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A reduced-order modeling approach for thermal systems with varying parameters in rubber curing processes
is presented in this manuscript. For complex geometries with multiple components a finite element analysis
with fine mesh elements is often the only feasible approach to calculate temperature distributions over time.
A major drawback, however, is the resulting large system scale, which entails high computation times. Thus,
real-time capable execution or a high number of iterations to solve for optimization problems are infeasible
approaches. Model order reduction algorithms are a promising remedy, but physically interpretable parameter
preservation is not obtained, when using common approaches. Thus, a method to extract parameter dependen-
cies from numerical element matrices and reduce the model order is presented in this manuscript. Preservation
of physically interpretable parameters is accomplished by applying linear reduction projectors to affine in-
terpolated system matrices. Thus, parameter variations can be accounted for without costly recalculation of
reduction projectors. Hence, a computation efficient model description is obtained, enabling a tunable bal-
ancing between computation time and accuracy. To demonstrate the effectiveness of the approach, parameter
identification of material properties and heat transition coefficients is performed and validated with measure-
ment data of two different sample systems. For the largest sample system computation time has been reduced
from half an hour for a full order simulation to an averaged time of 0.3 s, with approximation error of 0.7 K.

1 INTRODUCTION

Manifold model-based process planning and control
methods require accurate thermal modeling to obtain
satisfying results. A good example is industrial curing
of rubber compounds or polymer composites, where
reliable process sequences are decisive for high prod-
uct quality. One curing sequence consist of a heating
and subsequent cooling phase. Uncured compounds
are placed into a preheated mold to get final product
shape and start temperature-dependent chemical re-
actions for polymer chain cross-linking. The product
can contain multiple compounds with different mate-
rial properties and the curing process is planned so
that every compound reaches a desired cross-linking
(cure) status at certain points of interest or through-
out its whole cross-section. Experiments can be con-
ducted to empirically determine mold temperatures
and heating duration, however they tend to be very
time consuming. Thermal modeling and cure status
extrapolation can be used to optimize the process of-
fline prior to vulcanization start (AleksendriC et al.,
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2016). Furthermore, different process aspects such as
energy consumption and product quality can be op-
timized by iteratively solving a minimization prob-
lem (Bosselmann et al., 2018). In order to build a
suitable process model, product geometry and mate-
rial properties are often set in a finite element anal-
ysis to solve for temperature distributions over time
and calculate the overall cure status, when vulcan-
ization reactions have finished. However, accurate
thermal modeling can be impeded by varying mate-
rial properties or geometric parameters. Since rub-
ber is a natural product, thermal conductivity, den-
sity and specific heat can vary significantly from one
batch to another. Similarly, tolerances and deviations
in the processes prior to curing, can cause compound
or geometrical variations, that can further affect of-
fline process planning. Ultimate goal is a parameter-
dependent system description, that can be quickly
adapted for a specific product with measured param-
eters prior to the curing process. Process parameters
such as mold temperatures and heating duration can
then be quickly adapted, using a cost function and
gradient-based optimization. Subsequent to a pre-
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cise process planning, determined process parameters
have to be maintained online. Industrial heating sys-
tems such as molds need to be controlled properly
to ensure a desired temperature distribution at con-
tact surfaces or product interfaces (Wang et al., 2015).
Model-based control approaches are favourable, since
multiple process criteria and limitations can be ac-
counted for. However, unknown or temperature de-
pendent boundary conditions to the ambient can lead
to disturbances or model errors. Furthermore, it is
beneficial to identify mold material properties, ther-
mal resistances and heat transitions, due to material
contact surfaces or components with unknown assem-
bly. Thus, a computation-efficient and parameter-
dependent system description is required, to enable
real-time computation for model-based control and
state estimation or to perform high amounts of itera-
tions in short time to solve for optimization problems.

Besides curing processes, multiple approaches
have been introduced to incorporate thermal models
in process control approaches. If applicable, model
simplifications, such as reduction of spatial dimen-
sion, using symmetry or neglecting complex geomet-
ric structures, are an easy and well used remedy. Spe-
icher et al. (Speicher et al., 2014) used a lower spatial
dimension model to reduce computation complexity
and estimate plate temperatures in a hot rolling pro-
cess. Furthermore, linearizations are applicable, if
the system maintains in a specific operating area. In
this case linear model order reduction can be a pow-
erful tool to lower system scale (Yuan et al., 2017),
(Benner et al., 2019). If these simplifications are
improper, parametric model order reduction methods
to approximate large scale systems can be used, but
yield possible limitations in number of accountable
parameters, online adaption and reduced system or-
der (Benner et al., 2015). A proper choice to reduce
the model would be Proper Orthogonal Decomposi-
tion (POD) (Astrid, 2004). This approach for nonlin-
ear systems is especially effective with the use of dis-
crete empirical interpolation (DEIM) (Chaturantabut
and Sorensen, 2010). However, sample trajectories
(snapshots) of already validated full order models or a
high amount of measurement data are required, when
a vast amount of varying parameters occur. Sun et al.
used balancing and POD to model parameter uncer-
tainties by lumping parameters into the input vector
and incorporate them into the reduction process (Sun
and Hahn, 2006).

