source code genera-
tion as well as the resulting requirements for memory
management. Details on how those challenges were
solved will also be explained in this section.

2.1 Workflow

The realization of the PSCS specification presented
by this paper is based on the MDE4CPP project (Sys-
tems and Software Engineering Group, 2016), which
develops an open-source framework for MDSD us-
ing C++. Being one of the most important third party
components of the MDE4CPP framework, the Eclipse
Modeling Framework1 (EMF) is used as the founda-
tional toolset for creating and analyzing models as
well as developing the source code generation facil-
ities required for the implementation of PSCS pre-
sented by this paper.

MDE4CPP provides model-driven implementa-
tions for the meta models of UML as well as
fUML (which are required for implementing PSCS).
Eclipse’s Ecore model is used as the meta meta

1see https://www.eclipse.org/modeling/emf/
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model, because it is well integrated into EMF. More-
over, MDE4CPP provides generators for Ecore mod-
els as well as UML/fUML models (Jäger et al., 2016),
which are implemented using the open-source code
generator tool Acceleo (Eclipse Foundation, 2018).

As described before, not all functionalities of the
PSCS meta model can be substituted by static code
generation. In the presented implementation, func-
tionalities that concern dynamic aspects of a model at
runtime shall remain in the meta model. For realiz-
ing the PSCS meta model as the first step, a machine-
readable representation in the form of an XMI model
provided by OMG was used, which was manually
converted into an Ecore model. Because Ecore’s
structure is realized mostly equivalent to EMOF2

(Steinberg et al., 2009), it only provides capabilities to
describe a models structure but not its behavior. The
model’s behavior was implemented using annotations
that carry the functionality of the model classes in the
form of C++ source code. Based on the implemented
PSCS Ecore model, a C++ library of the model is gen-
erated using MDE4CPP’s Ecore4CPP generator (Sys-
tems and Software Engineering Group, 2016).

In order to outsource parts of PSCS’s functionality
to code generation, those semantical aspects that are
suitable to do so have to be identified. After an eval-
uation of the structural semantics of PSCS, two main
aspects were chosen to be implemented generation-
based:

1. Instantiation of composite structures, which in-
cludes:

• Recursive instantiation of parts and ports
• Instantiation and extraction of links acting as

connections between runtime objects, respec-
tively creating and retrieving runtime topolo-
gies

• Object creation based on default values, which
are modeled using instance specifications

2. Destruction of objects in the context of composite
structures, which includes:

• Recursive destruction of part and port instances
• Destruction of corresponding links, respec-

tively cleanup of runtime topologies after ob-
ject destruction

The corresponding functionalities were implemented
as extension modules for the existing generators
UML4CPP (Jäger et al., 2016) and fUML4CPP (Be-
dini et al., 2017), which produce model-specific
source code for the generated model libraries that
substitutes the functionalities which were outsourced

2Essential MOF - an essential subset of OMG’s Meta
Object Facility

from the meta model. Other functionalities of PSCS
remain in the meta model, respectively the model li-
brary generated from the corresponding PSCS Ecore
model, which is linked with the generated model-
specific source code during compilation to produce
executable applications. Figure 1 depicts this process.
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Figure 1: Resulting workflow for executable PSCS models
and integrated components.

2.2 Generation-based Realization of
Runtime Links

On the model level, parts and ports can be con-
nected via connectors to form an internal network
of a composite structure. In PSCS links (metaclass
CS Link) represent instances of connectors that inter-
connect specific runtime objects during model exe-
cution. That means that in the metamodel of PSCS,
links are instances (objects in the term of program-
ming languages) of a metaclass that explicitly carry
information about which objects they connect. C++
itself does not provide any concept for generically
connecting arbitrary objects with each other. To be
able to implement PSCS’s object instantiation and de-
struction semantics on the level of automated source
code generation, a concept to represent links implic-
itly was developed. Consider the example classes of
figure 2.

