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Abstract: Causal Model building for complex problems has typically been completed manually by domain experts and 
is a time-consuming, cumbersome process. Operational Design defines a process of rapid, structured discourse 
for teams to envision systems and relationships about complex, “wicked” problems, however, the resulting 
models are simple diagrams produced on whiteboards or slides, and as such, do not support computational 
analytics, thus limiting usefulness. We introduce CauseWorks, an application that helps operators “sketch” 
complex systems and transforms sketches into computational causal models using automatic and semi-
automatic causal model construction from knowledge extracted from unstructured and structured documents. 
CauseWorks then provides computational analytics to assist users in understanding and influencing the system. 
We walk through human-machine collaborative model-building with CauseWorks and describe its application 
to regional conflict scenarios. We discuss feedback from subject matter experts as well as lessons learned. 

1 INTRODUCTION 

Causal reasoning forms the basis for most complex 
forms of reasoning, facilitating hypotheses, 
inferences, explanations, and problem-solving 
(Jonassen & Ionas, 2006). This is true for virtually all 
domains: causal reasoning permeates science, 
engineering, public health, finance, medicine, and 
military planning and decision making (Keim et al., 
2010; Sedig et al., 2012; Schmitt, 2017). Indeed, 
understanding causality, the influence by which one 
factor or cause contributes to the production of 
another factor has become an important topic in 
visualization within the last decade (Pearl, 2009.) 
Causality provides a way of understanding systems, 
subsystems, how they operate dynamically, their 
underlying characteristics, and forces that drive 
change. As such, there is an increasingly important 
role for visual analytics, to support the user’s 
understanding of causality through interactive visual 
interfaces. 

The application of causality visualization 
methods to complex wicked problems, while 

 
a  https://orcid.org/0000-0003-1957-9131 
b  https://orcid.org/0000-0003-4009-2125 
c  https://orcid.org/0000-0001-9048-3445 
d  https://orcid.org/0000-0002-5685-3999 

emerging, is still limited (Proulx et al., 2019). Wicked 
problems can be difficult to define, are not discreet, 
and potential solutions are intertwined and complex 
(Rittel & Webber, 1973). Government instability, 
gray zone conflicts (Wirtz, 2017), food security 
(Zhang & Vesselinov 2017), and climate change (Gil 
et al., 2018) are examples of ill-structured, dynamic 
situations which are poorly understood and where 
solutions are neither readily available nor have 
consensus. Most causality visualization systems 
require a pre-existing model for the user to explore 
(Sedlmair et al., 2012). However, with wicked 
problems, key knowledge may reside within the mind 
of the domain expert. As such, in addressing wicked 
problems modelling efforts are often completed by 
hand, involving the knowledge of many domain 
experts, who may be novices in causal modeling. 
Inherently, this process can be time consuming, 
requiring access to domain and modelling experts, 
which are costly and hard to procure (McPherson et 
al., 2007). 
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Figure 1: CauseWorks visual analytics interface for rapid creation of causal models showing a simple causal system of 
relationships between two countries. Side panel summarizes user objectives and the interventions made to achieve them. 
Green and red nodes indicate projected changes to factors resulting from interventions (in blue). 

In developing solutions for wicked problems 
within the military, military planners will combine 
systems thinking, causal thinking and the Operational 
Design (OD) process (described in the subsequent 
section) to frame complex problems and arrive at 
potential solutions. The Defence Advanced Research 
Projects Agency’s (DARPA, 2018) Causal 
Exploration (CX) Program, is focused on developing 
a causal modeling platform to aid expert military 
planners in decision-making in conflicts complicated 
by political, economic, social and other non-military 
factors where there is significant uncertainty about 
the problem and appropriate objective. In this paper, 
we present CauseWorks, a visual analytics interface 
developed by Uncharted Software for teams to apply 
causal modelling to complex problems. The problem 
domain of focus is regional conflict analysis; 
however, we note that the application of CauseWorks 
could extend to other domains. The key contribution 
in this paper is a framework to support OD experts 
who are novice modelers in building computational 
causal models for complex, wicked problems. The 
specific contributions include: 1) a method for 
capturing user-driven ideas and hypotheses, and 
connecting them with a knowledge base spanning 
thousands of documents, 2) a method for rapidly 
transforming hypotheses into a computational causal 
model backed by data, and 3) a method for interacting 
with and visualizing casual analytics within the 
context of the model to reveal system behaviors and 

assist in solution development. In the subsequent 
section, we provide additional background on OD to 
set the stage for the application of CauseWorks. 

2 OPERATIONAL DESIGN 

The United States military is increasingly conducting 
operations in complex, ill-structured environments 
that are characterized by a diverse, ambiguous set of 
actors, enemies, and unknowns, (Joint Publication JP 
5-0, 2017). In order to develop the best course of 
action, military planners need to develop a 
comprehensive understanding of interconnected, 
complex systems such as the governments, 
population, security forces, and non-state actors that 
make up the environment (Schmitt, 2017). This 
understanding is achieved through OD, a method 
used by military planners involving team 
brainstorming, system sketching, and other methods, 
of characterizing the intertwined relationships 
between entities and factors involved in current and 
desired states.  

