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Abstract: In this paper, we improve the image embeddings generated in the graph neural network solution for few shot
learning. We propose alternate architectures for existing networks such as Inception-Net, U-Net, Attention
U-Net, and Squeeze-Net to generate embeddings and increase the accuracy of the models. We improve the
quality of embeddings created at the cost of the time taken to generate them. The proposed implementations
outperform the existing state of the art methods for 1-shot and 5-shot learning on the Omniglot dataset. The
experiments involved a testing set and training set which had no common classes between them. The results
for 5-way and 10-way/20-way tests have been tabulated.

1 INTRODUCTION

With the growth of technology and ease of access to
good quality cameras, there is a large number of high
resolution images being captured today. A consider-
able portion of these images is being analyzed and
studied for tasks like object detection, scene under-
standing, image classification, etc.

Considering the image classification problem, in
many real world scenarios, there is very little data
available for every class. So, an image classifier needs
to be capable of working with very few images per
class. The high quality of images can be both a boon
and a bane for classification models. When these
models are deployed on cloud platforms for concur-
rent use, the network bandwidth required to transfer
these high quality images may reduce the turn around
time of responses. However, in situations where there
are few images available per class, the high resolution
of these images is a boon. Every part of the feature-
rich image should be analyzed in order to obtain max-
imum information.

Another issue that is commonly faced in any clas-
sification task is the difference in training data and
observed data. While training the model, care must
be taken to ensure that the distribution of the training
data will be as close as possible to the distribution of
the data that will be observed in the real world.

To tackle the above issues, this paper proposes a
new Few Shot Learning model for Image Classifica-

tion. By definition, the training set and testing set
have a null intersection in the few shot learning prob-
lem statement. The trained model should work on un-
seen testing data as long as the new data belongs to
the same domain as the trained data.

In this paper, the Few Shot Learning problem
has been modeled as Message Passing Neural Net-
work. This has been done before in (Garcia and
Bruna, 2015) The nodes of the graph are the images
to be classified. Once this graph is built, the labeled
nodes are enhanced. They are represented by their
image embeddings. The image embeddings are ob-
tained by using different techniques - CNN, U-Net,
SqueezeNet, and another architecture that is inspired
by the Inception Network. The message passing net-
work transmits information from the labeled nodes to
the unlabeled nodes. Eventually, all the nodes in the
graph will be assigned classes.

The proposed method was tested on the Omniglot
dataset with a 74%:26% split in training-testing data.
The training set and test set were disjoint.

2 RELATED WORK

Human Learning (Lake et al., 2015) has served as a
cornerstone of research in the field of few-shot learn-
ing. Several different approaches have been pro-
posed, the most promising being the ’Meta-learning’
paradigm. The model is trained over a variety of tasks
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and then tested on a distribution of them, including
potentially unseen tasks. Many popular solutions em-
ploy the Metric-based Meta Learning method. Here,
the objective is to learn a mapping from images to
their embeddings such that images that are similar are
closer and images that are from different categories,
are far apart.

In the 1990s, Bromley and LeCun introduced a
signature verification algorithm that used a novel ar-
tificial neural network - Siamese Neural Network
(Bromley et al., 1994). Siamese neural networks
are a class of neural network architectures that con-
tain identical twin sub-networks i.e., they have the
same configuration with the same parameters and
weights. Parameter updating is mirrored across both
sub-networks. In situations where we have thousands
of classes but only a few image examples per class,
these networks are popular. In (Koch et al., 2015), a
one shot classification strategy is presented that in-
volves the learning of image representations using
Siamese neural networks. These features are then
used for the one-shot task without any retraining. Dis-
crimination between similar and different pairs of im-
ages was done by calculating the weighted L1 dis-
tance between the twin feature vectors. This was com-
bined with a sigmoid function. A cross-entropy ob-
jective was chosen to train the network. For each pair
of images, a similarity score was evaluated. It is as-
sumed that this trained network will then work well to
classify a new example from a novel class during the
one shot task. In (Garcia and Bruna, 2015), a single
layer message-passing iteration resembles a Siamese
Neural Network. The model learns image vector rep-
resentations whose euclidean metric is agreeing with
label similarities.

