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Abstract: Electrodermal activity (EDA) is a sensitive measure for changes in the sympathetic system, reflecting 
emotional and cognitive states such as stress. There is, however, inconsistency in the recommendations on 
which features to extract. In this study, we brought together different feature extraction methods: trough-to-
peak features, decomposition-based features, frequency features and time-frequency features. Regarding the 
decomposition analysis, three different applications were used: Ledalab, cvxEDA and sparsEDA. A total of 
forty-seven features was extracted from a previously collected dataset. This dataset included twenty 
participants performing three different stress tasks. A Support Vector Machine (SVM) classifier was built in 
a Leave-One-Subject-Out Cross Validation (LOOCV) set-up with feature selection within the LOOCV loop. 
Three features were consistently selected over all participants: 1) the number of responses in the driver 
function generated by Ledalab and 2) by sparsEDA and 3) a time-frequency feature, previously described as 
TVSymp. The classifier obtained an accuracy of 88.52%, a sensitivity of 72.50% and a specificity of 93.65%. 
This research shows that EDA can be successfully used in stress detection, without the addition of any other 
physiological signals. The classifier, built with the most recent feature extraction methods in literature, was 
found to outperform previous classification attempts. 

1 INTRODUCTION 

Prolonged exposure to psychological stress in daily 
life has been associated to various diseases such as 
depression and cardiovascular disease (Cohen et al., 
2007). To prevent these adverse consequences, there 
is a strong need for correct quantification of personal 
stress (Epel et al., 2018). The body’s response to 
stress can be quantified by measuring activation of 
the autonomic nervous system (ANS). The ANS 
consists of the sympathetic, parasympathetic and 
enteric branches. The main function of the 
sympathetic nervous system (SNS) is to initiate a 
rapid response in case of a dangerous or threatening 
situation, the so-called “fight or flight” response 
(Lovallo, 2005). As part of this response, the sweat 
glands become activated (Critchley, 2002), which 
causes a change in the electrical properties of the skin: 
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the skin becomes more conductive. This change in 
electrical properties is referred to as Skin 
Conductance Response (SCR) or Galvanic Skin 
Response (GSR) (Boucsein, 2012). Many researchers 
have demonstrated a high correlation between 
Electrodermal activity (EDA) and cognitive and 
emotional processes (Critchley, 2002). However, in 
comparison to other physiological signals, such as an 
Electrocardiogram (ECG) (Camm et al., 1996), there 
are few guidelines on which features to extract. 
Recent reviews indicate multiple approaches but do 
not recommend a specific one (Topoglu et al., 2019; 
Posada-Quintero & Chon, 2020). 

Electrodermal activity generally consists of two 
components. The first component is the tonic 
component, referred to as Skin Conductance Level 
(SCL). It varies slowly and changes only slightly 
within tens of seconds to minutes. The second 
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component is the phasic component, also referred to 
as the Skin Conductance Response (SCR). The phasic 
component represents a rapid change with a very 
short time to onset, usually between 1-5 seconds after 
the onset of a stimulus. If a response occurs in the 
absence of a stimulus, it is referred to as a non-
specific SCR (NS.SCR) (Boucsein, 2012). 

Regarding feature extraction in EDA, research has 
been focussed on the extraction of time domain 
features. Within the time domain, the focus has been 
on the evaluation of single SCRs, rather than patterns 
of multiple SCRs. Every SCR shows a characteristic 
course, which can be parameterized by features such 
as latency time, rise time, peak amplitude and 
recovery time (Boucsein, 2012). However, the 
evaluation of a single response becomes difficult in 
case of overlapping responses or superimposition. In 
the last decade, new analysis applications have been 
developed, which can handle superimposed SCRs 
(Benedek & Kaernbach, 2010b; Ghaderyan & 
Abbasi, 2016; Greco et al., 2016; Hernando-Gallego 
et al., 2018). These applications model EDA as a 
result of discrete bursts of sudomotor nerve activity, 
mathematically referred to as the driver function. By 
deconvolving the EDA signal into the driver function, 
and then convolving the peaks in the driver function 
with an SCR shape, these applications decompose an 
EDA signal in pure SCRs, independently from SCL 
and previous SCRs. Multiple features can be easily 
extracted from both the resulting SCL and SCR signal 
(Boucsein, 2012; Topoglu et al., 2019). Although 
analysis of EDA in the frequency domain has been 
described as less relevant (Boucsein, 2012), Posada et 
al. (2016a & 2016b) proposed two new frequency-
related features, including one time-variant feature, 
which can be used to detect stress. 