During the OD process, a team of six to nine 
operational designers and domain experts will engage 
in extensive discussion with three goals: 1) framing 
the operational environment, 2) framing the problems 
that permeate the environment, and 3) creating 
approaches to transform the problem (ATP 5-0.1, 
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2015). This involves rapid brainstorming of potential 
variables on a whiteboard and developing lists of key 
actors and factors, and hypotheses about the 
relationships between them. The design team will 
supplement initial hypotheses with supporting 
evidence obtained from researching government 
documents, articles, and additional relevant source 
material. This process is completed manually, using 
physical whiteboards and post-it notes that document 
the team’s conceptualization of the environment. 
Written narratives are composed in Microsoft (MS) 
Word documents. Pre-existing templated conceptual 
diagrams may be filled out in MS PowerPoint. This 
process is completed in a short period of time (i.e. 
days). Figure 2 provides an example of a system 
sketch created by SMEs using the OD process to 
solve a fictional problem. 

 

 
Figure 2: Example system sketch of a fictional scenario 
created during a user exercise with CX system designers 
and SMEs. 

During planning exercises attended by the 
authors, several limitations to the current OD process 
were noted. First, domain experts across a range of 
specializations are often unavailable. Secondly, the 
design team identifies actors, systems, variables and 
proposes hypotheses manually, based on prior 
knowledge. As such, the quality of the resulting 
system concept model largely depends on the 
expertise, interpersonal “chemistry” and creativity of 
the design team’s ability to identify relevant variables 
and connections between variables. In doing so, the 
team may rely on heuristics, which may be error 
prone and subject to human biases (Das & Teng, 
1999). Additionally, in supporting hypotheses with 
evidence, the team manually searches through 
documents, which inherently is a cumbersome, time-
consuming process. The lack of time reduces the 

opportunity for an evidence-based weighing of 
alternatives. Additionally, the scale and scope are 
limited. OD exercises over three days typically result 
in systems with ten to twenty factors. Current and 
future states are envisioned, but system dynamics and 
changes in factors over time are not strongly 
considered. Finally, because this process is completed 
by hand, the end product does not result in a 
computational causal model with which to leverage 
analytical tools. Validation of conceptual models and 
solutions are performed manually by reviewing static, 
slide-based products with senior staff. 

3 RELATED WORK 

In this section, we relate our work to relevant tools 
that support causal reasoning and causality 
visualization, including tools for mind mapping, 
argument mapping, and causal modelling. 

Mind mapping is a tool for visualizing one’s 
mental model of a problem. While traditionally, 
mind-mapping has been completed by hand on 
whiteboards, several digital tools have been 
developed to facilitate this activity (e.g., Subramanian 
& Krishnamurth, 2020; Shih et al., 2009). However, 
as Chen, and colleagues (2020) point out, few of these 
provide computer-based support for idea and 
hypotheses generation, or assist users with the 
learning process. With this limitation in mind, they 
developed QCue, which provides the user with 
system-generated ideas to assist the user in exploring 
topics as they develop a mind-map and user-elicited 
queries that allow the user to explore a given topic in 
depth. Wright et al., (2017) presented Argument 
Mapper, for developing hypotheses in the mind-
mapping process through computer-based analytics, 
with the goal of reducing human cognitive bias. 
Analysts construct argument trees composed of 
hypotheses, sub-hypotheses, assumptions and 
evidence, and assess the credibility and evidence of 
each item. Support for the upper-level hypotheses is 
automatically calculated. CauseWorks provides tools 
for mind mapping, allowing users to sketch their 
hypotheses about causal relationships and factors 
within a given system and then automatically finds 
supporting or refuting evidence. Like QCue, users are 
presented with suggestions to help facilitate learning 
and encourage creativity, however in CauseWorks, 
suggestions include true model additions, thereby 
expanding the scope of the causal model.  

In the context of causal modelling, automated 
algorithms exist for extracting causal relationships 
from factors within multivariate data sets (Wang & 

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

52



 

Mueller, 2017). Factors are synonymous with 
variables and are attributes (characteristics) of an 
entity or their environment that influence the question 
of interest (McPherson et al., 2007). Causal 
relationships can be depicted in a directed acyclic 
graph (DAG), which consists of a set of nodes and 
links (Von Landesberger et al., 2011; Pearl, 2009). 
Nodes typically represent relevant factors while links 
represent the causal connections between factors. 
Link properties include direction, strength, and 
certainty (Bae et al., 2017), described through visual 
encodings including color, line width, fuzziness, and 
transparency. A central component of CauseWorks is 
a computational causal model. The model is 
displayed using nodes and links that visually encode 
different stages of model construction, as well as 
several static and dynamic model properties. In 
CauseWorks the user is not constrained to a DAG 
automatic graph layout, rather CauseWorks supports 
a user-driven layout with the option to leverage 
automatic graph layouts. 

