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Dyslexia impacts the individual’s ability to read, interferes with academic achievements and may also have
long term consequences beyond the learning years. Early detection is critical. It is usually done via a lengthy
battery of tests: human experts score these tests to decide whether the child requires specific education strate-
gies. This human assessment can also lead to inconsistencies. That is why there is a strong need for earlier,
simpler (and cheaper) screening of dyslexia. In this paper, we investigate the potential of modern Artifi-
cial Intelligence in automating this screening. With this aim in mind and building upon previous works, we
have gathered a dataset of audio recordings, from both non-dyslexic and dyslexic children. After proper pre-
processing, we have applied diverse machine learning algorithms in order to check if some hidden patterns
are discoverable, making a difference between dyslexic and non-dyslexic readers. Then, we built up our own
neural network which outperforms the other tested approaches. Our results suggests the possibility to clas-
sify audio records as characteristic of dyslexia, leading to an accurate and inexpensive dyslexia screening via

non-invasive methods, potentially reaching a large population for early intervention.

1 INTRODUCTION

Learning disorders such as dyslexia, dyspraxia, dys-
graphia, etc., are deeply connected to an individual’s
outcomes not only during their academic years, but
also when it comes to employment, mental health
and more. Despite the fact there is no exact figure
about the number of dyslexic people on earth, it is
widely accepted by the community that dyslexia af-
fects about 5%-10% of school-age children and, if we
include adults, then it can go up to 15% (see the re-
port coming from Duke University (Duke, 2016) for
instance). The Diagnostic and Statistical Manual of
Mental Disorders also known as DSM-5 (American
Psychiatric Association, 2013), is often considered as
one of the reference documents on this matter. To go
to the point, Dyslexia is:

e defined as a basic deficit in learning to read (i.e.
decode print) (Vellutino et al., 2004),

e characterized by a significant impairment in the
development of reading skills,

e observable by reading performances well below
the normal range for given age groups and IQ lev-
els (L. et al., 2016),

e not explained by sensory deficits such as visual,
hearing impairment, insufficient scholarship or
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overall mental development only (L. et al., 2016).

At least, the scientific community agrees on this def-
inition even if some technical details remain debat-
able (Waesche et al., 2011). Clarifying the causes
of dyslexia has been a serious goal of research over
the past twenty years. Despite much progress be-
ing made across diverse fields, the causes of dyslexia
still remain opaque and there is no scientific consen-
sus. Several theories coexist, some of them have al-
ready been discredited by empirical observations, oth-
ers still remain as serious candidates waiting for con-
firmation. Testing these hypotheses is a difficult task:
dyslexic people do not form a homogeneous popu-
lation and exhibit diverse patterns of errors. That
is also why dyslexia is often divided into subtypes
(phonological, visual, etc.), possibly originating from
deficits at various stages of the comprehension sys-
tem. Nevertheless, following (Tamboer et al., 2014),
it is possible to identify dyslexia with a high reliabil-
ity, although the exact nature of dyslexia is still un-
known.

Dyslexia remains throughout a persons lifetime
but can be mitigated with appropriate training ses-
sions. Obviously, it is not a matter of Yes or No and
the symptoms range from mild to severe.

Without known causes, detecting dyslexia remains
a challenging task. The process is complex and per-
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formed by an accredited professional. This profes-
sional looks for many different indicators, intended
to detect whether reading, writing (and also calcu-
lus skills) are being acquired at a proper rate. Gen-
erally a questionnaire to acquire information regard-
ing medical history, social environment, school per-
formances, etc. is filled out, then the final diagnos-
tic is done via a battery of tests (mainly paper-based).
The questionnaire is mainly a self-report which, in the
case of a child, can be supervised by the tutor. The
assessment may be lengthy, costly and emotionally
painful. Moreover the limited number of accredited
professionals may make this process time consuming.
Without mentioning the cost of the assessment which
can also be prohibitive.