The purpose of the current study is to extract both 
traditionally studied features and recently developed 
features and discuss their performance with respect to 
stress detection. 

2 METHODS 

 Data Collection 

EDA data was collected in a previous study by Smets 
et al., (2016). The dataset consisted of twenty healthy 
participants (ten males and ten females, mean age = 
40 years  10 years), who did not suffer from any 
mental or physical disease. The participants were 
asked to perform three stress tasks, during which 
EDA was recorded at the fingertip with the NeXus 10 
– MK II (sampling rate = 32 Hz). Each of the three 

stress tasks was carried out for two minutes. The first 
task was the Stroop color-word test (Van Der Elst et 
al., 2006). During this task, color words are displayed 
in a different color as the words represent. For 
example, when the word red is presented in blue, the 
participant must answer the printed color (blue in this 
example). The second task was an arithmetic test in 
which the participant had to countdown from 1081 by 
subtracting 7 in a serial manner. The final task 
included a stress talk, in which participants were 
asked to talk about past stressful or emotionally 
negative events. In addition to these stress tasks, 
participants were instructed to count from zero to 
hundred out loud to control for the physiological 
response caused by vocalization. The counting task 
was performed before the Stroop color-word test and 
after the stress talk. All tasks were separated by a 
resting period of two minutes. The experiment was 
conducted in a quiet and controlled laboratory.  

 Feature Extraction 

In this study, multiple methods for features extraction 
were performed: trough-to-peak features, 
decomposition-based features, frequency features 
and time-frequency features. Whereas time domain 
analysis is usually performed in small windows 
(about 10s) around a single Skin Conductance 
Response (SCR) (Lim et al., 1997), frequency domain 
analysis with inclusion of slow changing responses 
requires longer processing windows. Therefore, a 
window of 64s was selected. The windows were 
acquired with 32s overlap from the start point of each 
task to an integer multiple of 64 seconds. Pre-
processing, i.e. filtering and downsampling, differed 
among the different feature sets, as it was performed 
according to the pre-processing procedures in the 
original research describing the feature set to be 
extracted. 

2.2.1 Trough-to-Peak Features 

In the first feature extraction method, SCR onset and 
latency were estimated based on the trough-to-peak 
analysis (Boucsein, 2012). Regarding this analysis, 
the procedure by Healey (2000) was adopted. The 
data was first pre-processed using a low-pass filter 
with a cut-off of 4 Hz. Thereafter, a threshold was 
applied on the derivative of the filtered EDA signal. 
Crossing the threshold indicated a new response if 
this happened more than one second away from other 
responses. For every new response, the onset (trough) 
and peak were determined as the zero-crossings of the 
derivative preceding and following the response 
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respectively. Given the onset and peak values, four 
features could be extracted: the number of SCRs, the 
summed magnitude of the SCRs, the summed 
durations of the SCRs and the summed area under the 
SCRs. 

2.2.2 Decomposition-based Features 

The second set of features was extracted following 
the decomposition of the EDA signal into its tonic, 
phasic and driver components. Three different 
MATLAB applications were used: Ledalab (Benedek 
& Kaernbach, 2010b), cvxEDA (Greco et al., 2016) 
and sparsEDA (Hernando-Gallego et al., 2018). 

