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Abstract: Deep neural networks have shown impressive performance in various applications, including many pattern 
recognition problems. However, their working mechanisms have not been fully understood and adversarial 
examples indicate some fundamental problems with DNN-based classification methods. In this paper, we 
investigate the decision modeling mechanism of deep neural networks, which use the ReLU function. We 
derive some equations that show how each layer of deep neural networks expands the input dimension into 
higher dimensional spaces and generates numerous decision polygons. In this paper, we investigate the 
decision polygon formulations and present some examples that show interesting properties of DNN based 
classification methods. 

1 INTRODUCTION 

Deep neural networks (DNN) have been successfully 
applied in various computer vision and pattern 
recognition problems, which include speech 
recognition (Sainath, 2015, Amodei, 2016), object 
recognition (Ouyang, 2015, Wonja, 2017, Girshick, 
2014), image processing (Jin, 2017), medical imaging 
(Gibson, 2018), and super-resolution. Although the 
DNN-based methods have substantially 
outperformed conventional methods in many fields, 
the understanding of their working models is rather 
limited (Radford, 2015, Yang, 2017, Zeiler, 2014, 
Yosinski, 2014, 2015, Koushik, 2016, Szegedy, 2013, 
Mallat, 2016).  

In (Zeiler, 2014), a visualization method was 
proposed, which can provide some insight into the 
intermediate feature spaces and classification 
operation. Also, it is observed that the first-layer 
features may not be specific to a particular task, but 
can be transferable to other tasks (Yosinski, 2014). In 
(Yosinski, 2015), some visualization tools were 
proposed, which may provide some insight and 
understanding of DCN working mechanisms. In 
(Koushik, 2016), the author presented some analyses 
of DCN operations in the form of a framework.  

The paper is organized as follows: In Section 2 we 
explain how filter banks project the space into a 
higher dimension space and the ReLU function 
creates a higher dimensional structure. Section 3 

describes the decision polygon generation when the 
ReLU function is used along with some properties of 
the decision polygons. Section 4 investigates 
adversarial images based on the decision polygons 
and subspaces. Conclusions are drawn in Section 5. 

 
Figure 1: DCN-based classification method for the MNIST 
data (softmax operation is not shown). 

2 SPACE DIVISION BY FILTER 
BANK 

Fig. 1 shows a convolutional neural networks for the 
MNIST dataset. First, thirty 2-dimensional FIR filters 
(filter banks) are applied to the input hidden layers. 
In this case, the FIR filters are square (e.g., 5x5). The 
number of filters exceeds the number of pixels of the 
window, though it can be the same as or smaller than 
the number of pixels of the window. The ReLU 
function is defined as follows: 
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𝑓ሺ𝑥ሻ ൌ 𝑚𝑎𝑥ሺ0, 𝑥ሻ . 

 
Figure 2: Three filters in the 2 dimensional space. 

Fig. 2 illustrates how multiple filters with the 
ReLU function perform non-linear mapping. In Fig. 
2, there are three filters in the 2 dimensional input 
space, which map the input space into a higher space 
(3 dimensional space). The three filters can be 
expressed as follows: 

𝑋 • 𝜙ଵ ൅ 𝑐ଵ ൌ 0 
𝑋 • 𝜙ଶ ൅ 𝑐ଶ ൌ 0 
𝑋 • 𝜙ଷ ൅ 𝑐ଷ ൌ 0 

where 𝜙ଵ, 𝜙ଶ, 𝜙ଷ and 𝑋 are two-dimensional vectors. 
In general, the three equations represent planes or 
hyper-planes in high dimensional spaces and 
𝜙ଵ, 𝜙ଶ, 𝜙ଷ are the normal vectors to the planes.  

The three filters divide the input space into seven 
regions (Fig. 2). One region (R7) is mapped to a point 
in the 3-dimensional space (Fig. 3a). Two regions 
(R5, R6) are mapped into lines in the 3-dimensional 
space (Fig. 3b). Three regions (R2, R3, R4) are 
mapped into 2-dimensional polygons (Fig. 3c). 