In this work a novel method for thermal modeling
with accountable parameter variations is proposed.
The system description can be directly derived from
finite element analysis. Main achievements are for-
mulation of thermal linear parameter-variant (LPV)
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systems from nonlinear partial differential equations,
model order reduction of LPV systems, and parameter
preservation to enable optimization and identification
procedures. Furthermore, state-dependent parameter
changes as caused temperature-dependent boundary
conditions can be accounted for during simulation,
enabling a balancing between computation time and
accuracy.

2 METHODS

In this section a thermal modeling approach is
described in order to achieve a linear parameter-
dependent system description from numerical ele-
ment matrices of a FEA. Subsequently, model order
reduction of the LPV system and parameter preser-
vation is explained. Ultimately, a computation effi-
cient system description with approximated temper-
ature dependent boundary conditions is gained and
used for results in Section 3.

2.1 Thermal Modeling

The spatial-temporal dependent temperature distribu-
tion 7'(z,t) of a distributed parameter system within
domain Q C R™im, Vz = (zy,...,2,, )7 € Q at time
t €R" and dimension ngim € {1,2,3} can be de-
scribed as a scalar field with parabolic partial differen-
tial heat equations (PDEs) and Fourier’s law, leading
to infinite dimensional equation:

c@p(x T

The V-operator denotes partial derivatives with re-
spect to z. Internal heat sources are expressed as ®
in [Wm™3]. Material properties ¢ and p are specific
heat and density. A denotes the thermal conductivity
tensor which can account for anisotropic heat conduc-
tion. The following three assumptions are made for
the material coefficients:

=div(A(z)VT (z,1)) + o(z,1). (1)

Assumption 1. All material properties ¢(z), p(z),
and A(z) are time and state invariant.

Assumption 2. System domain Q consists of
multiple components Q;, Q = U Q;,
je{l,...,ncomp}, ncomp € NT  made of homo-
geneously distributed materials with properties

c(zj)-p(zj) = (cp)jand A(zj) = Aj, Vz; € Q;.

Assumption 3. Thermal conductivity tensor A; can
either be reduced to a scalar value \; for isotropic
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conduction throughout a system component or is as-
sumed to be a diagonal matrix with orthotropic prop-
erties Aj =diag(Ajz,,. .. Njz,, ).

The initial condition T(z,0) = Ty(z), z € Q sets an
inhomogenous temperature distribution 7y through-
out the domain. Furthermore, heat transfer between
surface and surrounding fluid or gas also known as
Robin boundary conditions ¢r have to be accounted
for. This boundary condition is formulated as su-
perimposed heat flux phir = Ocony + Praa caused by
heat emission 0,q and convection {Qcony With defined
on zg € dQ as:

Oconv(2B,1) = a(T (zB,1),28) (T (2B,1) — Tamb) , (2)
¢rad(ZBat) :e(ZB)G(T(ZB7[)4_Ta‘:11b) . 3)

Herein, zg corresponds to coordinates of domain sur-
face dQ exposed to ambient. Convective heat flux
Oconv 1 calculated from temperature difference be-
tween surface and ambient temperature Ty, multi-
plied with temperature and geometric dependent film
coefficient (7 (zp,),zp). Radiative heat flux ¢aq
is nonlinear in temperature and can be computed by
Stefan-Boltzmann-law with emission coefficient €(zp)
and Stefan-Boltzmann constant 6. Thus, a nonlinear
partial differential equation:

%T(w) = f(T(z1), Tamp) )

needs to be solved for T'(z,¢). However, nonlin-
ear equation (4) can be transformed into a linear
parameter-variant (LPV) system description, if non-
linear dependencies are moved into system coeffi-
cients (Bruzelius, 2004). This is applicable for ther-
mal systems. Thus, Robin boundary conditions are set
to

Or(z8,T) = ot (T (z8),28) (T (z8) — Tamb),  (5)
with total film coefficient:
¢rad (ZB 5 t)
T(Zth) - Tamb

Nevertheless, 0ot (7 (zB,1),z8) still depends on local
geometry and hence, is a function of zg. However, it
can be assumed as a surface area specific function:

ouot(T (zB,1),28) = a(T (zB,1),2B) + - (6)

Assumption 4. Superimposed film coefficient
Sunction oo (T (z,t),z8) is spatially  inde-
pendent  throughout  specific  surface  areas
0Q; CIQ, i € {1,..,nsuf} C N7, leading to discrete
Oliot (T (2B,is1),2B,i) = Quot,i(T (2B,i51)), VzB,i € 0L;.