Causality cannot be computed from the data 
alone. Wang (2018) noted the need for the domain 
expert to interact with the causal graph. Zhang et al., 
(2015) developed an interactive correlation map for 
filtering edges with weak correlations. Wang and 
Meuller (2016) presented a platform in which users 
modify a causal graph by connecting nodes, assigning 
causal direction, deleting or marking edges as 
unknown. In Causemos (Proulx et al., 2020), expert 
modellers start with a knowledge base of extracted 
causal statements displayed in a causal graph, and 
then refine it. In CauseWorks, causal relationships 
and factors are extracted from source documents, 
resulting in a model database that users can search, 
pull content from and edit to construct a 
computational model.  

In general, causality visualization methods are 
limited in expression, scale, dimensionality, and do 
not provide sufficient support for “what if” analysis, 
injecting interventions, and development of solutions 
to impact system behaviour (Kapler & Wright, 2018). 
The CauseWorks system offers advanced causal 
analytics to assist the team with answering 
sensemaking questions (e.g., “what-if” and “how-to”) 
in addition to considering multiple approaches to 
solution development. In the next section we describe 
the implementation of CauseWorks. 

4 CAUSEWORKS SYSTEM 
DESCRIPTION 

To  understand  the  model  construction  interface  of 

CauseWorks, it is necessary to have a basic 
understanding of the underlying system, and how it 
automatically generates causal model elements for 
users to leverage in constructing their own models. 

CauseWorks is composed of a web client and a 
server (Node.js), both written in the Javascript 
language (see Figure 3). The client application 
components are built on the EmberJS framework, 
with both D3.js and Cytoscape.js visualization 
libraries for graph rendering, augmented with SVG-
elements for specialized visuals and interactions. The 
CauseWorks server marshals communication 
between the client and back-end analytics. These 
back-end analytics consist of 3rd party program 
performers (details available from DARPA). Firstly, 
three Natural Language Processing reader 
components extract events, causal assertions and 
associated locations and actors from a shared corpus 
of thousands of documents related to a given problem 
domain (including expert-authored reports, news 
media articles and open source material).  

 

 
Figure 3: CauseWorks system architecture includes a 
federation of three NLP readers and three causal modelling 
framework performers. The ICM combines all models into 
a single database, and the Arbitrator routes work among 
readers and frameworks. Analytics, search, and other tools 
are exposed to CauseWorks as services via a common API. 

A common ontology is utilized to align readers, 
and to associate events with “FactorTypes” curated 
for a specific problem domain. Secondly, reader-
results are merged and then processed into a causal 
model database by three causal-model frameworks 
that provide model construction, simulation and 
analytic functions. Factors are created where events 
match FactorType definitions. Factor value and trend 
is inferred from event trends or structured data 
timeseries. Then, causal relationships between factors 
are generated based on the FactorTypes of the cause 
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and effect events that comprise causal assertions. 
Strength is inferred from assertion count, confidence 
and, in some cases, correlations between factor 
historical trends. The process for associating 
extracted data with user-created Factors leverages 
users input values for FactorType, actors, and 
locations. In addition, CauseWorks includes model 
frameworks for pre-built subsystems (e.g. economy 
model for a nation-state). Figure 3 provides an 
overview of the CauseWorks system architecture.  

5 SYSTEM OBEJECTIVES AND 
DESIGN REQUIRMENTS 

Key human performance factors for OD are focused 
on human learning, thinking and creativity. Important 
performance objectives include: 1) increase learning 
and comprehension about new, unfamiliar, unknown 
situations, 2) engage human critical thinking in a 
group debate that questions and tests alternative 
perspectives, 3) encourage creativity by considering 
different perspectives and merging selected aspects, 
and 4) use group discourse as the catalyst to develop 
new ways of thinking about problems and identifying 
innovative solutions (Schmitt, 2006; ATP 5-0.1, 
2015; Joint Publication JP 5-0; 2017) 

In developing CauseWorks, we followed a user-
centric approach, engaging with expert OD 
practitioners, trainers and students. Early design 
began with structured interviews and system concept 
sketches. Full-day, problem-focused exercises were 
performed for system designers to observe traditional 
OD teams working through regional conflict 
scenarios. Results included the following high-level 
objectives for CauseWorks functionality.  

 
1. This system should support the rapid pace of OD 

team brainstorming and discourse without 
disruptive “care and feeding” of the software tools 

2. The system should enable creation of an 
unconstrained, notional, causal system, i.e. a 
“sketch” system 

3. The system should enable transformation of the 
hypothesized system into a computational causal 
model with minimal user effort or input. 

4. The system should display the causal model in a 
manner that allows sense-making of causal 
structure, causal “flow”, predictions and impacts 
of changes. 

5. The system should provide causal analytics to 
assist the team in understanding, validating, and 

improving the model, uncovering patterns and 
behaviours, and assist in developing a solution. 