Because of association A left right, class Left has
an attribute my right : Right and class Right has n at-
tribute my left : Left. Assume that we want to model
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Left Right
my_left

my_right0..*

0..*

A_left_right

Figure 2: Class diagram showing two classes Left and Right
associated bidirectionally via association A left right.

a simple composite structure Comp as depicted in fig-
ure 3.

Comp

partLeft :
Left [2..*]

partRight :
Right [2..*]

comp : Comp

partLeft[0]:
Left

partLeft[1]:
Left

partRight[0]: :
Right

partRight[1]: :
Right

my_left

my_right1..*

1..*

<<instanceOf>>

l_r_1

l_r_0

l_r : A_left_right

Figure 3: Composite structure diagram of class Comp with
parts of classes Left and Right from fig. 2 that are connected
via connector l r typed by the association from fig. 2 (up-
per) as well as an instance comp of class Comp (lower).

When creating the instance comp : Comp we can
represent its internal links implicitly by letting
objects that should be connected refer to each other,
using the end properties of the association that
types the corresponding connector. To implicitly
represent the link l r 0 of instance comp (see figure
3) for example, we must generate source code that
creates a bidirectional reference between objects
comp::partLeft[0] and comp::partRight[0]. To
achieve that, we let comp::partLeft[0]::my right[0]
point to comp::partRight[0] as well as
comp::partRight[0]::my left[0] point to
comp::partLeft[0]. That way, we can create
topologies of connected objects without having to
instantiate explicit link instances, but rather represent
the information about connected objects implicitly
depending on which objects refer to each other. This
concept was used to implement a code generator that
generates source code to instantiate different kinds of
runtime topologies based on the model’s definition
by establishing bidirectional references as described
above. The PSCS specification defines four kinds
of topologies (so-called connector patterns) whose
generator based instantiation is supported by the
implementation presented by this paper:

• Empty Pattern: A topology without objects and
hence without connections.

• Unconnected Pattern: A topology without con-
nections between its participating objects.

• Array Pattern: A topology consisting of 1-
to-1 connections between the corresponding
parts/ports that form a sequential order of con-
nected objects (figure 3 depicts an array pattern).

• Star Pattern: A topology in which each object
of one part/port is connected to each object of
the other part/port, forming a complete bipartite
graph between the connected properties.

Additionally, a mechanism was implemented that ex-
tends the model-specific execution library produced
by the fUML4CPP generator (see section 2.1). The
extension covers a generator-based adapter function-
ality between the generator-based components and the
metamodel level of a model execution. This adapter
functionality creates explicit link objects (used in
the PSCS metamodel) based on implicit link infor-
mation (used in the generator-based components) at
runtime, if and only if the PSCS execution environ-
ment requires them (e.g., to evaluate potential targets
during an invocation delegation). By implementing
this mechanism generation-based and hence model-
specific it can be ensured that only links that may be
useful for a specific execution step are processed at
runtime.

2.3 Memory Management

The MDE4CPP framework in which the PSCS imple-
mentation presented by this paper was realized uses
shared pointers of the C++-11 standard for its mem-
ory management. On the one hand, such shared point-
ers guarantee that memory is not deallocated as long
as it is referenced from somewhere. In other words,
no object that is managed by shared pointers is deleted
as long as there exists at least one shared pointer in-
stance that references the object (Stroustrup, 2013).
On the other hand, shared pointers guarantee that ob-
jects are deleted, only when they are not referenced
(i.e., not needed) anymore. The concept for implic-
itly representing links using objects that hold mutual
references to each other, which was introduced in the
previous section, inevitably produces circular depen-
dencies between connected objects. This causes prob-
lems trying to delete an object that is involved in such
a connection. If an instance of a composite structure’s
part shall be deleted during model execution it would
not truly be deleted (in terms of memory deallocation)
as long as it is connected to other objects, meaning
that other objects hold references to it. This leads to
both memory leaks as well as semantically incorrect
behavior during a model execution.