According to (Frank et al., 2019) area-specific
film-coefficient functions are approximated by shape-
preserving piece-wise cubic interpolation at prede-
fined query points. Thus, identifiable parameters

P are created to parametrize temperature dependent
boundary conditions. Moreover, Pep € R"eomp  gand
Py, € Rteompdim - describe material properties. Com-
bined parameter vector p € P C R" contains all of
the variant system parameters. Domain Q is spa-
tially discretized using weak formulation and finite
element method to get a lumped element model. This
results in a system of linear-parameter variant ordi-
nary differential equations (ODEs) (Huang and Us-
mani, 1994),(Li and Qi, 2010). First order shape
functions fT(z) : x(¢) — T(z,t) are used to map node
temperatures x € R™ of finite element mesh to con-
tinuous temperature distribution 7'(z,¢). Eventually,
following system description is obtained and can be
exported from finite element analysis, but only at a
specific operating point with constant parameters p,

E|p,,% = Alpypy X+ Blp,u, ©)

with damping matrix E € R™*"x_conductivity matrix
A € R Joad matrix B € R™ ™ and input vec-
tor u € R™. All of the matrices are in numeric form,
but accessible parameters are required. Thus, a form
of affine parameter dependence is formulated for the
matrices similar to (Feng et al., 2016). In regard to
assumptions 1 and 2, matrices are specified as:

Ncomp

E(pep) ®Eo+ Y Ecpj-Pep.js (8)
j=1

A(poup?wx) ~ Ao +A0L®PA,0£(X)

Tlcomp Ndim
+ Y Y Ankjopak 9)
J=1 k=1
B(py) ~ Bo+Ba ® Ppa(x). (10)

Component-specific matrices Ep j and Ay ; ; are mul-
tiplied with the corresponding material properties. In
the equations above n¢omp describes the components
with varying parameters. Parameter that are already
known or of less significance can be considered by E
and Ag. These matrices are extracted from linearized
numerical matrices by setting the varying parameters
near zero. E¢p ; and Aj  ; are formulated according
to the following component-wise (j) matrix export

Eo=E|(p,,—0); (11)

Ecp,j = El(pep =1) — Eo, (12)

Ao = A5, 0, 0)" (13)

Ank,j = Al(y 1 =1,54—0) — A0, (14)

Bo = Bl (5, -0); (13
Nsurf

ta=F s apn Ao 06
o

(pus =)~ Bo. a7

By=)Y B
i=1
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Matrices Py o(x) € R™*™ and Ppq(x) € R™*™ are
multiplied to corresponding differential matrices with
element-wise Hadamard product ® and contain
state(node)-specific film-coefficients. Every matrix
entry represents a node, that is assigned to a compo-
nent or surface. Thus, parameters p,,, including spline
approximation parameters, can be used to construct
P4 o(x) and Pp o(x). These matrices are state depen-
dent, because thermal boundary conditions vary with
temperature. Eventually, a LPV description derived
from numerical FEA is generated including physi-
cally interpretable parameters

E(pep)x =A(pa, P> X)X+ B(pg,x) u. (18)