Note that one key assumption repeated by subject 
matter experts (SME’s) was that models are never 
objectively “correct”, but some are useful (Box, 
1979). For OD of complex problems, supporting 
high-level thinking and introducing new factors for 
consideration is more important than the accuracy of 
a specific model. An initial CauseWorks application 
and analytics system was developed, followed by a  

series of scenario-focused exercises conducted 
with SMEs to assess system performance, usability, 
and collect feedback to inform subsequent 
development cycles. 

The following sections focus on CauseWorks 
HMI and human-machine workflow for creating and 
using causal models. 

6 CAUSEWORKS VISUAL 
ANALYTICS WORKFLOW 

The following sections describe how the affordances, 
interactions and visual encodings enable our 
envisioned machine assistance mantra of “capture 
sketch hypotheses of a system, transform it into a 
causal model, and provide insights with causal 
analytics”. While this workflow is described as a 
linear process, it is important to note that a team can 
work through the process iteratively and move back 
and forth through each step.  

The main purpose of CauseWorks is working with 
causal models. Accordingly, the design focus is on 
causal model construction and analytics presentation. 
We begin by presenting high-level interface 
components and key visual encodings, and 
subsequently discuss how to use the system. 

6.1 General Workspace & Visual 
Encodings 

Current OD methodology relies heavily on the use of 
physical whiteboards to allow teams to freely capture 
discussion points and sketch diagrams. CauseWorks 
is similarly centered about a digital whiteboard 
workspace. 

The HMI is comprised of a whiteboard 
workspace, side panel, and main menu bar (see Figure 
1). It is within the whiteboard workspace that the 
team sketches and constructs their causal model. 
Sketching tools in the toolbar include the creation of 
user nodes, groups, and simple shapes. CauseWorks 
also includes tools for grouping nodes, and then 
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collapsing or hiding group contents to declutter or 
simplify the display. Groups can also combine factor 
values into a single aggregate factor. A small right-
side panel provides tabs to access additional functions 
and thus avoid floating windows that obscure the 
whiteboard. Tabs within the side-panel allow the 
team to navigate whiteboards; search the document 
corpus and model database; edit factors and 
relationships and connect them with evidence; access 
analytic functions; and develop approaches to achieve 
objectives. These functions are described in 
subsequent sections.  

In addition, CauseWorks supports synchronous 
and asynchronous collaboration through shared 
whiteboards, shared models and shared analytics. A 
team can flexibly work with the system on a large 
touch screen display and/or multiple workstations, 
enabling co-located group-based OD processes as 
well as distribution of tasks among separate teams or 
individuals. Features and observations pertaining to 
team collaboration using CauseWorks will be 
described in a subsequent report (Kapler, Gray, 
Vasquez, and Wright in preparation). 

 

 
Figure 4: Visual encodings for user nodes, user links, causal 
factors and causal relationships. 

Key visual encodings in CauseWorks delineate 
different stages and states in the construction of the 
causal model (see Figure 4). Throughout the model-
building process, the team works with “user” nodes 
and links, and causal factors and relationships. User 
nodes and links have a distinct orange color with 
rounded corners. They have no causal function and 
are used to capture notes and ideas and for sketching 
systems diagrams. User links can however represent 
qualitative relationships between nodes, with width 
representing notional strength, a color ramp 
representing polarity (double-encoded with “+” or “-
” icon) and color saturation representing confidence. 
When a user node or link is promoted to a 

computational causal factor or relationship, they 
visually change to using black text, and a grey 
background. A dashed line or outline indicates items 
that are NOT backed by evidence. User-originated 
causal factors retain their rounded corners while 
system-generated causal factors have sharp, right-
angle corners. 

These visual encodings were designed in 
conjunction with SMEs to help see at a glance the 
pedigree and state of the model as it evolves, 
indicating where there is supporting data, or where 
additional work is required; for example, backfilling 
details after an intense team discussion. 

6.2 Sketch Hypotheses of Complex 
System 

The OD process begins with team discussion about 
actors, factors and influences involved in a problem 
environment. This is typically captured as a series of 
point-form notes. In CauseWorks, users enter this 
information directly onto whiteboards using user 
nodes and user links, in a process we describe here as 
“sketching”. This gives CauseWorks analytics a 
means to access team thinking and problem context: 
a critical step in providing model-building assistance. 

Supporting the rapid pace of team discourse in a 
digital system (vs. physical markers and whiteboards) 
requires simple, efficient affordances. For rapid note-
taking, user nodes can be created in quick succession 
by hitting the Tab key. Links are created by dragging 
a handle between nodes in one stroke, with direction, 
strength, polarity and confidence set simultaneously 
in single gesture (see Figure 5.5: Interactive Link 
Editor). 