Very often, dyslexic children can get government
supports in diverse ways (specific teaching lessons,
extra tuition, extra time for exams, specific staff help-
ing during the classroom, etc.). To get such a support,
the criteria is to provide a certificate coming from an
accredited specialist. This situation obviously pre-
vents a lot of people, often among the most vulnera-
ble members of the population, to carry on an assess-
ment. This makes the search of easy, fast, reliable and
widely available assessments (or pre-assessments) of
primary interest.

From another perspective, there has been an in-
creasing interest to carry over the success stories
of Artificial Intelligence (AI) and Machine Learning
(ML) in diverse domains, from natural language un-
derstanding to cancer screening through autonomous
vehicles. That is why some researchers from the Al
community have started to investigate ML techniques
for dyslexia screening!.

In this paper, our initial assumption is that a prop-
erly trained ML algorithm might be able to distin-
guish between non dyslexic children and dyslexic
children, starting from a set of simple features. In the
case of dyslexia, we consider features extracted from
audio records of word reading (known words and non-
sense words?). Our experiences on a restricted set
of data coming from speech pathologist partners in
Australia demonstrate the soundness of this approach.
This paper is organized as follows. In Section 2,
we discuss existing related works. In Section 3, we
describe the main principles underlying our method.
Section 4 is dedicated to our experiments: we de-
scribe the dataset, the protocol and the results we get.

"'Word screening is more appropriate at this stage. But, in
the remainder of this paper, we indifferently use the words
diagnostic, assessment and screening.

2 A nonsense word follows phonetic rules, has no meaning
and does not belong to the English dictionary but looks like
a proper English word.
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Before providing future works in our conclusion Sec-
tion 6, we discuss the limitations of our current ap-
proach in Section 5.

2 RELATED WORKS

We are not alone in our belief that Machine Learning
or Al in the large part are there to help provide an
effective dyslexia screening. Among the recent (post
2010) Al-based approaches to diagnose dyslexia, we
can roughly distinguish 2 categories:

- Category 1: Approaches using the results of
human-expert scoring to provide a diagnostic. In
these cases, the diagnostic process does not change a
lot: the user has still to undertake a battery of tests and
these tests are human-marked. Since it may be dif-
ficult to maintain children’s attention throughout the
tests, an option is to include all the tests in a serious-
game, to better grab the attention of the participant.
But only the final diagnostic is done via an Al algo-
rithm.

- Category 2: Approaches taking, as an initial
assumption, one of the candidate theories explain-
ing dyslexia. In these cases, the Al algorithm is fed
with data related to the underlying theory. In the
case of neurological explanations for dyslexia, the au-
thors use brain scans or EEG. In case of oculo-motor
deficits origin, the authors implement eye-tracking
technologies.

2.1 Multi-tests Approaches (Cat. 1)

The approaches considered in this section take as in-
put the results of tests undertaken by the user. These
tests can be:

e pre-defined tests generally administered by an ac-
credited professional. In this case, the tests can
also be marked by the practitioner. Optionally
a computer-assisted marking process is imple-
mented.

e specifically designed computer-based tests captur-
ing information relevant to dyslexia. In this case,
a professional is needed to supervise a child par-
ticipant.

Then the output of these tests are fed into an Al al-
gorithm which ultimately provides a diagnostic as a
likelihood of dyslexia (i.e. a number between 0 and
1). We can cite the works of (Palacios et al., 2010;
Costa et al., 2013; Al-Barhamtoshy and Motaweh,
2017; Shamsuddin et al., 2017) which are still at a
research stage. Only the work of (Rello et al., 2018),
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implemented via a serious game, led to a commer-
cial system Dytective’. The authors suggest an accu-
racy of 85% on their dataset, which is relatively good.
Another interesting option has been recently imple-
mented in (Spoon et al., 2019), (which is not category
1, stricto sensu). Because ‘reading is intimately con-
nected to writing, and children who struggle to learn
to read often struggle to write’, Spoon et al. provide
a proof-of-concept by developing a system that used
computer vision to classify handwriting samples as
indicative of dyslexia or not. They get 77.6% accu-
racy in determining whether a patch of handwriting
was written by a student with dyslexia or not. Still
in early development, these works provide relatively
good results using very accessible information with
no need for a questionnaire or battery of tests.