The first application, Ledalab, provides two 
analysis methods to calculate the components: 
Discrete deconvolution Analysis (DDA) (Benedek & 
Kaernbach, 2010a) and Continuous Deconvolution 
Analysis (CDA) (Benedek & Kaernbach, 2010b). 
Whereas DDA applies a strictly nonnegative 
deconvolution, CDA merely tries to minimize 
negativity and therefore facilitates a more robust 
analysis. In this study, CDA was chosen as analysis 
strategy. The second application, cvxEDA, performs 
a nonnegative deconvolution by solving a convex 
optimization approach problem (Greco et al., 2016). 
The application parameters were defined as follows: 
τ_0= 4.0, τ_1= 0.7, α = 0.0008, γ = 0.01. Lastly, 
sparsEDA also performs a non-negative 
deconvolution, though with specific focus on the 
sparse nature of the driver components (Hernando-
Gallego et al., 2018). The application parameters 
were defined as follows: ε = 0.0001, K_max = 40 
iterations, Nmin = 5/4 fs = 10 samples, ρ = 0.025.  

These applications were selected above others as 
they do not require an a priori specification of events, 
whereas PsPM, another application by Bach et al., 
(2011) relies on information of the presented stimuli 
(Kelsey et al., 2018).  

Following the pre-processing procedures 
described in Hernando-Gallego et al., (2018), the 
EDA data was first downsampled to 8 Hz. All three 
decomposition methods were applied on the complete 
signal, resulting in a continuous tonic, phasic and 
driver component for every MATLAB application. 
The sparsity of the driver components in both Ledalab 
and cvxEDA were increased post-extraction by 
applying thresholds of 0.1 and 0.01 respectively. 
From each of the components, statistical features, i.e. 
the mean, maximum, minimum and standard 
deviation, were extracted in windows of 64 seconds, 
resulting in a set of twelve features per application. 
Four additional features were extracted regarding the 
driver component: firstly, the number of responses, 

i.e. the number of non-zero elements after 
thresholding and secondly, the number of (inactive) 
intervals between responses, together with their mean 
and maximum length. 

2.2.3 Frequency-based Features 

The third set of features was derived from the work 
of Posada-Quintero et al. (2016a), who expressed a 
specific interest in sympathetic tone. The sympathetic 
tone has been described by time domain features such 
as the SCL and the NS.SCRs. These time domain 
features are, however, highly variable between 
persons. Therefore, Posada et al. proposed a new 
frequency-domain approach. Starting from the low 
frequency (LF) range for heart rate variability, they 
tested whether stressful tasks resulted in a spectral 
peak between 0.045 Hz and 0.15 Hz. Their results 
indicated a broader range of 0.045Hz to 0.25 Hz. 
Based on these results, they described a new feature 
called EDASymp, which represents the spectral 
power in this specific frequency band, calculated in 
windows of two minutes using Welch’s periodogram 
(Blackman window of 128 points) with 50% data 
overlap. EDASympn is the normalized adaptation in 
which the power of the frequency band is divided by 
the total power. In this study, we examined the 
occurrence of a spectral peak during stress tasks and 
calculated continuous features based on EDASymp 
and EDASympn.  

Preprocessing was performed in accordance with 
Posada-Quintero et al., (2016a). First, an 8th order 
Chebyshev Type I low-pass filter (0.8 Hz) was 
applied, followed by down-sampling to 2 Hz and 
finally, an 8th order Butterworth high-pass filter (0.01 
Hz). 

The spectral peak was examined, per task, in the 
following frequency ranges: VLF = 0-0.045 Hz, LF = 
0.045-0.15 Hz, HF1 = 0.15-0.25 Hz, HF2 = 0.25-0.4 
Hz and VHF = 0.4-0.5 Hz (Posada-Quintero et al., 
2016a). The PSD was obtained via Welch’s 
periodogram as described above. 

The continuous frequency domain features, 
relative to EDASymp and EDASympn, were 
calculated for every 64 seconds window within the 
tasks. A Blackman window of 128 samples was 
applied to each window. The PSD was obtained via 
the Fast Fourier Transform (FFT). 