As the team sketches a rough causal system, they 
enter important concepts in the text of user nodes. 
User training includes guidance for labelling nodes 
intended to become factors in the model. For 
example, a label should include a measurable 
concept, along with locations and actors (e.g. 
“Economic Growth in Canada”). This specificity 
aligns with typical web-search syntax and enables 
CauseWorks to more effectively assist in evolving the 
model. An in-context search affordance that leverages 
the label is provided that operates in two ways. First 
it finds related factors in the model database that can 
be either dragged onto user nodes to substitute them 
in-place (see Figure 5.4), or just added to the 
whiteboard if they are of interest to the user. This is 
one way that computational causal factors are 
surfaced for consideration into the user’s model. In 
many cases users may not have previously known 
about or considered these factors, thus potentially  
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Figure 5.1-5.6: Interactions for transforming a sketch system into a computational causal model. 

injecting new thinking and scope into the model. 
Second, the search tool performs a Lucene text search 
(Goetz, 2000) into the document corpus, which 
provides familiar web-search-like results for 
researching the topic represented by a node label. 
Results can be attached as evidence to a factor, thus 
allowing users to manually connect their hypotheses 
to data sources. This association provides additional 
opportunities for the machine to understand user 
thinking, problem context and apply analytics. 

6.3 Transform Hypotheses Sketch into 
a Computational Causal Model 

As the OD process moves into system framing, the 
user continues to transform their sketch into a 
computational causal model. User nodes and links 
can be instantly converted into computational causal 
factor nodes and causal relationship links by clicking 
“add to ICM” (Figure 5.2). As such, the team can 
construct causal factors and relationships purely 
based on their own knowledge or intuition without 
pulling from the model database. This gives 
CauseWorks flexibility to support unconstrained 
causal thinking about any domain. All causal factors 
have three key attributes: 
1. Initial Value: value between 0-100 representing a 

factors current value today relative to historical 
norms, with 50 being “average”. A 0-100 range 
was selected instead of discrete qualitative values 
because it allows for higher granularity to reveal 
small directional changes (e.g. a change of +5% 
may be insignificant, but the direction of change 
is perceivable) 

2. Trend: The trend of the value at the current time, 
i.e. increasing, decreasing or staying level 

3. Confidence: a scale of 0-10 
User-derived causal factors are given default values; 
however, these can be modified at any time to reflect 
user’s beliefs. It is important to note that in 
CauseWorks, the user’s working model consists only 
of factors and relationships that are placed on a 
whiteboard. A dynamic model forward projection 
runs automatically whenever the user modifies the 
model. The projections can be run over a variable 
number of months or years and are displayed in 
sparklines on the nodes themselves. The grey and 
black timeline with grey fill shows the “baseline” 
projected value for a factor starting from “now” 
through a number of time-steps in the future, 
determined by executing a simulation of the model 
(see Figure 6).  
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Figure 6: Baseline projections (top) and “What-if” 
projection overlay resulting from intervention (bottom). 

The next stage in model evolution is to populate 
new factors and relationships with evidence from the 
corpus through a process referred to as “grounding”. 
This involves defining a factor in ontological terms, 
and then running a process to connect it to the results 
of machine reading. Each factor includes properties 
to align it to a pre-determined domain ontology that 
includes FactorTypes, active and affected actors and 
locations (see Figure 5.3). 

“Factor types” are high-level concepts detected by 
the reader subsystems in the document corpus (see 
System Description). The form can be completed 
manually by the user, or through the “auto-fill” 
feature, which uses machine reading of the user-
entered node label to extract terms and complete the 
grounding form with suggested values. 

Once grounded, a Factor’s “Data” tab will list 
discovered events, assertions, and their associated 
extracts from structured and unstructured data 
sources, ranked by relevance. Trends in the structured 
data and event history are used to determine Factors’ 
initial values and trend attributes. Explanation of 
value calculations are presented to users in the “Data” 
tab (development of explanations is ongoing and is 
outside of the scope of this paper). 

A separate processing stage finds new causal 
relationships and factors related to the new factor 
based on information in the knowledge base and 
model database. These new relationships are stored in 
the model database, but are not added to the user’s 
whiteboard. Rather, it is the role of the Suggestion 
System to provide in-context, discovery of new causal 
relationships for a selected factor, and quickly 
incorporate them into the model with minimal effort. 
Suggested relationships are displayed in context 
around a selected factor on the whiteboard (see Figure 
4.6). They are displayed temporarily, with a blue 
outline to distinguish them. Suggestions are ranked 
based on multiple criteria including strength and 
context. To accept a suggestion into the model, the 
user clicks on it and it is added to the whiteboard. 
Thus suggestions surface new factors and 
relationships for consideration to improve and expand 
the users model. 

6.4 Apply Causal Analytics 

CauseWorks provides causal analytics services for 
improving the model, revealing behaviours, and 
achieving planning objectives. A key user experience 
goal is to incorporate analytics into the model 
building process, thus results are always presented 
within the whiteboard workspace to ensure continuity 
of thought and context. 

6.4.1 “What if Projection” 

The “What-if” projection is the most frequently used 
analytical tool in CauseWorks. “What-if” projections 
are generated when users create “interventions” on 
Factors to change the system. An intervention is 
defined as an applied change in the value of a factor 
at some point in the future. Applying interventions 
and assessing their effects is a key mechanism for 
understanding and validating model behaviour (see 
Figure 7). Interventions also capture the means to 
achieve the overall planning goals.  
 