2.2 Serious Games Approaches (Cat. 1)

When one wants to target a population of very young
children (let’s say under 7), it becomes crucial to de-
sign a data gathering process which is sufficiently at-
tractive to motivate them. Serious games are therefore
natural candidates for this task. An early attempt has
been done by (Lyytinen et al., 2007), but it was before
the effective emergence of Al. The works of (Van den
Audenaeren et al., 2013) within the DYSL-X project
and the works of (Gaggi et al., 2012) are targeted to
this aim: they have designed serious games, dedicated
to young children, available on computers or tablets
and allowing the measurement of some parameters
characteristic of dyslexia. These works are more fo-
cused on the design and implementation of a system
than on estimating its accuracy. The work of (Geurts
et al., 2015) DIESEL-X was also developed to detect
a high risk for having dyslexia in preschoolers. Sev-
eral theories on the underlying cause of dyslexia are
converging on the idea that one fundamental problem
derives from abnormal neurological timing, or ’tem-
poral processing’ (Johnson, 1980). As a consequence,
the perception of musical elements could differ from
children with and without dyslexia. Starting from
this assumption, (Rauschenberger et al., 2017) pro-
poses DysMusic, a prototype which aims to predict
the risk of having dyslexia before acquiring reading
skills. The prototype was designed to observe par-
ticipants listening to music (via a web app), using
the think aloud protocol, varying different acoustic
parameters such as frequency, duration which relate
with perceptual parameters such as pitch and loud-
ness. Among other tasks, the participants (10 in the
cohort) have to evaluate how difficult it was to dis-

3Dytective is a cross-platform app available on
https://www.changedyslexia.org.
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tinguish between the various sounds. (Gaggi et al.,
2017) have developed a set of 6 serious games, using
a 2D graphic design, and experimented on 24 partici-
pants. Both (Rauschenberger et al., 2017) and (Gaggi
et al., 2017) have experimented on very small cohorts
but their works still demonstrate that serious gaming
is an interesting pathway for dyslexia screening.

2.3 Neuro-based Approaches (Cat. 2)

Neuro-based works start from the widely admitted as-
sumption that dyslexia is linked to a specific brain
configuration, either in terms of anatomical shape
or in terms of functional organisation. In (Tamboer
et al., 2016) three dimensional whole-brain scans are
acquired from each participant, each acquisition se-
quence lasting approximately 6 minutes. Using a
standard classifier, they properly classify 80% of the
scans between dyslexics and non dyslexics. This ac-
curacy declines to 59% with a larger range of par-
ticipants. In fact, their algorithm provides a large
percentage of false alarms, i.e. many people with-
out dyslexia are labelled with dyslexia (which is a
cautious behavior but can lead to serious stress for a
child).

The authors of (Frid and Manevitz, 2018) start
from the assumption (Asynchrony Theory) that
dyslexia could come from a gap in the speed of pro-
cessing between the different brain entities activated
in the word decoding process. This gap may pre-
vent the synchronization of information necessary for
an accurate reading process. Starting from this, they
monitor a population of 32 children, with a more or
less 50/50 percentage of dyslexic/non dyslexic read-
ers. Getting the children to read 96 real words and
96 non-sense words, they record brain activity via
electroencephalogram (EEG) and implement a binary
classification algorithm (namely Support Vector Ma-
chines SVM) to distinguish between dyslexic and non
dyslexic readers. They obtain an accuracy in the range
of 78.5%. Obviously, this kind of technique cannot
be used in a realistic way to screen a large part of the
population. And, due to the heavily controlled en-
vironment needed to capture the data, it is unlikely
these neuro-based approaches will lead to a publicly
available tool anytime soon.

