
DLP-Visor: A Hypervisor-based
Data Leakage Prevention System

Guy Amit2, Amir Yeshooroon2, Michael Kiperberg1 and Nezer J. Zaidenberg2

1Software Engineering Department, Shamoon College of Engineering Beer-Sheva, Israel
2School of Computer Science, The College of Management, Academic Studies, Israel

Keywords: Virtual Machine Monitors, Hypervisors, Trusted Computing Base, Data Leakage Prevention.

Abstract: Data theft by insiders is considered by many organisations to be one of the most serious threats. Data leakage
prevention (DLP) systems attempt to prevent intentional or accidental disclosure of sensitive information by
monitoring the content or the context in which the information is transferred, for example, in a file system,
an email server, instant messengers. We present a context-sensitive DLP system, called DLP-Visor, which is
implemented as a thin hypervisor capable of intercepting system calls in Windows operating systems equipped
with Kernel Patch Protection. By intercepting system calls that govern the file system, inter-process commu-
nications, networking, system register and system clipboard, DLP-Visor guarantees that sensitive information
can never leave a predefined set of directories. The performance overhead of DLP-Visor (7.2%) allows its
deployment in real-world applications.

1 INTRODUCTION

One of the main goals of information security is to
prevent unauthorised entities from accessing sensitive
information. Many systems protect the sensitive in-
formation from external attacks by using encryption
(Khati et al., 2017; Guo et al., 2016) or by imple-
menting an access control (Li et al., 2019; Tourani
et al., 2017). In this paper, we focus on insider at-
tacks, in which an organisation employee steals sen-
sitive information that they can legitimately access.
An insider attack can also manifest in the form of a
malicious program executed with the privileges of an
employee who has access to sensitive information. In
order to combat these attacks, researchers have pro-
posed a new type of information security — Data
Leakage Prevention (DLP) systems.

DLP systems can be divided into two types (Al-
neyadi et al., 2016): content-based and context-based.
Both types prevent certain operations that can leak
sensitive information. Context-based DLP systems
determine the validity of an operation based on its
metadata while content-based DLP systems consider
the data itself. For example, a context-based DLP
system can prevent sending of an email if the desti-
nation email is not in the organisation’s domain. A
content-based DLP system can prevent sending of an
email if it contains the name of a classified project.

Content-based DLP systems tend to have a greater
performance impact due to the analysis they perform
on the content, which is usually larger than the con-
text. Content-based DLP systems use heuristics to
determine whether the content matches a predefined
rule. For example, Kantor (Kantor et al., 2012) pro-
posed to compare hashes of individual paragraphs or
sentences. Clearly, minor modifications of sentences
will produce different hashes.

On the other hand, context-based DLP systems are
less flexible. A context-based DLP system can be
configured to either allow sending emails to certain
domains or block them completely. The decision can-
not be made based on the content of the email or an
attachment.

We propose a context-based DLP system, imple-
mented as a thin hypervisor (Shinagawa et al., 2009;
Seshadri et al., 2007), capable of executing a single
operating system. We call our system “DLP-Visor”.
Thin hypervisors have two benefits compared with
full hypervisors: their code base is small enough to al-
low formal veirification and their performance is bet-
ter due to the exclusion of time-consuming compo-
nents such as memory management, hardware alloca-
tion and scheduling.

In contrast to system call interception mechanisms
that are implemented in user-mode (Wüchner and
Pretschner, 2012), DLP-Visor reliably intercepts op-

416
Amit, G., Yeshooroon, A., Kiperberg, M. and Zaidenberg, N.
DLP-Visor: A Hypervisor-based Data Leakage Prevention System.
DOI: 10.5220/0010221104160423
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 416-423
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



erating system events by intercepting kernel-mode
functions. Moreover, DLP-Visor, having higher priv-
ileges than the operating system, can operate even in
the presence of a patch detection mechanism like Mi-
crosoft Kernel Patch Protection (Field, 2006).