In region R7, we have the following relationships: 

𝑋 • 𝜙ଵ ൅ 𝑐ଵ ൏ 0, 𝑋 • 𝜙ଶ ൅ 𝑐ଶ ൏ 0, 𝑋 • 𝜙ଷ ൅ 𝑐ଷ ൏ 0.  

In region R5,  

𝑋 • 𝜙ଵ ൅ 𝑐ଵ ൏ 0, 𝑋 • 𝜙ଶ ൅ 𝑐ଶ ൏ 0, 𝑋 • 𝜙ଷ ൅ 𝑐ଷ ൐ 0. 

In region R1, we have the following: 

𝑋 • 𝜙ଵ ൅ 𝑐ଵ ൐ 0, 𝑋 • 𝜙ଶ ൅ 𝑐ଶ ൐ 0, 𝑋 • 𝜙ଷ ൅ 𝑐ଷ ൐ 0. 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Non-linear mapping of the ReLU function. (a) 
Region 7 is mapped into a point, (b) Regions 5 and 6 are 
mapped into lines, (c) three regions (R2, R3, R4) are 
mapped into 2-dimensional polygons. 

For the other regions, we can derive similar 
relationships. It can be seen that a polygon in the 
original input space can be mapped into a polygon in 
the same dimensional space or a lower dimensional 
space. Also, a polygon may have a lower degree of 
freedom in the expanded space. For example, a 
triangle can be mapped into a point, a line or a triangle 
in the expanded space when ReLU is used in 
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convolutional neural networks. It is also noted that a 
polygon in the original space never increase its 
dimension. For example, a triangle in the original 
space cannot be mapped into a pyramid or a higher 
dimensional polygon. At most, they can retain their 
original dimension in a higher dimensional space. 
However, as we can construct a three dimensional 
object by folding a paper, the non-linear function of 
CNN allows the original space mapped into a higher 
dimensional object through the non-linear function. 
Nevertheless, the local dimension in the higher space 
is always the same as in the original space. For 
example, although a folded paper can make a 3D 
structure, locally it is always a 2D structure (plane). 

3 DECISION POLYGONS OF DNN 
WITH RELU 

In deep convolutional networks, another filter bank or 
full connection layer can be applied to the output 
images. These operations can be viewed as a projection 
on a vector and all the points on a plane that is normal 
to the vector will be mapped into a single value (Fig. 
4a). For example, if we move on the dotted line in the 
expanded space (Fig. 4a), the projection value on the 
vector will remain the same. Consequently, the 
decision boundary will be locally linear and the 
corresponding decision boundary in the original space 
will be also locally linear (Fig. 4b). For example, the 
decision boundary in region R4 is locally linear (a line 
normal to 𝛼ଵ𝜙ଵ ൅ 𝛼ଶ𝜙ଶ ) and the corresponding 
decision boundary in region R4 of the original input 
space is locally linear (a line normal to 𝛼ଵ𝜙ଵ ൅ 𝛼ଶ𝜙ଶ).  

The max-pooling operation can be also viewed as 
dividing a space into several subspaces. For example, 
in 2 by 2 max-pooling, the maximum of four values is 
selected. Consider the G-layer in Fig. 1. Without loss 
of generality, we may skip the ReLU operation since 
the operation doesn’t change the output of the max-
pooling operation. Thus, the max-pooling operation 
chooses the maximum value among the four values 
(𝐺଴ • 𝑋ଶ଼ൈଶ଼, 𝐺ଵ • 𝑋ଶ଼ൈଶ଼, 𝐺ଶ • 𝑋ଶ଼ൈଶ଼, 𝐺ଷ • 𝑋ଶ଼ൈଶ଼): 

𝐶ℎ𝑜𝑜𝑠𝑒 𝐺௜ • 𝑋ଶ଼ൈଶ଼  𝑖𝑓 𝐺௜ • 𝑋ଶ଼ൈଶ଼ ൐ 𝐺௝ • 𝑋ଶ଼ൈଶ଼

ሺ𝑖, 𝑗 ൌ 0, . . ,3; 𝑖 ് 𝑗ሻ. 