2.4 Eye Tracking-based Approaches
(Cat. 2)

Eye-tracking can provide serious insight into percep-
tual/cognitive processes (PH. et al., 2013). Despite
the fact that the work of (Hyona et al., 1995) tends
to dismiss the oculo-motor dysfunction hypothesis of



dyslexia, it is a fact that today most studies agree that
there is a link between visual-attention and oculo-
motor control during reading: see for instance (Bel-
locchi et al., 2012; Huettig and Brouwer, 2015) for
recent publications on this topic. From an Al perspec-
tive, it is then natural to monitor the eye movement of
a user during reading activity.

For the first time in (Rello and Ballesteros, 2015),
an eye tracking technology associated to an SVM
classifier was used to predict dyslexia starting from
a dataset of 97 subjects, 48 of them with diagnosed
dyslexia. The eye tracking technology allows the ex-
traction of information such as Number of visits (To-
tal number of visits to the area of interest in the text),
Mean of visit (Duration of each individual visit within
the area of interest in the text), etc. The resulting ac-
curacy is in the range of 80% which is relatively good.
(M. et al., 2016) start from the same idea but moni-
tor different parameters such as for a given eye sac-
cade, the duration of the event, the distance spanning
the event, the average eye position during the event,
etc. Their standard classifier shows a very high ac-
curacy (around 96%). The whole process also takes
into account the results from a battery of other com-
mon tests, such as rapid automatic naming, reading
of nonsense words, etc.: this obviously increases the
duration of a screening session®.

More recently, we can cite the works of
(Asvestopoulou et al., 2019), still using eye tracking
associated to an SVM classifier and getting an excel-
lent 97% accuracy rate over a set of 69 native Greek
speaking children, 32 being dyslexic. Their system
DysLexML, still a work in progress, could ultimately
be the basis of another screening tool. Nevertheless,
eye tracking-based methods still need an external de-
vice to be connected in one way or another to a com-
puter. This could be considered as a serious draw-
back.

Our work departs from all the previous ones in
terms of the data we use, in terms of simplicity and in
terms of duration of a session. In the following sec-
tion, we describe how we proceed to tackle the issue
of dyslexia screening.

3 PREDICTION PRINCIPLE

Because one of the main symptoms of dyslexia is dif-
ficulty in reading, we have decided to only gather
reading audio recordings, from both dyslexic and non

4Starting from this approach, Lexplore
(https://www.lexplore.com/) has been founded in 2016 in
Sweden which then expanded to the USA in 2017.
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dyslexic readers, then to apply machine learning al-
gorithms. Instead of analysing images, brain signals
or eyes movements, we directly analyse audio signals.
We agree that poor reading performance is not an ulti-
mate marker of dyslexia, but our results demonstrate
that a dedicated machine learning algorithm associ-
ated with proper audio signal processing can extract
patterns that are not accessible to a human expert. Let
us start with what a user is supposed to provide.

3.1 Word Selection and Generation

Our process is to have every individual to read 32
words (no sentences, only words). It is well-known
that dyslexic children struggle when it comes to read-
ing words they have never seen or heard. They have
also difficulties with some letters, or combinations of
letters (p and ¢ for instance) and certain syllables.
Our initial corpus comes from a set of 82 children’s
books extracted from the Gutenberg Project (Hart,
1971). We clean the texts and remove proper nouns.
We obtain a list of around 100 000 words. Then we
produce two lists : one with words from 4 to 6 letters,
one with words from 7 to 9 letters. In each list, we
consider only words with a high frequency of occur-
rence to guarantee the words are known by children.
After filtering, each of the two lists contains around
2000 words.

In a second step, we create two lists of nonsense
words. We also need to guarantee that the nonsense
is pronounceable. In order to achieve that, we build a
Long-Short Term Memory neural networks (LSTM)
(Hochreiter S, 1997) that learn to build such nonsense
words. We are then able to generate an infinite list of
nonsense words’. As for the real words, we build two
lists of nonsense words with different size (1000 non-
sense words with 4 to 6 letters, 2500 nonsense words
with 7 to 9 letters) and we only keep nonsense words
that fit within the following constraints :

e Every subset of 4 consecutive letters exists in
an English word (to guarantee the word is pro-
nounceable)

e [t contains difficult letters or a difficult combina-
tion of letters for dyslexic people.