DLP-Visor allows the system administrator to se-
lect a set S of directories that contain sensitive files.
A process that opens a sensitive file becomes critical
and a file written by a critical process becomes sensi-
tive. The system clipboard becomes sensitive when it
receives data from a critical process. When a process
receives data from a sensitive clipboard, it becomes
critical. In other words, files and the system clip-
board act as criticality mediators. In order to prevent
information leakage through other channels provided
by the operating system, DLP-Visor does not allow
critical processes to write to the registry, use network
sockets or write to memory of another process. DLP-
Visor uses a system call interception mechanism to
keep track of the critical processes and restrict their
operations.

We make the following assumptions about the
abilities of an attacker:

• The attacker does not have kernel-mode privi-
leges.

• The attacker has full (administrator) user-mode
rights.

Under these assumptions, we claim that DLP-Visor
can provide the following guarantee: information that
resides in sensitive directories cannot be copied out-
side of them. In particular, sensitive information can-
not be copied to external media, sent in the body of an
email or as an attachment, copied to a network folder
or uploaded to a website.

The main contributions of the paper are:

• We describe the design of DLP-Visor, a
hypervisor-based data leakage prevention system.

• We compare the performance of two system call
interception mechanisms.

• We evaluate the performance and security of
DLP-Visor.

Our results show that performance degradation due to
DLP-Visor is insignificant (7.2 %), allowing its de-
ployment even in high-performance workstations.

2 BACKGROUND

Virtualization extensions to CPUs were introduced in
2005-2006 by Intel and AMD. These extensions al-
low the CPU to execute multiple operating systems si-
multaneously in isolated environments called “Virtual

Machines” (VMs). The software component that con-
figures and monitors the execution of VMs is called
a “Virtual Machine Monitor” (VMM) or a “hypervi-
sor”. In particular, the hypervisor can configure the
interception of various events that occur in the VMs,
e.g. execution of privileged instructions, interrupts,
memory accesses, etc. When an event configured for
interception occurs, the CPU transfers control from
the VM to the hypervisor.

The hypervisor inspects the information that de-
scribes the occurred event and reacts accordingly. Af-
ter completion of the event handling, the hypervisor
transfers control back to the VM.

In 2007-2008, AMD and Intel introduced a
Secondary-Level Address Translation (SLAT) mech-
anism to their virtualization extensions, allowing the
hypervisor to handle memory virtualization more effi-
ciently. With SLAT, the hypervisor can define a page
table for each VM, which defines translation of the
VMs’ physical addresses to real physical addresses.
Each entry of SLAT defines not only the mapping be-
tween addresses but also the access rights, thus effec-
tively allowing the hypervisor to intercept accesses to
physical pages.

A hypervisor can intercept a wide range of events.
We will discuss only those that are relevant to this pa-
per. The first type of event is access to MSRs, special
registers used to report the features of a CPU and con-
figure its state. They participate in the configuration
of

• 64-bit environments via the EFER MSR;

• system call mechanism via the STAR and
SYSENTER families of MSRs; and

• physical memory caching policies via the MTRR
family of MSRs, etc.

Two special instructions allow the software to write to
and read from MSRs, which are identified by a num-
ber. The hypervisor can intercept read and write MSR
accesses separately for each MSR. Upon transition to
the hypervisor, the number of the MSR and its new
value, in the case of a write operation, are reported to
the hypervisor.

Exceptions delivery is another type of event. By
configuring the exception bitmap field, the hypervisor
can intercept an exception before it is delivered to the
operating system. Upon transition to the hypervisor,
the exception number and error code are reported to
the hypervisor.