 
Figure 7: Intervention and Objectives Editor. Click on chart 
to add and remove interventions and objectives. 

Fast, intuitive entry of interventions allows rapid 
testing and exploration of model behaviour. Users can 
“sketch” interventions over the baseline projection 
within a full-size version of the sparkline chart. When 
an intervention is created, CauseWorks automatically 
runs a model simulation and the resulting “What-If” 
projections are overlaid in the node sparklines for 
comparison, using green or red segments to 
emphasize values above or below the baseline. 
Interventions are highlighted in the whiteboard with 
blue arrows. Aggregate change in a factors average 
value over time compared to the baseline are pre-
attentively indicated with a saturated scale of green or 
red applied to causal factor backgrounds, expressing 
increase or decrease, respectively (see Figure 1) 
making changes clearly visible within the generally 
monochrome graph. 
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6.4.2 Sensitivity 

The sensitivity tool takes a factor as input and 
highlights other factors that it is causally sensitive to. 
Degree of sensitivity is displayed using a 5-point 
scale, displayed as magenta bars shown on the factor 
nodes. (see Figure 8.1). This helps the team answer 
questions such as “which other factors are likely 
going to have a large impact on this factor?” When 
applied to an objective factor, this tool assists the 
team in identifying influencing factors as targets for 
an intervention. 

6.4.3 Most Impact 

Most Impact indicates nodes with a high general 
impact on the system based on a series of simulations. 
These are also indicated with a 5-point scale, 
displayed as magenta bars. This helps the team 
answer questions such as, “which are the central 
factors that all factors are most sensitive to?” 

6.4.4 “Why” Projections 

“Why” Projection takes a single factor and time range 
as inputs and returns factors that cause changes in the 
value of that factor over the given time frame. Each 
resulting contributing factor is marked with 1 to 5 
small arrows to indicate strength and direction of 
impact (see Figure 8.2). The “Why” function can 
operate on either the baseline or the what-if 
projection. This helps the team answer specific 
questions about projection results, such as, “which 
factors lead to a jump at time ‘t’ in this Factor?” 

6.4.5 Causal Loops 

Causal Loops takes two factors as inputs (A and B) 
and outputs paths between them that include 
reinforcing or dampening loops occurring along each 
path. Loops are an important consideration in 
thinking about complex systems as they can 
significantly enhance effects of an intervention. 
Loops are highlighted in the whiteboard with a 
repeating animated cycle that is effective at 
emphasizing complex graph paths (Ito et al., 2016). 
Figure 8.3 includes a static image of a causal loop. 

6.4.6 Causal Pathways 

Causal Pathways takes two factors as inputs (A and 
B) and returns a new whiteboard that contains all 
significant paths in one direction from A to B. This 
helps the team answer questions such as “how does a 
change in factor A propagate to factor B?”  

6.4.7 Approach Helper 

CauseWorks provides tools for developing 
“approaches” to influence a system to meet planning 
objectives. These include tracking objectives, 
suggesting interventions to achieve them, finding 
unexpected impacts and opportunities, measuring 
solution performance, and managing multiple 
approach options (see Figure 1). 

The key information that helps drive these 
analytics are users’ objectives. Objectives are defined 
as a desired change in the value of a factor at some 
point in the future. Explicitly setting user objectives 
captures critical information about the team’s goals, 
which in-turn helps inform machine assistance 
functions for suggesting factors, recommendations 
for interventions to achieve objectives, and generally 
improves system awareness of problem context and 
scope. Objectives are visually represented by an 
orange star icon on factors and in the sparklines. 
Objectives are entered using the same interface as 
interventions; users can set both time and value for an 
objective with a single click on the timeline (see 
Figure 7). An example of an objective is “increase 
sanctions on Country B starting in October”. 

In CauseWorks, an approach is a collection of 
objectives and the interventions applied to achieve 
them. Teams may develop multiple named 
approaches to a planning problem, such as 
“Aggressive Solution”, or “Least Risk”. Within the 
Approach Management Tab, users can name, 
organize, open, save and copy different approaches 
(see Figure 8.4). For a selected approach, the 
objective and intervention factors are displayed as a 
list of nodes. The Approach Helper is an analytic 
function that can automatically propose interventions 
to meet objectives. It uses objectives in the active 
Approach as the inputs and allows users to set 
constraints on the timing and size of interventions it 
proposes. When executed, this function will create 
interventions on factors in the user model and add 
them to the current Approach. The “Refine” tool is 
similar to the Helper, however it only adjusts existing 
interventions that the team has already set, optimizing 
them to meet objectives. 

When considering which factors to apply 
interventions to, it is important to recognize that not 
all factors represent something that can be influenced 
directly as part of a solution (e.g., GDP of the USA). 
As such, the team can toggle a flag to exclude certain 
factors from intervention consideration. 
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Figure 8.1: Sensitivity results for “Populace Mood In 
“Country B” indicated by magenta bars in the whiteboard 
view. 

 
Figure 8.3: Example of Causal Loops result. 