The final list of 32 words to be read by a child
is obtained by choosing 16 words in the list of real
words and 16 words in the list of nonsense words. We
change the length of the words according to the age
of the user performing the assessments:

e List I: From 6 to 8 years old (included) the list is
ordered this way:

SWe also use the expression *generated words’ because they
are the output of an Al process.
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— 2 easy real words
- % of words from 4 to 6 letters (50% real, 50%
nonsense):

- % of words from 7 to 9 letters (50% real, 50%
nonsense):

e List 2: From 9 to 13 years old (included) the list
is ordered this way:

— 2 easy real words
- % of words from 4 to 6 letters (50% real, 50%
nonsense):

- % of words from 7 to 9 letters (50% real, 50%
nonsense):

e List 3: 14 years old and over the list is ordered
this way:

— 2 easy real words

— 100% of words from 7 to 9 letters (50% real,
50% nonsense):

These constrained lists of words are randomly
generated and are age-related: short words with sim-
ple syllables for children from 7 to 8, more difficult
for children from 9 to 13, then difficult for children
over 14. It is then very unlikely that 2 sessions lead
to the same list of 32 words®. Note that 50% of the
words are displayed with the times new roman font
and 50% are displayed with the Open Dyslexic font.
We tune the size of the font to ensure that the vowels
appears with exactly the same size on the screen.

3.2 Input Parameters for Dyslexia
Classifier

For every audio record, we consider 2 parameters:

e The Reading Reaction Time (RRT) is the inter-
val between the initial display of the word and the
start of the reading.

e The Reading Time (RT) is the time it takes for the
user to read the corresponding word.

In both RRT and RT, the time unit is millisecond (ms)
and their evaluation is done via a computer (no human
in the loop). Consequently, from a session of 32 audio
records, we extract 6 numbers which will be used in
our ML experiments:

e average RRT for 32 words, average RRT for 16
real words, average RRT for 16 nonsense words

e average RT for 32 words, average RT for 16 real
words, average RT for 16 nonsense words

SIn fact, recently, we have decided to put at the end of the
lists, 2 easy real words: it is better to finish a session on a
positive!
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Note: In an ideal word, RRT,¢q; + RRTgene =2 X RRT,
but it often happens that some words are not read by
the user. Then this simple linear relation is not valid
anymore.

For instance, a simple analysis of the reaction time
(RRT) reading time (RT) on our dataset is given in
Figure 1. This demonstrates that dyslexic readers
need more time than non dyslexic ones, whatever the
type of words to be read.

s
dyslexic dyslexic

Figure 1: Reaction time (left table) - reading time (right
table) for non-dyslexic/dyslexic readers w.r.t. the type of
word.

We assessed 93 users, among them 43 are dyslexic
and 50 are non dyslexic readers. All in all, we
achieved 93 x 32= 2976 audio records. Due to this
small cohort, it is not realistic to consider a sim-
ple threshold approach such as RRT > ThresRRT
and RT > ThresRT would be enough to characterize
dyslexic readers. Our final neural network computes
a more sophisticated formula.

4 EXPERIMENTS

We provide in the following subsections the general
context of screening dyslexia in a global population,
the precise metrics we use to be in a position to rig-
orously compare different algorithms and the results
we get from each of these algorithms. Everything
has been implemented in Python, with Tensorflow and
SciKit Learn libraries.

4.1 Context

Machine learning is a data-driven technology. Apart
from designing an algorithm, we have to gather
proper data, with their own labels. Not only the qual-
ity, but also the quantity is important since training
machine learning algorithms may require a lot of data
in order to be accurate. In (Wagner, 2018), the au-
thor points out that the difficulty to diagnose dyslexia
is mainly coming from the unbalanced population.
Only a relatively low percentage of the population has
dyslexia or dysgraphia, and so to train a mathematical
model with such an unbalanced population is always
a challenge. When it comes to measuring the perfor-



mance of the algorithm, standard accuracy can then
be a misleading metric. Assuming we have 10% of
the population having dyslexia or dysgraphia, a base-
line algorithm declaring everybody as non dyslexic
will ensure a 90% accuracy.