In cases where circular dependencies between ob-
jects are needed, it is suggested to use weak point-
ers for the back-reference (e.g., when implementing
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a composite pattern where both the parent and child
class refer to each other) (Stroustrup, 2013). In our
case there is no hierarchy between the connected ob-
jects, hence there is no identifiable ’back direction’.
Using weak pointers for one of the bidirectional ref-
erences would also have solved the issue for one ’di-
rection’ only. That is why the usage of weak pointers
would not have been a sufficient solution for the im-
plementation presented by this paper. To solve the
issue sufficiently, a mechanism that generates model-
specific deletion routines for each model class was de-
veloped. When the deletion routine of an object is in-
voked, all references of connected objects that refer
to the object that is to be deleted, are destroyed. Af-
ter this process, there is only one shared pointer left
that manages our object. This last reference can now
safely be deleted, which ultimately results in the deal-
location of memory that holds the object, hence true
deletion.

3 VALIDATION

This section first describes how the correct functional-
ity as well as conformance of the presented PSCS im-
plementation to OMG’s specification were validated
using a set of test models. An example model is
described in section 3.1. Furthermore, section 3.2
presents a performance evaluation, including execu-
tion time and memory footprint of the PSCS imple-
mentation presented by this paper compared to a C++
reference implementation of PSCS as well as a Java
reference implementation of fUML.

3.1 Functional Validation

For validating correct functionality of the presented
PSCS implementation as well as its conformance to
the original specification, a set of test models com-
bined with corresponding unit tests was implemented.
The test models are based on the PSCS test suite that
is provided by OMG and described in the specifica-
tion document itself. The PSCS specification states
that passing all test cases defined in its test suite is
sufficient for proving conformance of a tool that im-
plements the specification (OMG, 2019). It should
be mentioned that asynchronous communication se-
mantics of PSCS are currently excluded from the pre-
sented implementation (and therefore from the vali-
dation process) as the processing of signals is not yet
supported in MDE4CPP.

The realized set of test models consists of four
different test suites, each addressing certain units of
functionality specified by PSCS:

1. Instantiation of topologies of runtime objects
based on composite structures.

2. Destruction of runtime objects which exist in the
context of composite structures (i.e., instances of
composite structures themselves or part/port ob-
jects of such instances).

3. Synchronous communication through a network
of runtime objects connected through links via
delegation of operation calls.

4. Synchronous communication via delegation of
operation calls (as in point 3) using the onPort at-
tribute of metaclass InvocationAction.

All test cases that were implemented to show the
presented PSCS implementation’s correct function-
ality could successfully be validated. The follow-
ing section describes an example model of test suite
4 that combines all functionalities mentioned above.
The original test model’s description can be found in
(OMG, 2019) on pages 94 and 95.

Example. The example model that is explained be-
low addresses synchronous communication between
instances of composite structures. More precisely,
when the model is executed, an operation call is in-
voked in an initial caller object. The call is then for-
warded through a network of port objects connected
through links to a target object, where it is ultimately
executed.

Figure 4 shows a class diagram of the example
model. Every class realizes interface I, which defines
the operation assignP. Only class B has an attribute p
of type int. Hence, class B is modeled as the only class
that truly implements the operation assignP, which
means that only class B will define a method for the
operation.

+assignP(v : int)

<<Interface>>
I

+assignP(v : int)
IImpl

-p : int

+assignP(v : int)

B

+assignP(v : int)
IProvReq

+assignP(v : int)
C

b1

1

left

iImpl

1

right1

S

<<use>>

R

Figure 4: Class diagram for test model.

Figure 5 depicts class C from figure 4 as well as three
newly-introduced classes A, E and D as composite
structure diagrams. Classes A, C and E have ports
of type IImpl (which stands for I Implementation)
or IProvReq (which stands for I Provided Required)
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from figure 4. The types of a port specify its provided
and required interfaces. In our example, class IImpl
provides interface I, because it has an interface real-
ization relationship (metaclass InterfaceRealization)
with I. Class IProvReq both provides and requires I
because it is inherited from IImpl (which determines
provision) and at the same time, it uses (metaclass Us-
age) interface I (which determines request). When an
operation call arrives at a port object, its provided and
required interfaces determine how the call is further
delegated from that port.