Matching Networks have also proven to be an ex-
cellent model for one-shot learning tasks. In (Vinyals
et al., 2016), the architecture possesses the best of
both worlds - positives of parametric and the posi-
tives of non-parametric models. They acquire infor-
mation from novel classes very quickly while being
able to satisfactorily generalize from common exam-
ples. Meta-learning with memory-augmented neural
networks (Santoro et al., 2016) greatly influences this
work. LSTMs (Hochreiter and Schmidhuber, 1997)
learn rapidly from sets of data fed in sequentially. In
addition, the authors of (Vinyals et al., 2016) employ
ideas of metric learning (Roweis et al., 2004) based
on features learnt. The set representation for images is
also prevalent in the graph neural model proposed in
(Garcia and Bruna, 2015). However the main differ-
ence between the two implementations is that match-
ing networks encode the support set independently
of the target image i.e., the learning mechanism em-

ployed by them attends to the same node embeddings
always, in contrast to the stacked adjacency learning
in (Garcia and Bruna, 2015).

Prototypical Networks (Snell et al., 2017) were
designed to provide a simpler yet effective approach
for few-shot learning. They build upon work done in
(Vinyals et al., 2016) and the meta-learning approach
to few-shot learning (Ravi and Larochelle, 2016),
showcasing a better performance than Matching Net-
works without the complication of Full Context Em-
bedding (FCE). These networks apply an inductive
bias in the form of class prototypes. There exists em-
beddings in which samples from each class cluster
around a single prototypical representation which is
simply the mean of the individual samples. The query
image is then classified by finding the nearest class
prototype.

In the graph neural model proposed in (Garcia and
Bruna, 2015), Prototypical Networks information is
combined within each cluster. Each cluster is defined
by nodes with similar labels.

3 PROPOSED METHOD

3.1 UNet for Image Embeddings

For the task of Image Segmentation in the field
of Biomedical Imaging, UNets (Ronneberger et al.,
2015) were proposed. The architecture consisted of
two sections - a contracting path and a symmetric
expansion path. The contracting section contained
multiple blocks, each applying two 3x3 convolution
layers and a 2x2 max pooling layer, on an input im-
age. The number of feature maps doubled after ev-
ery block enabling the architecture to capture context
effectively. The expansion section aims to preserve
the spatial properties of the image, key to generat-
ing the segmented image. The architecture does this
by concatenating feature maps from the correspond-
ing contraction section. Each block in this section
consisted of two 3x3 convolution layers and an up-
sampling layer. To maintain symmetry, the number of
feature maps halved after each block. For training, a
softmax function was applied on every pixel of the re-
sultant segmented image, followed by a cross entropy
loss function.

For our proposed model, we extracted embed-
dings of size 64 from the end of the contraction sec-
tion by using a fully connected layer. These were then
fed into the graph neural model. As stated in (Ron-
neberger et al., 2015), UNet’s speed is one of its ma-
jor advantages. In our experiment, the UNet model
converged the quickest.
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Experimentation was also done by replacing the
convolution layers with an augmented convolution
layer. Augmented convolution operations concate-
nate the feature maps produced by normal convolu-
tion with feature maps produced to self-attention. For
the self attention, the input image is flattened and mul-
tihead attention is performed (Vaswani et al., 2017).
The feature maps are the output for each head and all
these feature maps are then concatenated. This atten-
tion mechanism makes use of both feature and spatial
subspaces.The concatenation of the traditional feature
maps with the attention feature maps is as follows:
The output of each attention head is given by:

Oh = SOFT MAX(
(XWq)(XWk)

T√
dh

k

)(XWv) (1)

Where linear transformations map input X to queries
Q, keys K and values V as explained in the paper. The
W terms are weights which can be learnt.

Q = XWq (2)

K = XWk (3)
V = XWV (4)

The outputs of all the heads are then concatenated
as:

MHA(X) =Concat[O1, ..., ...Onh]]W o (5)

Using this, the attention augmented convolution is de-
signed as follows:

AAConv(X) =Concat[Conv(X),MHA(X)] (6)

Where Conv(X) are the traditional convolutional
feature maps. However, after implementing the at-
tention augmented convolution, the following points
were noted. 1) When only the first convolutional layer
was replaced with the AAConv layer, the training ac-
curacy improved but however, the test accuracy was
the same as our UNet implementation. However, the
running time of this network was much slower than
the UNet with traditional convolution layers. 2) When
the first two conv layers were replaced with AAConv
layers, the network became even more slower and
even the test accuracy reduced. 3) When all three
convolution layers were replaced with AAConv lay-
ers, the test set accuracy reduced by about 3% and
the network was painfully slow. Due to these reasons,
AAConv layers were not incorporated in further ex-
periments.