Figure 8.2: “Why” results show contributions by other
factors on “Populace Mood In Country B” for a time period 
set by user (not shown). Up arrow-stack indicates relative
amount of increasing influence. 

 Figure 8.4: Approach Tab showing objectives in “Populace 
Mood in Country B” being met with interventions generated 
by the Approach Helper tool. Score of “100%” indicates 
objective target values are fully met in the What-if 
projection. 

 

Each Approach can also include an optional 
automatically generated text summary of 
interventions, impacts on objectives and alternative 
intervention suggestions through an Approach 
Narrative. The narrative display includes embedded 
graphical representations of factors nodes, with 
linked highlighting and drag-and-drop to the 
whiteboard. This allows the user to connect the 
narrative to the whiteboard view and helps call out 2nd 
and 3rd order effects that users may not have noticed. 
As such, the narrative can surface potentially hidden 
or surprising information, a key benefit of combined 
human-machine systems (Wickens, Hollands, 
Banbury, & Parasuraman, 2015). The narrative 
engine is a separately developed plug-in component, 
and its design and assessment is the focus of a report 
by (Choudhry et al., 2020)  

7 USER EVALUATION 

OD SMEs were involved in CauseWorks 
development from the early stages of the system 
design through multiple hands-on evaluation 

exercises. Observations and interviews were 
conducted to determine design requirements and 
inform the initial system design. Multi-day exercise-
based evaluations have been conducted every 6 
months. Each involved a fictional scenario matched 
to a corpus of scenario-related documents processed 
into a knowledge base. Participants included 
experienced OD experts, government–provided 
problem domain experts, and OD students from the 
US Military. Teams were formed to address problems 
and present solutions over several days using 
CauseWorks. The goal of these exercises was to 
determine whether the system meets users’ needs, and 
identify issues and functional gaps, to inform 
subsequent CauseWorks iterations. 

Two key concerns were closely followed by the 
authors: 1) that users are able to quickly learn the 
basic interactions necessary to sketch systems, 
compose models, and develop approaches, and 2) 
users can produce planning products within normal 
planning timelines. HMI training took a half-day, 
including lower-level system background. Once users 
had hands-on CauseWorks, they were quickly able to 
use the system, possibly due to intentional similarities 
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Figure 9: Affinity diagram of user feedback collected from planning exercises. 

with tools such as MS PowerPoint. Within a 3-day 
standard planning exercise, teams using CauseWorks 
were able to generate models and approaches for their 
target problems, and then brief superiors using the 
live system. Further, they were able to adjust 
solutions on-the-fly to respond to Commanders 
questions and feedback. Significantly, this 
demonstrates that it is possible to incorporate causal 
modelling into the planning process with minimal 
negative effect on schedule or workload. 

Post-exercise surveys were conducted by 
government staff and CX program performers to 
collect feedback about CauseWorks. We compiled 
survey answers from one exercise and constructed an 
affinity diagram (Harboe & Huang, 2015) comprising 
five themes in the data (see Figure 9). Many 
participants noted benefits and contributions of the 
system, suggesting that the CauseWorks provides 
advantages over traditional operational design 
methods. As with most prototypes, opportunities to 
improve the system were noted. Some users observed 
that creating and grounding factors was a 
cumbersome multi-step process. Indeed, the 
grounding process is not part of the traditional OD 
process, however it is necessary to connect factors to 
extracted data from the corpus. Additionally, SMEs 
observed that as models increased in scale, there were 
challenges with untangling links and grasping 
complex causal flows. SMEs also questioned the 
accuracy of event associations to Factors, though this 
can be attributed to limitations in automatic event and 
assertion extraction technologies. Finally, SMEs 
provided recommendations and suggestions to 
improve the interface, several of which have since 
been addressed.  

8 LESSONS LEARNED & 
LIMITATIONS 

In this section we discuss limitations and potential 
future research suggested by this work. This includes 
the efficacy of user-driven layouts, fixed vs. 
zoomable whiteboards, the distribution of models 
across multiple whiteboards, the construction of 
causal models by novice modellers, and the use of 
color to convey causal attributes and effects. 

 

 
Figure 10: Example system sketch from problem-solving 
exercise with CauseWorks. This model consists of 
approximately 1000 nodes and edges created during a 
multi-day exercise. Image intentionally blurred to obfuscate 
confidential details. 

An early design decision was to emphasize user-
driven layouts, rather than applying automated graph 
layouts to the evolving causal model. This allows 
teams to arrange information according to their own 
criteria and logic and provides an additional 
contextual dimension from which machine analytics 
could extract meaning (e.g. users often cluster related 
items). User layouts also support long-term shared 
team cognition, as users become familiar with 
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groupings and arrangements and remember where to 
find things. We observed that this contributed to 
maintaining comprehension of models containing 
nearly 1000 nodes and edges, well beyond our 
scalability expectations (see Figure 10).  