The last type of event that has relevance to this
paper is so-called “EPT-violations”; i.e. access to the
VMs’ physical addresses that cannot be translated to
real physical addresses. In essence, EPT-violations
are page-faults in the secondary-level address trans-

DLP-Visor: A Hypervisor-based Data Leakage Prevention System

417



lation. EPT-violations can occur either due to absent
entries in the secondary-level page table or due to in-
appropriate rights, e.g. write access to a read-only
page. Upon transition to the hypervisor, the virtual
and physical addresses are reported to the hypervisor.
In addition, the hypervisor receives a value that re-
sembles an error-code. This value can be used to de-
termine the reason for the EPT-violation.

3 SYSTEM CALL
INTERCEPTION

System call interception enables a software module
to monitor the behaviour of an entire operating sys-
tem or a specific application. This monitoring ability
is useful in the implementation of protective, i.e. anti-
virus, and offensive, i.e. malware, software. System
call interception approaches can be divided into two
types: user-mode interception and kernel-mode inter-
ception. In user-mode interception, the code of the
wrapper functions is replaced with a call to a monitor
that eventually performs the actual system call. The
monitor can inspect: the argument of the system call
before its execution and the return values of the sys-
tem call after its completion. The monitor can also
respond to an attempt of system call execution by no-
tifying the user, preventing the system call completely
or modifying its arguments.

We note that user-mode interception is vulnerable
to user-mode attacks and, therefore, is ineffective in
our attack model. For example, a memory corruption
attack can overwrite the monitoring system call wrap-
per with the code of the original system call wrap-
per, thus disabling the monitoring functionality. Ulti-
mately, an attacker can execute the sysenter or the
syscall instruction directly, without even calling the
monitoring system call wrapper.

Kernel-mode system call interception can defeat
the user-mode attacks by installing the interception
mechanism in the kernel itself. Prior to introduc-
tion of Microsoft’s Kernel Patch Protection (KPP)
(Field, 2006), the interception was mainly performed
by changing SSDT entries to point to monitoring
functions, which then call the original functions. Be-
cause SSDT patching was frequently used for mali-
cious purposes, Microsoft decided to prohibit its mod-
ification. Microsoft’s KPP periodically computes a
checksum of SSDT and produces a BSOD when a
modification is detected. KPP can also detect modifi-
cation of the model specific registers involved in sys-
tem call handling.

Fortunately, in some cases, a hypervisor can hide
modification of sensitive registers and data structures,

thus allowing it to intercept system calls in kernel-
mode even when KPP is active. In this section, we
explain how DLP-Visor can intercept not only entries
but also exits from system calls.

3.1 Interception of System Call Entries

In order to reduce the interception overhead of irrele-
vant events, we propose to use a targeted interception
mechanism, which allows the hypervisor to intercept
only those system calls that need to be monitored. Our
approach is inspired by the Stealth Breakpoints intro-
duced in (Deng et al., 2013; Lengyel et al., 2014).
According to this approach, the hypervisor replaces
the first instruction of the function it wishes to inter-
cept with the INT3 instruction. The hypervisor stores
the original instruction in its internal data structures.
Finally, the hypervisor configures interception of the
breakpoint exception. When a breakpoint exception
occurs the hypervisor emulates the first instruction,
advances the instruction pointer to the next instruc-
tion, and continues the VM’s execution. This method
allows the hypervisor to intercept only the system
calls that require monitoring.

The hypervisor can use officially distributed sym-
bol files (Microsoft, 2020b) to find the addresses
of the functions that need to be intercepted. Due
to address-space layout randomisation (Cook, 2013),
the actual addresses of the functions change on ev-
ery boot, but relative offsets of the functions remain
constant. The idea is to statically calculate the off-
sets of the function that require interception from the
system call handler and use them later for calcula-
tion of actual addresses. When the operating system
writes an address to the IA32 SYSENTER EIP or the
IA32 LSTAR MSRs, the hypervisor adds to this ad-
dress the offsets of the functions than require intercep-
tion and obtains the actual address in which a break-
point is inserted.