3.2 Attention U-Net for Image
Embeddings

To increase the performance in the field of image seg-
mentation, the Attention U-Net (Oktay et al., 2018)

Figure 1: UNet Architecture - End-to-end Fully Convolu-
tional Network.

Figure 2: UNet Contraction Section for Image Embeddings
- Embeddings of size 64 extracted in proposed UNet Archi-
tecture.

was created. The paper proposes a novel gate for at-
tention for medical data. Two feature maps with in-
dividual 1x1x1 convolutions are added and then the
ReLU function is applied on them. After this, 1x1x1
convolutions is performed again and passed through
the sigmoid function. After this step, it goes through
a resampler. This makes the feature maps same as
the ones to be multiplied with. Now concatenation is
done with feature maps which are upsampled from the
lower level. This gate was incorporated to the UNET
architecture as shown in the diagram. A fully con-
nected layer was added after the final encoding layer
to extract the image embeddings from this network.
However, this network did not perform very well. One
reason for this might be the datasets used for the im-
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age segmentation task have very large dimensions.
Hence, in those images it makes sense to use atten-
tion gates to obtain features from different regions of
the image. However, the dataset used here consists of
28x28 images. Hence using attention gates might not
have any value here. This also supported by the fact
that adding AAConv layers also did not help.

Figure 3: The Attention Gate and Attention U-Net Archi-
tecture (Oktay et al., 2018) - Attention Gate was added in
the expansion layer.

3.3 SqueezeNet for Image Embeddings

SqueezeNet (Iandola et al., 2016) was invented to re-
duce the number of computations that are made to
generate image embeddings for classification. The
key design choices were to replace 3x3 filters with
1x1 filters to reduce number of parameters by 9 times,
decrease the number of input channels to 3x3 filters,
and to delay downsampling to retain maximum num-
ber of features till the end. While the first two strate-
gies focus on computational efficiency, the third strat-
egy is to maximize the accuracy of the embeddings.

To realize this architecture, the fire module was in-
troduced. The fire module consists of a squeeze phase
and an expand phase. The squeeze phase consists of
’s’ 1x1 convolutional filters. The expand phase com-
prises ‘r’ 1x1 and 3x3 convolutional filters.

In our experiments with SqueezeNet, we varied
the s/r hyper parameter. Like suggested in (Iandola
et al., 2016), the s/r ratio of 0.125 performed the
fastest. An s/r ratio of 0.75 with an equal split of 1x1
and 3x3 filters in the expand phase provided the high-
est classification accuracy.

Variations with simple and complex bypasses in
the network were also experimented with. The simple
bypass was found to perform the best.

Figure 4: SqueezeNet Architecture for Image Embeddings -
Flowchart of the series of steps involved in the SqueezeNet
Architecture.

3.4 Modified Inceptionnet for Image
Embeddings

Prior to the discovery of the Inception Network, it was
thought that as networks go deeper, they get better.
The Inception network employs multiple filters at the
same level and hence results in a wider network. The
inception network uses factorized convolutions to im-
prove computational speed. A 5x5 convolution can be
filtered into two 3x3 convolutions to speed up the net-
work. The traditional Inception net is used for image
classification. To perform this task, it employs two
auxiliary classifiers which function as regularizers in
the network. However, the task in hand is to generate
image embeddings. To do this, the network architec-
ture was as follows: Only one of the 5x5 were fac-
torized to two 3x3 as even though it leads to speedup,
it may result in loss of information. After concatena-
tion, the dimensions obtained are 10x256x7x7. This
was then flattened to 10x12544. After this the fully
connected layer is added which reduces the dimen-
sions to 10x64. The auxiliary classifiers were re-
moved and batch normalization is added to the fully
connected layer. After this, the vectors are passed
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Figure 5: Architecture Before the Inception Module - Series
of steps involved in the architecture before the introduction
of the inception module.

through the leaky relu function. The vectors are the
embeddings of 10 images and have the dimensions of
10x64.