At this scale, maximizing use of screen space and 
label readability has a significant impact on a teams’ 
ability to view a model together, even on an 80-inch 
4k display. Independent virtual collaboration spaces 
are a technical alternative to wall-size displays, 
however the impact of virtual meetings on OD 
discourse is unknown. A large touchscreen display 
was available at one exercise, and we observed 
stronger team engagement, discussion and model 
development compared to a single-laptop-per-team 
configuration. Users did ask for layout tools to 
automatically arrange factors based on topical 
groupings, such as geography or affiliation. 

Early implementations of CauseWorks provided a 
fixed-scale whiteboard, as most virtual whiteboards 
take this approach (e.g. Google Jamboard) and there 
are documented challenges associated with zoomable 
workspaces. Zooming is a weak method for subgraph 
comparison and in some instances, users prefer an 
overview context compared to zoom interaction due 
to simpler navigation (Büring, Gerken, & Reitere, 
2006). However, as models increased in size and 
complexity, SMEs demanded zoom-able whiteboards 
to fit growing models into a single view. 

A related challenge is how to effectively work 
with large models that are distributed across multiple 
whiteboards. Initial thinking was to place major 
subsystems on separate whiteboards, however, 
observations from exercises revealed difficulties in 
recalling relationships between nodes on different 
whiteboards. Indeed, as the distance between sources 
of information increases, whether across multiple 
displays or whiteboards, there is a cost to the user in 
maintaining information in working memory 
(Wickens et al., 2015) and users tend to perform 
fewer information seeking behaviours (Fu and Gray, 
2006). Eventually users elected to place large models 
on a single whiteboard to avoid this effect. Further 
research is required to effectively allow 
comprehension of connections in systems that span 
multiple pages. 

Functions are needed to support model building 
by domain experts and planning experts who are not 
model building experts. Determining the appropriate 
scope and level of detail to model impacts the speed 
of model development, validity, speed of 
experimentation and confidence in model results. 
Building more complex models, because it is possible 
to do so, does not necessarily equate to effective 

modelling (Robinson, 2004). It is important to avoid 
modelling every aspect of a system. Simpler models 
can be developed faster, are more flexible, require 
less data and are easier to interpret, validate and 
maintain because the structure of the model is clearer 
(Chwif, 2000). The ease with which CauseWorks 
users can construct models impacts the size of the 
systems they create. This can enable inclusion and 
consideration of many more factors, causes and 
solutions than might otherwise occur using traditional 
methods, however one should acknowledge the 
possibility of overwhelming human comprehension. 
A cycle of model simplification or filtering could help 
reduce a large model to make it more comprehensible. 
In general, however, we observed that users find 
value in building larger systems to reflect real-world 
complexities, and also that the system can help with 
sense-making of larger models through use of 
analytics, and by enabling distributed work through 
collaboration. 

CauseWorks use of green and red for indicating 
both link polarity and factor value change, merits 
explanation. Use of color is important when a user 
must attend to changing patterns on an interface 
(Brewer,1996). Our hypothesis is that the shared 
color schemes reinforce each other (increase/support 
vs. decrease/oppose; Wickens et al., 2015), and thus 
makes recalling combinations of link-factor effects 
easier than with two separate, two-color schemes (4 
colors total; Brewer, 1996). A 4-color scheme also 
limits unique color use for other information. User 
feedback on color usage includes mention that red is 
often used to represent “enemy” in military 
convention, which may cause confusion in 
interpretation, however despite providing alternative 
color options in CauseWorks, users continued to use 
the green-red color scheme without issue. We suggest 
that further research into optimal color schemes for 
military use of causal model representations may be 
useful. 

9 CONCLUSIONS 

Causal Model building for complex problems has 
typically been completed manually by domain 
experts and is a time-consuming, cumbersome 
process. OD is a process of rapid, structured discourse 
for teams to envision systems and relationships about 
complex, “wicked” problems, however, the resulting 
models are simple diagrams produced on whiteboards 
or slides, and as such, do not support computational 
analytics, thus limiting usefulness. In this paper we 
introduced the HMI and workflow for CauseWorks, a 
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tool for expert planners (but novice model builders) 
to create computational causal models of complex 
problems. We presented how users can sketch 
hypotheses about a system on a digital whiteboard 
and connect it to automatically extracted information 
that suggests system behaviour, thereby transforming 
the sketch into a computational causal model. 
CauseWorks also helps expand OD team thinking and 
model development by suggesting new factors to add 
to the model, and by providing analytics to support 
sense-making and solution development. In applied 
planning exercises, military operational planners with 
no prior modelling experience were able to use 
CauseWorks to construct and use computational 
causal models to develop approaches for realistic 
complex planning scenarios, within typical planning 
time constraints. Planners thought CauseWorks 
supported the OD process and helped them consider 
new ideas. 

Future work should investigate the following: 
ways to present connections between models 
spanning multiple whiteboards; assessment of model 
characteristics built by novice modellers; deeper 
investigation into causal symbology and color-use for 
military applications. Formal experiments should be 
performed to assess impact of using CauseWorks 
modelling tools in operational design vs traditional 
methods. 
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