The four vectors (𝐺଴, 𝐺ଵ, 𝐺ଶ, 𝐺ଷ) represent hyper-
planes in the input space and the inequality equations 
divide the input space into a number of polygons. 
Therefore, the max-pooling operation will divide the 
input space into a number of subspaces and all the 
points of a subspace will have the same output for the 

max-pooling operation. In other words, for each point 
( 𝑋ଶ଼ൈଶ଼ ) of a subspace, 𝐺௜ • 𝑋ଶ଼ൈଶ଼  will be the 
maximum. 

 
(a) 

 
(b) 

Figure 4: Decision boundary formation in the expanded 
space (a) and in the original space (b). 

 

Figure 5: Space division into polygons. (a) three lines 
divide the 𝑥ଵ െ 𝑥ଶ space into 6 regions, (b) the same three 
lines divide the 𝑥ଶ െ 𝑥ଷ  space into 6 regions, (c) 
corresponding 3D volume divisions (polygons). 
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Eventually, the original space will be divided into 
a number of decision polygons and all the points 
within the same polygon will be classified as the same 
class when DNN with ReLU is used as a classifier 
(Fig. 5). It is noted that the input dimension is very 
large in typical problems and the planes defined by 
the filter banks of the first layer are parallel to most 
of the axes since the filter banks are highly localized. 
The number of decision polygons may exceed the 
number of training samples. In the MNIST dataset, 
the number of training samples is 60,000 and the 
number of test samples is 10,000. Table I shows the 
number of samples of decision polygons. After 
training the DCN of Fig. 1 using the 60,000 training 
samples, we investigated the decision polygons 
occupied by the training and test samples. It is found 
that 69,924 decision polygons are occupied by a 
single sample. Only 34 decision polygons contain 
more than one sample. Also, many decision polygons 
may be unoccupied. 

Table 1: Number of samples within decision polygons. 

No. samples per polygon No. polygons 

1 69924 

2 29 

3 3 

4 1 

5 1 

Recently, a number of DCN-based super 
resolution methods have been proposed (Kim, 2016, 
Lim, 2017, Zhang, 2018, Wang, 2018), which showed 
noticeably improved performance compared to 
conventional super-resolution techniques. When 
DCN-based super resolution methods use the ReLU 
function, the filter banks and full-connection layers 
also divide the input space (receptive field) into a 
large number of polygons. In this case, each image 
patch can be considered as a point in the input space 
and it will belong to one of the polygons. We 
investigated over 22,000 image patches and found 
that every image patch belonged to a different 
polygon. In other words, it is observed that the 
polygons generated by a DCN-based super resolution 
method with ReLU are occupied by at most one 
sample. 

4 DECISION BOUNDARY 
MARGIN OF DNN WITH RELU 

4.1 Adversarial Images 

Recently, a strange behavior of DNN-based classifier 
has been reported (Szegedy, 2013). A slightly 
modified image may be misclassified (Fig. 6) and 
such adversarial images can be easily generated to 
fool DNN-based classifiers. Also, one can easily fool 
DNN-based classifiers to misclassify meaningless 
images with certainty (Fig. 7). 

 
(a)                           (b)                            (c) 

Figure 6: (a) original image, (b) difference image, (c) 
modified image. 

 
(a)                                   (b) 

Figure 7: (a) classified as king penguin, (b) classified as 
cheetah. 

4.2 Mathematical Analyses on  
DNN-based Classifiers 

In general, the layer dimensions are significantly 
larger than the input dimension. In Fig. 1, the input 
dimension is 784 (28 x 28), the G-layer dimension is 
17280, the H-layer dimension is 4320 and the Y-layer 
dimension is 100, the Z-layer (output layer) 
dimension is 10: 

𝑋 ൌ ሾ𝑥ଵ, 𝑥ଶ, . . . , 𝑥଻଼ସሿ், 𝐺 ൌ ሾ𝑔ଵ, . . . , 𝑔ଵ଻ଶ଼଴ሿ், 

 𝐻 ൌ ሾℎଵ, . . . , ℎସଷଶ଴ሿ், 𝑌 ൌ ሾ𝑦ଵ, . . . , 𝑦ଵ଴଴ሿ், 

𝑍 ൌ ሾ𝑧ଵ, . . . , 𝑧ଵ଴ሿ். 