4.2 Metrics

As a consequence, other metrics are needed such as
precision, recall and Fl-score. Let us recall below
some standard definitions. For a binary classifier,
we have at our disposal a set of positive examples
(dyslexic children) and a set of negative examples
(non dyslexic children). We note 7p the number of
positive examples predicted as positive, tn the num-
ber of negative examples predicted as negative, fp
the number of negative examples predicted as posi-
tive (false positive), and fn the number of positive
examples predicted as negative (false negative). The
metrics are defined as follows:
tp+tn

tp+tn+fp+fn
The accuracy measures the probability that the class
predicted by the model is the right one. In the latter
we will use percentage for this accuracy.

Ip
tp+fp
The precision is the probability of being positive if
the example is predicted as positive. In some sense,
this measures the correctness of the predictor when
it predicts an example as positive. The bigger this
number, the better the predictor is.

Ip
tp+ fn
The recall is the probability of a positive example to
be predicted as positive. In some sense, this measures
the ability of the predictor to predict all positive ex-
amples as positive. Still, the bigger this number, the
better the predictor is.

(D

accuracy =

2

precision =

3)

recall =

precision x recall
Fl-score =2 x

“4)

precision+ recall

The F1-score is a balance between precision and re-
call. Thus, accuracy focus on the performances of the
model in general when precision, recall and F 1-score
focus on performances of the model on positive ex-
amples only.

4.3 Results

First of all, our baseline is what we call the Dummy
classifier that chooses classes randomly with the a pri-
ori probability (their frequency) of classes computed
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on the training set: this provide an accuracy of 0.46
which is quite poor. Then, we compare with the per-
formances of state of the art classifiers: Logistic Re-
gression (LR), KNN, SVM with polynomial kernel
(SVC), SVM with linear kernel (LSVC), Naive Bayes
NB, Random Forest (RFC) and Decision Tree (DTR).
As we just want an estimation of their related per-
formance, we use the default parameters for each of
these classifiers, using scikit-learn Python library. We
are aware that spending time to tune these parameters
could lead to better results.

In a second step, we build up a neural network NN
with 4 dense layers (activation function Relu) then a
final dense with sigmoid activation function as it is
usual for binary classification.

In order to have an average estimation of the met-
rics previously described:

1. We perform for each classifier a 10-fold cross-
validation scheme and we get the above 4 metrics.

2. We repeat the experiences 10000 times and our
table provides the average values of the 4 metrics
on these 10000 runs.

Table 1: Performance of different machine learning algo-
rithms for detecting dyslexia from audio signals.

Algorithm Accuracy | Precision | Recall | F1

Logistic reg. 69.00 0.72 0.63 | 0.64
KNN 69.01 0.73 0.65 | 0.66
Naive Bayes 69.02 0.73 0.58 | 0.61
Poly. SVM 68.10 0.76 0.33 | 043
Linear SVM 69.00 0.71 0.62 | 0.63
Random Forest 68.04 0.75 0.65 | 0.67
Decision Tree 68.01 0.64 0.66 | 0.62
Neural Network 81.72 0.86 0.72 | 0.78

The average values of metrics are shown in Table
1 (in all the tables, the subtitle *dys’ means dyslexic
reader, 'no dys’ means non dyslexic reader). The best
results are obtained by the neural network and the
other classifiers (when they are not tuned) are more
or less equivalent in terms of performance.

The network, providing an accuracy of more than
80% could probably be tuned to get better perfor-
mances. But due to the relatively small number of
data that we have, this could lead to over fitting with-
out giving a clear picture of the accuracy in a real
environment. This could be partially overcome by
considering more data (provided they are not biased).
Getting more data is part of our future task. How-
ever, these experiences clearly demonstrate the power
of an ML approach to distinguish dyslexic from non
dyslexic readers.
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Figure 2: Error rate for non-dyslexic/dyslexic readers w.r.t.
type of word (left table) and type of font (right table).
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Figure 3: Reaction time (left table) and readlng time (right
table) for non-dyslexic/dyslexic readers w.r.t. the font.