C

E

c : C [1]

A

b : B [1]

D

e : E [1] a : A [1]

1

1

1

1

1

1

q : IProvReq [1]

q : IProvReq [1]

q : IProvReq [1]

q : IImpl [1]

q : IProvReq [1]

q : IImpl [1]s : S

r : R

s : S

Figure 5: Composite structure diagram for test model.

Besides its structural aspects, the example model also
contains a test behavior called actTestCallDelegation
which is shown in figure 6 as an activity diagram.
First, an instance d : D is created. Further, an op-
eration call for assignP is invoked in d::e::c with
port C::q being set for the onPort attribute (not de-
picted) of action assignP() on Port q inside of activ-
ity actSetP. Instance d is returned by activity actTest-
CallDelegation to evaluate certain postconditions af-
ter its execution.
If the PSCS implementation presented by this paper
works correctly, the invoked operation call should first
be delegated from port d::e::c::q to port d::e::q over
a link that was created from connector E::s (see fig-
ure 5). Then the call should be dispatched out of d::e
and forwarded to port d::a::q over a link that was
created from connector D::s. Finally the operation
call must be dispatched inside d::a and delegated to
d::a::b over a link that was created from connector
A::r where it is ultimately executed. If the invocation
was delegated correctly, then after activity actTest-
CallDelegation has finished, property d::a::b::p must
be set to the value v that was provided into the activity.
In this case, v is chosen as 4.

actTestCallDelegation

createDObject

read
D::e

read
E::c

setP on Cv : int out : D

actSetP

v : int
assignP()
on Port q

readSelf

d : D

e : E

c : C

owner : D

owner : E

target : C

value : int

v : int

context : C

self : C

Figure 6: Activity diagram for test model.

The output of the example model’s unit test rou-
tine is shown below:
Test model : Feature on both Required and
Provided Interface
-- Running test case: Feature on both
Required and Provided Interface --

d->a->b->p = 4
Operation call forwarded out of c through
c::q, out of e through e::q into a through
a::q to a::b : true

Test case successful : true
-- End of test case --

3.2 Performance Evaluation

This section presents a performance evaluation of the
presented PSCS implementation. Because there is
no third-party open-source implementation of PSCS
available by now, a C++ reference implementation
was developed in the context of the MDE4CPP
project. This reference implementation was used for
comparative evaluation. Furthermore, to be able to
compare our results to those of a third-party model ex-
ecution environment, the open-source Java fUML ref-
erence implementation by Model Driven Solutions3

was used to reproduce certain PSCS-specific seman-
tics for this benchmark.

Test Models. For performance evaluation, a test
case that addresses instantiation and destruction of
composite structures was chosen. Figure 7 shows the
classes used in the realized test models. The internals
of class A represent an array pattern (see section 2.2).

3see https://github.com/ModelDriven/fUML-Reference-
Implementation
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B C

A

-b : B [4..*] -c : C [4..*]

b
0..* c

0..*

1..*
1..*r : R

R

Figure 7: Classes used in the performance evaluation test
models. Class A is depicted using a composite structure
diagram.

When the test models are executed, instances of class
A shall be created and destroyed iteratively in a loop.
Concerning PSCS, this can be modeled by using the
corresponding actions to create and destroy objects
(metaclasses CreateObjectAction and DestroyObjec-
tAction). The instantiation itself is then handled by
the implemented PSCS semantics at runtime.

Because such semantics are not part of fUML,
they have to be reproduced using activities in the
fUML test model. The test model executed by Model
Driven Solution’s Java fUML reference implementa-
tion includes corresponding activities. Figure 8 de-
picts the activity actCreateParts, which instantiates
parts A::b and A::c. It does so by creating four in-
stances of classes B and C each and adding them to
the feature values of the corresponding parts using
AddStructuralFeatureValueActions.
The activity actCreateArrayPattern, which is de-
picted in figure 9, is then used to instantiate the con-
nections between those instances as defined by the
array pattern. The realization of links as described
in section 2.2 is reproduced by activity actCreateAr-
rayPattern by adding each part instance to the cor-
responding feature value of its linked instance. The
main loop activity of the fUML test model is shown
in figure 10.