3.5 R2U-Net for Image Embeddings

This network proposed by (Alom et al., 2018) inte-
grates the traditional CNN operations with recurrent
and residual operations to be used in the U-Net ar-
chitecture. If xl is the input to the lth layer and (i,j)
represents a pixel’s location in the kth feature map,
then:

Ol
i jk(t) = (w f

k )
T ∗ x f (i, j)

l (t)+

(wr
k)

T ∗ xr(i, j)
l (t−1)+bk

(7)

Here w f
k and wr

k are the weights of the standard
convolutional layer and bk is the bias. The outputs
from this are fed into the ReLU function.

F(wl ,xl) = max(0,Ol
i jk(t)) (8)

For this to be used as the R2U-Net, the final outputs
are passed through the residual block.

x(l +1) = xl +F(wl ,xl) (9)

Figure 6: Inception Module - Embeddings of size 64 ex-
tracted in proposed Inception Net Architecture.

The xl+1 term is used as input for the up-sampling
or sub-sampling in the encoder units. After the final
encoder layer, a fully connected layer is used to obtain
the image embeddings.

Figure 7: Recurrent Residual Convolution Unit (Alom
et al., 2018).

4 DATASETS

The performance of our model was tested on a stan-
dard benchmark for one shot learning techniques -
Omniglot dataset (Lake et al., 2015). It contains 1623
characters from 50 different alphabets. As done in
(Vinyals et al., 2016), the dataset was split into a train-
ing set of 1200 class and a testing set of 423 classes.
The dataset was also augmented by rotating the im-
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Figure 8: R2U-Net Architecture (Alom et al., 2018).

ages by multiples of 90 degrees as suggested in (San-
toro et al., 2016).

The mini-imagenet dataset was experimented with
but later dropped due its enormous memory require-
ments that exceeded the specifications of the systems
used to run the experiments.

5 RESULTS AND CONCLUSIONS

The experiments for this study were run on a system
with 20 Intel(R) Xeon(R) ES-2640s. The system also
had an Nvidia GeForce GTX1080 with 8 GB of RAM.

From table 1 it is seen that for the tasks of 1-shot
5-way learning and 1-shot 20-way learning, the pro-
posed implementations of the U-Net and Inception-
Net to generate embeddings outperformed the net-
work proposed by (Garcia and Bruna, 2015) in our
working environment. Their 1-shot 5-way and 1-shot
20-way learning models are the state of the art for few
shot learning on the Omniglot dataset.

In the 5-shot learning tasks, the proposed U-
Net architecture outperforms the method proposed in
(Garcia and Bruna, 2015). The results of the Incep-
tion Network architecture are similar to the results of
the original work.

In the case of Attention U-Net, although the model
performed well, it did not outperform the proposed
U-Net model. This could be due to the fact that the
omniglot dataset consists of 28x28-dimensional im-
ages. Using the attention mechanism is a waste of

Table 1: 1-Shot learning accuracies.

Model 5-Way 20-Way
Graph Neural Network
(Garcia and Bruna, 2015)

97.81% 93.50%

Proposed Method with U-
Net

98.08% 95.53%

Proposed Method with
Inception Net

98.31% 95.21%

Proposed Method with
Attention U-Net

96.83% 93.77%

Proposed Method with
Squeeze Net

94.54% 92.64%

computation as the model is required to learn many
more unnecessary features. Coming to the case of the
R2U-Net, though we hoped that this network would
perform the best, it did not run as the memory re-
quirements exceeded available RAM on the system.
However, this model might perform well given suffi-
cient hardware specifications.

Table 2: 5-Shot learning accuracies.

Model 5-Way 20-Way
Graph Neural Network
(Garcia and Bruna, 2015)

99.32% 98.93%

Proposed Method with U-
Net

99.48% 99.21%

Proposed Method with
Inception Net

99.31% 98.97%

Proposed Method with
Attention U-Net

98.73% 97.67%

Proposed Method with
Squeeze Net

98.26% 97.44%
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