2.2.4 Time-frequency-based Features 

The final feature was also derived from Posada-
Quintero et al. In addition to invariant frequency-
domain analysis, Posada-Quintero et al., (2016b) 
proposed a time-variant index of sympathetic tone, 
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called TVSymp. The time-frequency representation 
(TFR) of EDA was computed using the variable 
frequency complex demodulation (VFCDM), a time-
frequency spectral (TFS) analysis technique that 
provides accurate amplitude estimates and one of the 
highest time-frequency resolutions (Wang et al., 
2006). The components comprising the frequency 
power in the range from 0.08 to 0.24 Hz were used to 
compute TVSymp. 

In this study, the raw EDA was first downsampled 
from 32Hz to 2Hz and thereafter high-pass filtered 
using a 2nd-order Butterworth filter (0.01 Hz). 
TVSymp was calculated by adapting the procedures 
described in Wang et al., (2006) and Posada-Quintero 
et al., (2016b). The resulting TVSymp was averaged 
per window of 64 seconds. 

 Classification 

A Support Vector Machine (SVM) with a Radial 
Basis Function (RBF) kernel was used to classify rest 
(baseline, relaxing and counting) and stress (Stroop 
color-word test, arithmetic task, and stress talk). All 
features were standardized before training the 
classifier. As the sample size was rather limited, 
Leave-one-subject-out cross-validation (LOOCV) 
was used to evaluate the performan54ce of the 
classifier. Feature selection was performed within the 
LOOCV loop resulting in 20 sets of selected features. 
All features were ranked according to their 
correlation (point-biserial correlation) with the binary 
target variable (Hall, 1999) indicating the occurrence 
of either a resting task or a stress task. Only features 
with a correlation over 0.5 were retained. The 
remaining features were compared based on their 
correlation among each other. If features had a 
correlation over 0.85, only the feature with the 
highest target correlation was retained. Accuracy, 
sensitivity, specificity, F1-score and precision were 
calculated and averaged over all 20 cross-validation 
folds. 

3 RESULTS 

3.1 Feature Extraction 

Figure 1 displays the tonic component of one 
participant as computed by the three applications: 
Ledalab, cvxEDA and sparsEDA. Similarly, the 
phasic components are shown in Figure 2, and the 
driver components in Figure 3. The light-yellow areas 
represent the counting tasks, the light-red areas 
represent the stress tasks. Figure 2 only displays the 

phasic components as computed by Ledalab and 
cvxEDA, since SparsEDA does not provide tools for 
the calculation of the phasic component. Ledalab and 
cvxEDA show a comparable decomposition, whereas 
sparsEDA illustrates a different approach. The driver 
function by sparsEDA is much sparser than the ones 
by Ledalab and cvxEDA. The tonic component, based 
on this sparse driver function, however, deviates from 
the true tonic component as it crosses the raw data 

 

Figure 1: Tonic component of one participant. Light yellow 
areas indicate a counting task, light red areas a stress task. 

 

Figure 2: Phasic component of one participant. Light 
yellow areas indicate a counting task, light red areas a stress 
task. 

 
Figure 3: Driver component of one participant. Light 
yellow areas indicate a counting task, light red areas a stress 
task. 
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Table 1 summarizes the average calculation time 
for each application on the same machine, together 
with the standard deviation. The results show that 
sparsEDA has the lowest computation time, and 
Ledalab the highest.  

Table 1: Computation time per application. 

Application Time 

Ledalab 11.16 ±3.28 

cvxEDA 2.40 ±0.45 

sparsEDA 0.53 ±0.13 
 

The results on the presence of a stress-related 
spectral peak are reported in Table 2. Five frequency 
ranges were examined: VLF (0-0.045 Hz), LF (0.045-
0.15 Hz), HF1 (0.15-0.25 Hz), HF2(0.25-0.4 Hz) and 
VHF (0.4-0.5 Hz). The distribution of spectral energy 
is presented per task. Table 3 shows the values of the 
adapted TVSymp per task. The Stroop color-word 
test resulted on average in the highest value.  

3.2 Classification 

Table 4 presents the model performance of the SVM 
classifier. Table 5 shows the features selected in the 
LOOCV procedure. 