On the model level, the PSCS implementation pre-
sented by this paper uses a simple CreateObjectAc-
tion for instantiation. The creation of part and port
objects as well as links between them is then handled
by the constructor of the auto-generated model classes
during execution. No further actions or declarations
of any kind are necessary.

The PSCS reference implementation that was de-
veloped for comparative evaluation additionally re-
quires the call of an empty constructor operation us-
ing a CallOperationAction. In this case an empty op-
eration is an operation with no defined method. Con-
structor operation means, that the UML stereotype
<<Create>> has to be applied to it. Conforming
to the PSCS specification, such a special operation

actCreateParts

Value_1

out : Integer

ReadSelf

result : A

Call_LessOrEqual

x : Integery : Integer

result : Boolean

Value_4

out : Integer

Call_Plus

x : Integer

result : Integer

y : Integer

createBinA : 
createA_B_in_A

target : A

createCinA : 
createA_C_in_Atarget : A

Value_1_Plus

out : Integer

«Datastore»
store_4

«Datastore»
store_1

Figure 8: Activity actCreateParts creates four instances
each for parts A::b and A::c.

serves as an indication for the execution engine, that
when it is called, an instance of its owning class has to
be created based on the defined instantiation seman-
tics. Figure 11 shows the main loop acitivty of the test
model for the PSCS reference implementation.

Creation and Deletion Benchmark. To compare
execution times between the PSCS implementation
presented by this paper and the fUML and PSCS
reference implementations mentioned above, the test
models described in section 3.2 were executed with
different numbers of loop iterations: 1000, 2500,
5000, 10000, 50000 and 100000. The number of
loop iterations is equal to the number of instances of
composite structure A from figure 7 that are created
and destroyed during model execution. The result-
ing execution times shown in figure 12 are arithmeti-
cal mean values calculated from 10 model executions
each. The x-axis represents the number of iterations
used for the model executions. Each region is split by
the different execution environments that were used.
The y-axis represents the average execution times in
milliseconds.

The model execution of the PSCS implementation
presented by this paper runs faster than the executions
of both reference implementation test models. This
result was expected as the presented PSCS imple-
mentation outsources functionalities for checking and
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actCreateArrayPattern

Value_1

out : Integer

Value_4

out : Integer

Call_Plus

x : Integer

result : Integer

y : Integer

Call_LessOrEqual

x : Integer
y : Integer

result : Boolean

ReadSelf

result : A

ReadB
object : A

out : B

ReadCobject : A

out : C

Call_GetB

bList : B[1..*]

index : Integer

b : B

Call_GetC

cList : C[1..*]

index : Integer
c : C

AddToC
object : B

value : C

out : B

AddToB

object : C

value : B

out : C

Value_1_Plus

out : Integer

«Datastore»
store_4

«Datastore»
store_1

Figure 9: Activity actCreateArrayPattern reproduces the
links between the instances of parts A::b and A::c. It does
so by adding each instance of A::b to the feature value of
feature C::b of the corresponding instance of A::c and vice
versa.

actRunBenchmark

Value_1

out : Integer

Call_LessOrEqual

x : Integery : Integer

result : Boolean

Call_Plusresult : Integer

x : Integer

y : Integer

createA

result : A

Call_createA : 
_createA

target : A

result : A

destroyA

target : A

Value_1_Plus

out : Integer

«Datastore»
store_Iterations

«Datastore»
store_1

Call_destroyA : 
_destroyA

target : A
result : A

paramIterations 
: Integer

 oFLoopFinished oFLoopFinished

Figure 10: Activity actRunBenchmark iteratively creates,
instatiates and destroys instances of composite structure A
from fig. 7.