In other words, an input image is viewed as a point in 
the 784 dimensional space. We can compute the 
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gradients of each layer. The Z-layer gradients with 
respect to the X-layer and the Y-layer are given by 

𝛻௑𝑧௜ ≡
𝜕𝑧௜

𝜕𝑋
ൌ ൤

𝜕𝑧௜

𝜕𝑥ଵ
, … ,

𝜕𝑧௜

𝜕𝑥଻଼ସ
൨

்

 , 

𝛻௒𝑧௜ ≡
𝜕𝑧௜

𝜕𝑌
ൌ ൤

𝜕𝑧௜

𝜕𝑦ଵ
, … ,

𝜕𝑧௜

𝜕𝑦ଵ଴଴
൨

்

 , ሺ𝑖 ൌ 1~10ሻ. 

Although the Y-layer dimension is 100, the number 
of linearly independent vectors that can affect the 
outputs (𝑧௜) is 10, which is equal to the number of 
classes. The remaining 90 vectors that are normal to 
the 10 vectors don’t affect the output values (𝑧௜). We 
define the subspace spanned by the 10 vectors (𝜑௜

௞) 
as a relevant subspace (𝑆௥௘௟ௌ௨௕

௞ ) and the subspace 
spanned by the 90 vectors as an irrelevant subspace 
(𝑆௜௥௥ௌ௨௕

௞ ):  

𝑆௥௘௟ௌ௨௕
௞ ൌ 𝑠𝑝𝑎𝑛ሺ𝜑௜

௞ሻ 

𝑆௜௥௥ௌ௨௕
௞ ൌ 𝑠𝑝𝑎𝑛ሺ𝜓௝

௞ሻ (𝜑௜
௞ • 𝜓௝

௞ ൌ 0). 

where i and j are vector indexes, and k is the layer 
index. In each layer, the layer space can be divided 
into relevant and irrelevant subspaces and the 
dimension of relevant space can’t exceed the number 
of classes. When a sample moves in irrelevant 
subspaces, all the output values (𝑧௜, i = 0,..,9) remain 
the same. Consequently, one can almost unlimitedly 
generate equivalent images, many of which can be 
meaningless images.  

In the previous section, it is shown that DNN-
based classifiers divide the input space into a large 
number of decision polygons and each decision 
polygon is very sparsely populated. In other words, 
most polygons may be unoccupied by training or test 
samples It is observed that the margin between a 
sample and the boundaries of decision polygons is 
very small (Woo, 2018). Fig. 8 shows the within-class 
MSE histogram and the between-class MSE 
histogram, which indicate the margins between 
samples and the boundaries of decision polygons. 

5 CONCLUSIONS 

In this paper, we investigate the working mechanism 
of DNN-based classifiers. When filter bank or full-
connection layers are applied along with the ReLU 
function to a layer, the layer space is divided into a 
number of polygons. Eventually, the input space is 
divided into a large number of decision polygons. 
Several interesting properties are observed. A vast 

majority of decision polygons are occupied by a 
single sample and the margin between the sample and 
the boundaries of the decision polygon is very small. 
In the layer space, the dimension of the relevant 
subspace exceeds the dimension of the irrelevant 
subspace in most cases. Consequently, in current 
structures of DNN-based classifiers, it is difficult to 
prevent misclassification of adversarial images. In 
particular, to effectively handle adversarial images, 
new type of DNN-based methods may be needed, 
which provide larger margins between samples and 
the boundaries of decision polygons and adequate 
controls of irrelevant subspaces. 

 
(a) 

 
(b) 

Figure 8: (a) within-class MSE histogram, (b) between–
class MSE histogram. 
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