In the group of selected features, features of both 
Ledalab and sparsEDA appeared. Post-classification 
analysis showed that limiting the decomposition 
features to features originating from either Ledalab or 
sparsEDA, lowered sensitivity but increased specifity 
further (SVM-spars; accuracy = 88.65%, sensitivity = 

68.33%, specificity = 95.10%, F1 = 71.36%, SVM-
Led; accuracy = 88.40%, sensitivity = 70.83%, 
specificity = 94.10%, F1=72.22%). When the same 
model was built with decomposition features 
originating only from cvxEDA, both sensitivity and 
specificity were lowered (SVM-cvx; accuracy = 
86.67%, sensitivity = 69.17%, specificity = 93.27%, 
F1=70.21%) 

Table 5: Features selected in LOOCV classification. 

Feature Votes 

TVSymp (~ Posada-Quintero et al.)  20 

Number of responses - Driver Ledalab 20 

Number of responses - Driver sparsEDA 20 

Summed duration of SCRs (~ Healey et al.) 4 

4 DISCUSSION 

The purpose of the current study was to extract both 
traditionally studied features and recently developed 
features and discuss their behavior as well as their 
performance in a simple classifier.  

The first feature extraction method corresponded 
to the traditionally applied trough-to-peak analysis. In 
this analysis, SCRs are simply extracted based on 
zero-crossings of the derivative, while maintaining a 
minimal spacing between SCRs of 1 second. In four 
folds of the LOOCV, the summed duration of the 
SCRs was retained as an important feature. This 
finding agrees with the wide use of these features and 

Table 2: Percentage of energy within the five frequency ranges presented per task. 

Range Baseline (%) Relax (%) Count (%) Stroop (%) Arithm. (%) Talk (%) 

VLF 70.27 ± 26.23  83.48 ± 17.04 59.32 ± 20.33 53.50 ± 20.82 53.59 ± 19.23 61.27 ± 19.10 

LF 31.30 ± 23.09 17.68 ± 14.35 39.03 ±15.31 36.41 ± 15.45 42.06 ± 16.25  40.01 ± 16.04 

HF1 5.43 ± 6.90  4.12 ± 5.80 10.42 ± 6.95 18.46 ± 15.17 13.27 ± 8.71  8.42 ± 7.11 

HF2 0.66 ± 1.28  0.42 ± 0.76 1.33 ± 1.56 1.69 ± 1.85 1.80 ± 1.70  1.11 ± 0.92 

VHF 0.11 ± 0.19  0.12 ± 0.24 0.49 ± 0.73 0.85 ± 1.10 0.61 ± 0.72  0.39 ± 0.48 

Table 3: TVSymp results per task. 

 Baseline Relax Count Stroop Arithmetic Talk 
TVSymp 0.59 ± 0.51 0.54 ± 0.16 1.03 ± 0.34 1.69 ± 0.46 1.62 ±0.46 1.51 ± 0.51 

Table 4: Model performance. 

 Accuracy (%) Sensitivity (%) Specificity (%) F1 (%) Precision (%) 

SVM 88.52 ± 10.99 72.50 ± 30.24 93.65 ± 9.60 72.84 ± 28.96 81.20 ± 26.37 
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the high accuracy (96%) in driver stress detection 
originally obtained by Healey (2000), but is contrary 
to the findings of Shukla et al., (2019), who reported 
low weighted occurence of these features in 
comparison to others in an emotion recognition task. 

Although this method is easy to implement and 
could be used in a real-time setting, it is limited in the 
analysis of successive SCRs. They will most likely 
appear as one response (Benedek & Kaernbach, 
2010b), which will lead to an overall underestimation 
of the number of responses. 