actRunBenchmark

Call_LessOrEqual

x : Integery : Integer

result : Boolean

Call_Plus

x : Integer

result : Integer

y : Integer

CreateA

result : A

Value_1

out : Integer

DestroyAtarget : A

Value_1_Plus

out : Integer

«Datastore»
store_Iterations

«Datastore»
store_1

Call_Construct 
: construct

target : A

result : A

paramIterations 
: Integer

 oFLoopFinished oFLoopFinished

Figure 11: Activity actRunBenchmark of the test model ex-
ecuted by the PSCS C++ reference implementation. Action
Call Construct calls a special constructor operation to in-
stantiate composite structure A as described in section 3.2.

evaluating model information to the level of code gen-
eration. For both reference implementations, those
functionalities are executed by their respective execu-
tion environments. This produces computation over-
head at runtime compared to the presented implemen-
tation. Execution times of the fUML test model exe-
cuted by Model Driven Solution’s Java fUML refer-
ence implementation are higher compared to those of
the PSCS reference implementation. On the one hand,
this could be explained by general performance ad-
vantages of C++ over Java. On the other hand, a pure
fUML model was used to reproduce PSCS-specific
semantics. Because of that, the model is larger and
contains much more behavior that has to be executed
by the corresponding execution engine than the PSCS
test models.

Memory Footprint. Memory usage during test
model execution was measured in the same manner
as the measurement of execution time described in
section 3.2. Figure 13 depicts the arithmetical mean
values of peak RAM usage from 10 model executions
each. The Java fUML reference implementation uses
significantly more RAM than both C++ PSCS imple-
mentations. The reason for this behavior might be the
additional RAM usage caused by the Java virtual ma-
chine. The PSCS implementation presented by this
paper requires the least amount of RAM. This can
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Figure 12: Average execution times per number of created
and destroyed objects in milliseconds split by different exe-
cution environments.

be explained by the fact that the instantiation and de-
struction semantics used by this implementation are
directly translated to model-specific C++ code dur-
ing generation. Thus, overhead produced by the exe-
cution engine of the PSCS reference implementation
(which leads to a slightly higher RAM usage) is saved
during the execution of the presented PSCS imple-
mentation. Moreover, the RAM usage of this imple-
mentation (as well as the compared PSCS reference
implementation) is constant for each number of itera-
tions that was tested. This indicates that no memory
leaks exist.

4 CONCLUSION

This paper presented a model-driven implementation
of OMG’s PSCS specification in C++. The pre-
sented solution substitutes specific parts of the PSCS
execution model with auto-generated, model-specific
source code. More precisely, the implementation pre-
sented by this paper outsources PSCS’s execution se-
mantics for instantiating and destroying objects from
the actual execution model to the generation level. By
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Figure 13: Average peak RAM usage per number of created
and destroyed objects in MB split by different execution en-
vironments.

that, the performance of the actual model execution
is improved. This is achieved because computational
overhead at runtime produced by repeatedly evaluat-
ing and processing static (i.e., runtime-independent)
structural model information is omitted and done pre-
runtime during the process of code generation.

For functional validation, a set of test models and
associated unit tests based on OMG’s original PSCS
test suite was realized. During the validation process,
the presented implementation was tested against the
set of test models described in section 3.1. The re-
sults showed that the presented PSCS implementation
functions correctly and conforms to the PSCS speci-
fication.

The results of the performance evaluation pre-
sented in section 3.2 show that substituting runtime
computation of the PSCS execution model with pre-
runtime computation via code generation improves
execution time significantly. The memory footprints
of the evaluated test model executions prove that the
usage of C++ combined with the memory manage-
ment described in section 2.3 leads to much lower
RAM usage compared to the Java fUML reference
implementation.
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Future Work. By now, PSCS semantics concerning
asynchronous communication via signals is excluded
from the presented implementation. To provide a full
realization of PSCS, including all aspects of its run-
time semantics, signal processing and asynchronous
communication is yet to be realized.

Based on the results of this paper, which display
the possibilities of exploiting automated source code
generation to reduce runtime computation of model
execution engines, we aim to develop model-driven
execution engines for fUML, PSCS and also PSSM
that rely more on code generation and also conform
(functionality-wise) the underlying specifications.
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