Unfortunately, KPP triggers a BSOD when it
detects modification of the kernel code, such as the
breakpoint instruction that the hypervisor inserted. In
order to prevent KPP from detecting the breakpoint,
the hypervisor marks the page containing the break-
point is not readable in the SLAT. The code in the
page can run without intervention of the hypervisor
(with the exception of the INT3 instruction); however,
any attempt to read the page is intercepted by the
hypervisor. Normally, pages containing code are read
only by the KPP mechanism. The hypervisor reacts to
such read attempts by emulating the read instruction,
advancing the instruction pointer and returning to
the VM. During the emulation, the hypervisor re-

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

418



Original NtCreateFile:
NtCreateFile:

0xffffffff6b2901c0: sub rsp, 88h
0xffffffff6b2901c7: xor eax,eax
0xffffffff6b2901c9: ...

Instrumented NtCreateFile:
NtCreateFile:

0xffffffff6b2901c0: int3
0xffffffff6b2901c1: int3
0xffffffff6b2901c2: <unreachable fragment>
0xffffffff6b2901c7: xor eax,eax
0xffffffff6b2901c9: ...

Figure 1: NtCreateFile before and after instrumentation.

turns the original value if KPP attempts to ac-
cess the INT3 instruction.

3.2 Interception of System Call Returns

Interception of returns from system call handlers is a
more challenging task. The idea is to change the re-
turn address of the call frame such that the instruction
at the new address will trigger the hypervisor. The
hypervisor reacts to this event by setting the instruc-
tion pointer to the original return address and return-
ing control to the VM.

More precisely, the hypervisor installs two INT3
instructions at the beginning of a function that needs
to be intercepted. Figure 1 shows an example of
NtCreateFile instrumentation. The purpose of each
INT3 instruction is to trigger the hypervisor. The first
INT3 instruction triggers the hypervisor on an entry to
the intercepted function while the second INT3 trig-
gers the hypervisor on an exit from the intercepted
function. The hypervisor reacts to the first INT3 by
setting the return address in the call frame to the ad-
dress of the second INT3. Upon an exit from the in-
tercepted function the second INT3 is executed, trig-
gering the hypervisor. The hypervisor reacts to the
second INT3 by setting the instruction pointer to the
original return address. The hypervisor does not have
to record the original return address before changing
it in the call frame because this address is identical for
all the system call handlers. Algorithm 1 summarises
the operation of the hypervisor with regard to break-
point handling.

4 SYSTEM DESIGN

The main component of the DLP-Visor is the sys-
tem call interception mechanism that was described in
Section 3. During its initialization, DLP-Visor con-

Algorithm 1: Algorithm for breakpoint handling. In the
case of NtCreateFile, InstructionLength is 7 and Emu-
lateInstruction() is equivalent to RSP := RSP - 0x88.

1: handled := FALSE
2: for all intercepted functions do
3: if RIP = Address of 1st INT3 then
4: handled := TRUE
5: HandleEntry()
6: STACK[RSP - 8] := RIP + 1
7: RIP := RIP + InstructionLength
8: EmulateInstruction()
9: else if RIP = Address of 2nd INT3 then

10: handled := TRUE
11: HandleExit()
12: RIP := OriginalReturnAddress
13: end if
14: end for
15: if not handled then
16: Inject the exception to the OS
17: end if

figures interception of writes to the IA32 LSTAR or
IA32 SYSENTER EIP MSRs, depending on the oper-
ating system architecture. When the operating sys-
tem writes to the appropriate MSR, the hypervisor as-
sumes that the kernel’s initialiwation is complete and
installw the breakpoints in the system call handlers
that require interception. The hypervisor can obtain
the addresses of the system call handlers from SSDT
or from symbol files. Each entry in the SSDT con-
tains the address of the system call that corresponds
to this entry. The indexes of the entries can be hard-
coded in the hypervisor or obtained synamically by
disassembling the user-mode wrappers.

After completing the breakpoint installation pro-
cess, DLP-Visor resumes the operating system. The
operating system executes normally and DLP-Visor is
notified about each entry to- and exit from the system
calls that require interception. Table 1 summarises the
intercepted system calls and the action performed by
DLP-Visor on each system call.