To overcome the limitation of superimposed 
SCRs, we included the decomposition of the EDA 
signal as a second feature extraction method. We 
compared three decomposition methods. SparsEDA 
gave rise to the sparsest driver, which was claimed by 
the original authors to improve interpretability while 
reducing computation cost at the same time 
(Hernando-Gallego et al., 2018). This is, however, at 
the cost of an accurate tonic component as can be seen 
in Figure 1. Moreover, Amin & Faghih (2019) 
reported sparsEDA as oversparsifying the driver 
function. Ledalab and cvxEDA both gave rise to a 
more accurate tonic component, though at a much 
slower rate. In this study, it was argued that the 
sparsity and thus the interpretability of the driver 
functions of Ledalab and cvxEDA could easily be 
improved by introducing a threshold. Figure 3 
illustrates that, nevertheless, sparsEDA remained the 
sparsest. Two decomposition-related features were 
retained in the LOOCV. Surprisingly, these were the 
number of driver responses of both sparsEDA and 
Ledalab. This suggests there is information in both 
sparsity and continuity. Limiting the classification to 
one single decomposition method showed that the 
sparisity of sparsEDA results in a higher specificity 
as it decreases the presence of drivers in resting 
periods, while the continuity of Ledalab results in a 
more robust sensitivity as it increases the presence of 
drivers in stress periods. Ledalab might be 
interchanged with cvxEDA to reduce time, though at 
cost of accuracy. 

The third feature extraction method was linked to 
the frequency domain. We first tried to replicate the 
results of Posada-Quintero et al., (2016a), who 
investigated the spectral energy in multiple frequency 
ranges during four conditions: baseline, postural 
stimulation, a cold pressor and a Stroop color-word 
test. Only the latter corresponded to the protocol of 
the current study. Table 2 shows for all tasks the 
distribution in spectral energy. In this study, 
participants were fully at rest during the relaxation 
task and not during the baseline. Therefore, the results 
of relaxing resemble the results of the baseline in 

Posada-Quintero et al., (2016a) (VLF between 79.2% 
and 87.3%, LF between 8.1% and 14.6%, HF1 
between 1.2% and 3.7%) more strongly. The 
distribution of spectral energy within the Stroop 
color-word test is also comparable to the one of 
Posada-Quintero et al., (2016a). The results show 
again the same trend (VLF 51.6%, LF 32.9%, HF1 
10.7% in Posada-Quintero et al., 2016a). As 
described by Posada-Quintero et al., (2016a), during 
a stressor, the spectral energy in the VLF frequency 
range goes down, whereas in the other ranges the 
energy goes up. Remarkably, this trend is present in a 
comparable magnitude within the counting tasks as 
within the stress talk task. As the LF and HF1 ranges 
were confirmed as most interesting ranges, 
EDASymp and EDASympn were calculated 
according to Posada-Quintero et al., (2016a). They 
were not retained as important features during the 
feature selection. 

The final feature to be extracted was an adaptation 
of TVSymp, a new time-frequency-based feature. 
Again, the presented results (Table 3) show the same 
trend as the data of Posada-Quintero et al. (2016b), 
i.e. the values of TVSymp go up in case of a stressor. 
The absolute numbers are comparable as well 
(baseline: ~ 0.2-0.5, stressor: ~ 1.4-1.6) . TVSymp 
was confirmed to be a highly sensitive index for stress 
detection in EDA, as it was selected in all folds of the 
cross validation. This in line with the conclusion of 
Ghaderyan & Abbasi (2016), who reported time-
frequency domain features as highly performant in a 
mental workload classification task. Whereas in 
TVSymp the time-frequency representation is 
obtained by VFCDM, Ghaderyan & Abbasi (2016) 
obtained it via wavelets. In addition to time-
frequency features, Ghaderyan & Abbasi (2016) 
extracted decomposition features via cepstral 
analysis. These were found to perform equally well as 
the wavelet features. The latter is contrary to the work 
of Shukla et al. (2019) who reported that cepstrum-
based features outperformed wavelet-related features. 

Classification using an SVM resulted in 88.52% 
accuracy, 72.50% sensitivity and 93.65% specificity. 
These results closely resemble the performance of an 
earlier machine learning exercise on this dataset 
which gave 72.0% sensitivity and 93.4% specificity 
(Smets et al., 2016) while this exercise included heart 
rate features on top of EDA features.  