4.3.1 Additional Experiments

At this stage of our work, we have introduced other
features that we tag manually. For instance, for each
spoken word in the data set, we manually indicate
if the reading was right or not. Figure 2 highlights
that the error rate is significantly higher for dyslexic
people (which was expected). Also, the nonsense
words are more difficult to read for dyslexic than for
non-dyslexic people, consequently generating more
errors: the gap in error rate between dyslexic and non
dyslexic is bigger for nonsense words than for real
words. The error rate seems to be a good indicator of
dyslexia: we use it in our machine learning approach.

By considering the error rate, we achieve an ac-
curacy of 90% on our dataset (in the same conditions
than the previous experiments). This clearly estab-
lishes the interest of the error rate for improving the
quality of the screening. Because this error rate is not
automatically detected, it is not taken into account in
Table 1. We currently work on machine learning ap-
proaches to compute this error rate automatically.

We also consider the type of font we use to dis-
play the word on the screen. Figure 2 shows that the
use of the Open Dyslexic font decreases the error rate
for both dyslexic and non dyslexic. Nevertheless, we
do not observe from Figure 3 a similar positive effects
for reaction time and reading time. The improvement
of accuracy with Open Dyslexic font has already been
reported in (de Leeuw, 2010) but this is still a debat-
able issue (Wery and Diliberto, 2017). The two last
studies also report no effect on the reaction and read-
ing time, which is in accordance with what we got. Fi-
nally, we have tested that including the reaction time
with respect to the font as a new input feature for the
neural network does not improve its accuracy.
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S LIMITATIONS AND OTHER
OPTIONS

Despite our promising results, we are well aware that
we have to be cautious.

e First of all, despite our dataset being generally
bigger than the ones of our competitors, it is too
small to provide a definitive conclusion. The sizes
of dataset used in modern machine learning tech-
nologies are far bigger than a hundred or so exam-
ples.

e If more data are needed, it is quite clear that we
need data coming from a controlled environment
to be sure of their accuracy. Having noisy data
will degrade our prediction.

e Spending time in tuning the standard algorithms
(SVM, random forests, etc.) could lead to better
results that the ones we got. One thing is for sure:
building a basic neural network such as the one
we use is effortless and immediately brings better
results than non-tuned standard algorithms.

o We are currently focusing on getting an automatic
pronunciation error detection which would defi-
nitely improve our accuracy. But why not using
other parameters such as total reading time (in-
stead of an average value) which is widely used
in the Gray Oral Reading Test aka GORT 5 for
instance ((Wiederholt and Bryant, 2012)).

6 FUTURE WORKS AND
CONCLUSION

Analysing data (verbal/written test results, brain im-
ages, eyes movement, etc.) via Machine Learning
technologies to detect dyslexia is not a new idea. In
this paper, we show that it is also possible to predict
dyslexia by analysing audio signals using ML. Our
method satisfies the requirements needed to build a
mass market screening tool:

o We focus on the human observable symptoms of
dyslexia,

e We do not use any other data than the audio
records,

e We do not use any external device to gather data,

e A screening session is between 10 to 15 minutes
long.
It has been recently proven that properly trained ML-

based predictors can be more accurate than human ex-
perts on specific tasks. Based on these facts and our



encouraging results, we think there is a huge poten-
tial for ML-based technologies to help people with
dyslexia. As usual with ML, accuracy can still be
improved by gathering more data. ML-based tech-
nologies could definitely avoid the need of manual
analysis and global performances may be improved.
In the future, a better understanding of the correla-
tion between the different disorders could also help
in providing more informed predictions. For instance
adding to audio records, a picture of a handwritten
text could help to make the prediction still more ac-
curate. As far as we know, this is the first time audio
signals analysis is used to detect dyslexia, leading the
path to a non invasive, fast and cost effective screen-
ing tool.
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