The system calls intercepted by the DLP-Visor
can be broadly divided into two categories: (a) infor-
mative and (b) operational. Informative system calls
modify the internal data structures of the DLP-Visor
and the DLP-Visor never blocks these system calls.
Operational system calls are those that require filter-
ing. For example, NtCreateUserProcess is an infor-
mative system call, whereas NtWriteFile is an oper-
ational system call.

DLP-Visor uses two sets in its internal data struc-
tures and an additional set for each critical process:

• S — the set of sensitive files and directories;

• C — the set of critical processes; and

DLP-Visor: A Hypervisor-based Data Leakage Prevention System

419



Table 1: Intercepted System Calls. The current and the target (where applies) processes are denoted by p and q, respectively.
The directory of the target file f is denoted by d.

System Call When Type Action
NtCreateFile/NtOpenFile Exit Informative If d is sensitive, mark p as critical.
NtCreateFile/NtOpenFile Exit Informative Store the directory d of the target file.
NtCreateUserProcess Exit Informative If p is critical, mark q as critical.
NtWriteFile Entry Operational Block if p is critical and d is not sensitive.
NtDeviceIoControlFile Entry Operational Block if p is critical.
NtSetInformationFile Entry Operational Block if p is critical and f is sensitive.
NtReadVirtualMemory Entry Operational Block if q is critical.
NtWriteVirtualMemory Entry Operational Block if p is critical.
NtUserSetClipboardData Exit Informative If p is critical, mark the clipboard as sensitive.
NtUserGetClipboardData Exit Informative If the clipboard is sensitive, mark p as critical
NtSetValueKey Entry Operational Block if p is critical.

• Hp — the set of handles to sensitive files in a crit-
ical process p ∈C

Initially, set S contains the directories that were se-
lected by the system administrator as sensitive and set
C is empty. Set S may contain a special item � denot-
ing the clipboard. An empty set Hp is allocated for
each newly detected critical process p ∈C. For sim-
plicity, we write f ∈ S if f belongs to S or if f resides
in a directory that belongs to S.

DLP-Visor prevents the execution of system
calls by corrupting their arguments. Specifically,
NtWriteFile and NtDeviceIoControlFile receive
a file handle as their first argument. By setting this
argument to INVALID HANDLE VALUE (0), DLP-Visor
causes these system calls to fail.

5 EVALUATION

This section presents the evaluation of DLP-Visor
with respect to security guarantees and performance
overhead. The system was tested in a virtualized en-
vironment. The exact configuration of the testing en-
vironment is presented in Table 2.

Table 2: Testing environment configuration.

Host CPU Intel(R) Core(TM) i7-10610U
Host memory 16 GB
Host OS Ubuntu 20.04.1 LTS
VMM VMware Workstation 15.5.6
Guest CPU Intel(R) Core(TM) i7-10610U
Guest memory 8 GB
Guest OS Windows 10 (19041)

5.1 Security

DLP-Visor provides the following security guarantee:
information that resides in sensitive directories can-

not be copied outside of them. We assume that an
attacker does not have kernel-mode privileges and,
therefore, cannot observe the memory or the file sys-
tem directly. The attacker is forced to use system calls
to exfiltrate information from sensitive files. A pro-
cess becomes critical on the first attempt to access
sensitive files. Therefore, the guarantee of DLP-Visor
can be formulated as follows: Critical processes can
output their data only to files that reside in sensitive
directories.

We identify the following channels through which
critical processes can leak information:

• files — using the NtWriteFile or the
NtSetInformationFile system call;

• Inter-Process Communication (IPC) — using the
NtWriteFile system call;

• clipboard — using the
NtUserSetClipboardData system call;

• drivers — using the NtDeviceIoControlFile
system call;

• registry — using the NtSetValueKey system call;
and

• memory — using the
NtWrite/ReadVirtualMemory system call.