Previous studies have focused largely on datasets 
including multiple physiological signals. Only few 
studies have used EDA as a sole predictor for stress. 
Kurniawan et al., (2013) obtained 80.72% accuracy 
in classifying the Stroop color-word test from 
recovery with statistical features and trough-to-peak 
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features. Liu & Du (2018) got an average accuracy of 
81.82% in a three-level stress detection task on 
driving stress with statistical features. While the 
results of Kurniawan et al. (2013) and Liu & Du 
(2018) present a lower accuracy as reported in this 
study, Zangróniz et al., (2017) achieved an accuracy, 
sensitivity and specificity as high as 89.18%, 93.90% 
and 85.36% respectively using statistical features 
(directly derived from the EDA signal, i.e. without 
decomposition) and morphological features. The best 
performing parameter in a single-parameter classifier 
was the spectral power in bandwidth 0.2 Hz to 0.3 Hz, 
this parameter outperformed the parameter based on 
the spectral power in bandwidth 0.1 Hz to 0.2 Hz. 
This result differs from the bands suggested by 
Posada-Quintero et al., (2016a), which were 
confirmed in this study. Nevertheless, EDASymp was 
not retained in any of the feature selection folds.  

A possible explanation for the difference in 
performance might be the experimental design of 
Zangróniz et al., (2017), as it was rather different 
from the one described in this paper. In the study by 
Zangróniz et al., (2017) calmness and distress were 
elicited by pictures of the International Affective 
Picture System (IAPS). This design might have 
favoured a well-balanced dataset without interference 
from vocalization, which is known to effect EDA 
(Levenson, 2014). Grimley et al., (2019) 
demonstrated that 36-78% of stress responses 
involving vocalizations are solely attributed to 
vocalizations. This is also apparent from the results 
presented in this study: the counting task shows 
highly increased EDA (Figures 1 – 3, Tables 2-3), 
while it is assumed to be free of stress. Since daily life 
measurements will often include vocalizations it is 
important to take this into account when building a 
classifier. 

There are some limitations to this research. 
Firstly, the current study included twenty 
participants, which is rather limited for the multitude 
of features examined in this work. In future work, 
EDA data of more participants should be included.  

Secondly, the current study included EDA data 
collected at the fingertip in a controlled environment. 
However, for future purposes, it would be more 
relevant to include data collected at the wrist in an 
ambulatory setting. This type of data would require 
more intensive pre-processing related to artefact 
removal.  

Lastly, signal transformations such as 
deconvolution and VFCDM were performed prior to 
windowing, on the complete signal. This is consistent 
with prior research in which these transformations 
were performed on complete tasks or experiments 

(Bobade & Vani, 2020; Murugappan et al., 2020; 
Posada-Quintero & Bolkhovsky, 2019; Posada-
Quintero et al., 2018). However, for future purposes 
such as continuous or real-time feature extraction, the 
effect of performing these transformations within 
windows as short as 64 seconds should be explored. 
The application of windows prior to transformation 
will abrupt ongoing responses which might introduce 
noise into the feature extraction. In light of this 
potential noise introduction, different window sizes 
should be explored. 

5 CONCLUSION 

The aim of the present study was to assess different 
feature extraction methods for stress detection in 
EDA. An SVM classifier was built in a Leave-One-
Subject-Out Cross Validation (LOOCV) set-up with 
feature selection within the LOOCV loop. 
Decomposition-derived features and time-frequency 
features were found to be most relevant. The resulting 
classifier obtained an accuracy of 88.52%, a 
sensitivity of 72.50% and a specificity of 93.65%. 
Therefore, by including novel features, we could 
outperform an earlier classification attempt.  

The research shows that EDA can be successfully 
used as a sole predictor for stress when using the most 
recent features in literature. In future research, the 
presented work should be repeated in a dataset 
collected in ambulatory settings. In addition, a 
continuous mode of feature extraction should be 
envisioned, which requires signal transformations 
such as decomposition to be performed in windows 
instead of complete signals. Related to this, different 
window sizes need to be explored.  
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