The current implementation of DLP-Visor pre-
vents critical processes from writing to drivers
(NtDeviceIoControlFile), the system registry
(NtSetValueKey) and the memory of another process
(NtWriteVirtualMemory). Likewise, DLP-Visor
prohibits reading from the memory of a critical pro-
cess (NtReadVirtualMemory). In additional, DLP-
Visor prohibits moving (renaming) sensitive files us-
ing the NtSetInformationFile system call. Writ-
ing to file handles that correspond to: files that reside
outside sensitive directories, mail slots, and pipes is
prohibited as well. The sensitive data can pass freely

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

420



between critical processes using the system clipboard,
but the critical processes will not be able to output this
data outside the sensitive directories.

The current implementation of DLP-Visor is re-
strictive in terms of functionality available for criti-
cal processes. In order to assess the applicability of
DLP-Visor to real-world applications, we selected a
set of common desktop applications. All applications
worked normally, until we pasted a sensitive text. The
behaviour of the tested applications after becoming
critical was as follows:

• Microsoft Word and Microsoft PowerPoint after
pasting sensitive data, worked normally but failed
to save a file in a non-sensitive directory. An error
message appeared in response.

• Microsoft Outlook after pasting sensitive data,
worked normally but it failed to send an email.
An error message appeared in response.

• Microsoft Edge after pasting sensitive data, dis-
played an error message about loss of internet
connection.

• FileZilla on an attempt to transfer a sensitive file
to a remote FTP directory, an error message ap-
peared.

• PuTTY on an attempt to transfer a sensitive file via
SFTP, aborted the connection.

• Firefox and Chrome terminated after pasting sen-
sitive data due to excessive use of inter-process
communication.

In most test cases, the applications behaved in a pre-
dictable fashion: after becoming critical, the appli-
cations continue to function normally but with cer-
tain limitations. Notable exceptions are Firefox and
Chrome, which terminated after becoming critical.
This can be explained by the design of these appli-
cations. Firefox and Chrome consist of multiple pro-
cesses that use inter-process communication mech-
anisms. Unfortunately, the current implementation
of DLP-Visor blocks these mechanisms, resulting in
hangs and termination of these applications. We plan
to address this issue in future versions of DLP-Visor.

5.2 Performance

DLP-Visor intercepts several system calls. Some of
these system calls, notably the NtWriteFile system
calls, are frequently called during normal execution.
In order to assess the performance degradation due
to these interceptions, we ran a benchmarking tool
called PCMark (Sibai, 2008) in four configurations:
(a) without a hypervisor, (b) with a thin hypervi-
sor without interceptions, (c) with DLP-Visor and (d)

Table 3: PCMark scores in four configurations.

Category N
o

H
yp

er
vi

so
r

T
hi

n
H

yp
er

vi
so

r

D
L

P-
V

is
or

V
ir

tu
al

B
ox

App start-up 7277 7110 6358 4008
Video 2129 2307 1862 1197
Web browsing 2067 2012 2028 1390
Spreadsheet 4473 4420 4215 2688
Writing 5005 4928 4861 2870
Photo editing 850 852 817 524
Video editing 903 887 804 650

with Oracle VirtualBox (6.1.14) as an example of a
full hypervisor, running the same version of Windows
with 8GB of RAM. The exact configuration of our
testing environment is summarised in Table 2. Table
3 presents the scores that were given by PCMark in
each configuration for every category. As expected,
the performance degradation of a thin hypervisor is
negligible (≈ 1.7% on average), whereas the perfor-
mance degradation of a full hypervisor is unaccept-
ably high (≈ 38.6% on average). The average perfor-
mance overhead of DLP-Visor is ≈ 7.2%. We believe
that this performance degradation will not have a con-
siderable negative impact on user experience.

In some tests, the results seem counter-intuitive
due to measurement errors. For example, in the
“Video conferencing” test, the system performed bet-
ter in the “Thin hypervisor” configuration than with-
out a hypervisor. Another example is the “Web
browsing” test, in which DLP-Visor performed better
than a thin hypervisor.

6 RELATED WORK

DLP-Visor is based on two somewhat independent
fields in software security: data leakage prevention
and virtual machine introspection. In this section, we
describe the similarities (and dissimilarities) among
previous works in these fields and DLP-Visor.

Data leakage prevention systems can be divided
into two categories (Alneyadi et al., 2016): context-
sensitive and content-sensitive. Content-sensitive
DLP systems use regular expressions, statistical
methods or advanced hashing techniques to identify
sensitive data exfiltration attempts (McAfee, 2020;
Microsoft, 2020a; Google, 2020; Checkpoint, 2020;
Shvartzshnaider et al., 2019). As such, these meth-
ods are not able to identify leakage of transformed or
encrypted data.

DLP-Visor: A Hypervisor-based Data Leakage Prevention System

421



Some context-sensitive DLP systems work ac-
cording to coarse security policies, such as preventing
users from using removable media (Halpert, 2004).
DLP-Visor provides a more fine-grained configura-
tion of sensitive and restricted locations.

The idea of sensitiveness that spreads between
files touched by processes was first introduced in
(Petkovic et al., 2012). The authors proposed a kernel
module for the Linux operating system that monitors
the operations performed on the filesystem. Specifi-
cally, after a process performs a read from a sensitive
file, all its subsequent writes mark the target files as
sensitive. DLP-Visor generalises this idea to the clip-
board, memory and network channels, and adapts to
the Windows operating system.

UC4Win (Wüchner and Pretschner, 2012) is prob-
ably closest to DLP-Visor’s approach. UC4Win mon-
itors system calls and matches them against a set
of predefined rules. The rules determine whether
the system call shall be allowed. Unlike DLP-
Visor, UC4Win uses user-mode interception of sys-
tem, which can be easily circumvented.

Virtual machine introspection allows the hypervi-
sor to intercept various events occurring in the operat-
ing system. The first system to use virtualization ex-
tensions for introspection was Ether (Dinaburg et al.,
2008), which used page-faults for system call trac-
ing. We showed that interception of page-faults can
severely degrade overall system performance.

Spider (Deng et al., 2013) is a stealthy breakpoint
installation framework based on KVM, a full hyper-
visor. Spider is suitable for installing breakpoints in
user-mode applications. The idea of stealthy break-
points was later extended in Drakvuf (Lengyel et al.,
2014), which is based on Xen, another full hypervi-
sor. As shown by our experimental results, full hyper-
visors have a much higher performance overhead than
thin hypervisors, like DLP-Visor. Recently, Drakvuf
was ported to ARM (Proskurin et al., 2018), Because
Drakvuf and DLP-Visor use similar underlying mech-
anisms, we believe that DLP-Visor can be ported as
well.

7 CONCLUSIONS

In this paper, we presented DLP-Visor, a hypervisor-
based context-sensitive data leakage prevention sys-
tem. We showed that the performance overhead al-
lows DLP-Visor to be deployed in practice. Despite
the limitations imposed by current implementation of
DLP-Visor, it can be applied to most real-world appli-
cations. We believe that future versions of DLP-Visor
will address these limitations.

REFERENCES

Alneyadi, S., Sithirasenan, E., and Muthukkumarasamy, V.
(2016). A survey on data leakage prevention sys-
tems. Journal of Network and Computer Applications,
62:137–152.

Checkpoint (2017 (accessed Sep 19, 2020)). Data Loss Pre-
vention Software Blade. Checkpoint.

Cook, K. (2013). Kernel address space layout randomiza-
tion. Linux Security Summit.

Deng, Z., Zhang, X., and Xu, D. (2013). Spider: Stealthy
binary program instrumentation and debugging via
hardware virtualization. In Proceedings of the 29th
Annual Computer Security Applications Conference,
pages 289–298.

Dinaburg, A., Royal, P., Sharif, M., and Lee, W. (2008).
Ether: malware analysis via hardware virtualization
extensions. In Proceedings of the 15th ACM con-
ference on Computer and communications security,
pages 51–62.

Field, S. (2006). An introduction to kernel patch protection.
Google (2016 (accessed Sep 19, 2020)). Scan your email

traffic using data loss prevention.
Guo, C., Zhuang, R., Jie, Y., Ren, Y., Wu, T., and Choo, K.-

K. R. (2016). Fine-grained database field search us-
ing attribute-based encryption for e-healthcare clouds.
Journal of medical systems, 40(11):235.

Halpert, B. (2004). Mobile device security. In Proceedings
of the 1st annual conference on Information security
curriculum development, pages 99–101.

Kantor, A., Antebi, L., Kirsch, Y., and Bialik, U. (2012).
Methods for document-to-template matching for data-
leak prevention. US Patent 8,254,698.

Khati, L., Mouha, N., and Vergnaud, D. (2017). Full disk
encryption: bridging theory and practice. In Cryp-
tographers’ Track at the RSA Conference, pages 241–
257. Springer.

Lengyel, T. K., Maresca, S., Payne, B. D., Webster, G. D.,
Vogl, S., and Kiayias, A. (2014). Scalability, fidelity
and stealth in the drakvuf dynamic malware analysis
system. In Proceedings of the 30th Annual Computer
Security Applications Conference, pages 386–395.

Li, J., Chen, N., and Zhang, Y. (2019). Extended file hier-
archy access control scheme with attribute based en-
cryption in cloud computing. IEEE Transactions on
Emerging Topics in Computing.

McAfee (2017 (accessed Sep 19, 2020)). Total Protection
for Data Loss Prevention (DLP).

Microsoft (2018 (accessed Sep 19, 2020)b). Microsoft pub-
lic symbol server.

Microsoft (2020 (accessed Sep 19, 2020)a). Data loss pre-
vention in Exchange Server.

Petkovic, M., Popovic, M., Basicevic, I., and Saric, D.
(2012). A host based method for data leak protec-
tion by tracking sensitive data flow. In 2012 IEEE
19th International Conference and Workshops on En-
gineering of Computer-Based Systems, pages 267–
274. IEEE.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

422



Proskurin, S., Lengyel, T., Momeu, M., Eckert, C., and
Zarras, A. (2018). Hiding in the shadows: Empow-
ering arm for stealthy virtual machine introspection.
In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 407–417.

Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007).
Secvisor: A tiny hypervisor to provide lifetime ker-
nel code integrity for commodity oses. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 335–350.

Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K.,
Hasegawa, S., Horie, T., Hirano, M., Kourai, K.,
Oyama, Y., Kawai, E., et al. (2009). Bitvisor: a
thin hypervisor for enforcing i/o device security. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environ-
ments, pages 121–130.

Shvartzshnaider, Y., Pavlinovic, Z., Balashankar, A., Wies,
T., Subramanian, L., Nissenbaum, H., and Mittal, P.
(2019). Vaccine: Using contextual integrity for data
leakage detection. In The World Wide Web Confer-
ence, pages 1702–1712.

Sibai, F. N. (2008). Evaluating the performance of sin-
gle and multiple core processors with pcmark R© 05
and benchmark analysis. ACM SIGMETRICS Perfor-
mance Evaluation Review, 35(4):62–71.

Tourani, R., Misra, S., Mick, T., and Panwar, G. (2017).
Security, privacy, and access control in information-
centric networking: A survey. IEEE communications
surveys & tutorials, 20(1):566–600.

Wüchner, T. and Pretschner, A. (2012). Data loss preven-
tion based on data-driven usage control. In 2012 IEEE
23rd International Symposium on Software Reliability
Engineering, pages 151–160. IEEE.

DLP-Visor: A Hypervisor-based Data Leakage Prevention System

423