2.2 Model Order Reduction

System descriptions derived from FEA tend to have
large scale, especially if complex geometries or
multiple components are present. Thus, computation-
costs are very high and prevent real-time capable
execution or high amount of simulation iterations
for optimization problems. If model simplifications,
symmetry or reduction in spatial dimensions are
infeasible, model order reduction methods can be
powerful tools, to further reduce computation time
with sufficiently accurate simulation results. How-
ever, most approaches are only valid for linear system
descriptions. Moreover, physical interpretation of
reduced systems and parameter access is no longer
possible, since the reduced states do not represent
temperatures. Hence, already validated full order
models are required and have to be linearized at an
operating point. Parametric model order reduction
methods are used as a remedy, but are limited to
constant parameters or further extend reduced system
descriptions.  Data-based methods are based on
system snapshots, which can be difficult to obtain,
if no measurement data can be acquired or multiple
time-consuming simulations of a full order model
have to be performed. A promising remedy has
been introduced in (Frank et al.,, 2018), where
system description (18) is split into a linearized
part and an additive function to correct operating
point deviations. Classical model order reduction
for linear systems is used to calculate projectors,
that are also applied to the corrective function. A
similar approach is used in this work, as model order
reduction is calculated for a linearized system and
parameter variation are added subsequently. Thus,
time consuming reduction algorithms are performed
only once, and parameter variations or state de-
pendent changes can be accounted for separately.
For applying projection-based model reduction, an
arbitrary operating point p can be inserted in equation
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(18) to obtain a linear system (7), without repeated
export of numerical matrices from FEA. Model
order reduction using Rational Krylov projections
(Grimme, 1997) has been found to be most robust
in approximating system behaviour with subsequent
deviations form chosen operating point. In this
method moments of the original transfer function
are approximated at predefined frequency shifts,
so that as many moments as possible are matched
between original and reduced order system. Even-
tually, linear projectors W € R™*4 and V € R"™*4
are obtained from applied model order reduction
with reduced dimension ¢ < n. Hence, reduced
matrices A'ﬁaxaﬁx =wTA ﬁwﬁkv, A|[swﬁx € R9%4,
B ﬁ(x = WTB ﬁ(x’ B ﬁoc € qu”lu’ E ﬁcp = WTE'ﬁch’
Elp, € R?*4, and projected state vector ¥ € R? can
be calculated. Transformation between state-vectors
can be expressed as:

F=WTx, x~x=V5g, (19)

with approximated full order state vector X € R"™*. Re-
duced system description at operating point p

Elp %= Alpyp, 5+ Blpu (20)

is extended to consider material uncertainties, using
affine characteristics of equations (8) and (9). Thus,
damping and system matrix are obtained from:
Neomp
T .
oy TWL Y Ecpj(Pep,j—Pep )]s (21)
j=1

E=E

Ncomp Ngim

b TWEL Y Y Avsj (k) — Pax )]V (22)
=1i=t

A=A

B=8|,. (23)

Since, projectors are applied although approximated
transfer function of the original system varies, appli-
cability of introduced transformations has to be inves-
tigated. It is obvious that amount of material prop-
erties and deviation is limiting overall approxima-
tion quality. For thermal systems with rather slug-
gish system dynamic, a variation of damping pa-
rameters is not as crucial as a variation of thermal
conductivity, especially if transfer function moments
at lower frequency shifts are approximated. De-
tailed results are presented in section 3. For identi-
fication purposes or process planning, these changes
can be made before the simulation is started. How-
ever, state dependent change of boundary condi-
tions have to be accounted for during the computa-
tion. Thus, online correction of film-coefficients in-
troduced in (Frank et al., 2018) is used. Therefore,
additionally to previous equations, a non-constant
state-dependent term g is added to system matrix A
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and input matrix B. In order to reduce computation-
effort, g is not updated in every simulation time step.
Instead, it is kept piece-wise constant unless sur-
face temperatures xy € R™« change more than a pre-
defined threshold Tihes. Thus, a balancing option
between computation time and simulation accuracy
is created and piece-wise constant corrector func-
tion g, (pg,Xe, Tompy) : R"e x R x R — RY is for-
mulated as:

g8, =H- [CaAaCE O fa(Pa— Po¥a)Xe
+CoBa® foB (Pa— ParXa) Ta’r(nb]

with offline calculable matrices CqAoCL, Co By, and
H=WTC,T, H € R?"a The surface states affected
by temperature-dependent boundary conditions, can
be extracted with binary matrix Cgp € R™a*"x
xq = Cgx. Functions f : R" x R™a — R™a x R"a
and fop: R xR™a - R™ xR™  expresses
surface-node specific film-coefficient deviations from
spline parameters and query temperatures x;. Thus,
computation-efficient state space formulation

Ex(t) =Az(t) +Bu(t) + 8. (por X Tompy) ~ (25)

is obtained and discretized in time using implicit eu-
ler method. Thus, larger time-steps can be chosen
without affecting simulation stability. Output equa-
tion for temperatures at points of interest T's € R”s is
formulated by selecting node temperatures with a bi-
nary matrix C € R"s*™_ With applied order reduction
projectors, output equation is formulated as T's = C¥.

(24)

3 RESULTS

In this section, two exemplary thermal systems are in-
troduced to validate the proposed modeling approach.
Subsequently, parameter variation studies are pre-
sented for different materials. A parameter identifica-
tion and validation results are mentioned in the final
subsection.

3.1 Exemplary Thermal Systems

A plane rubber specimen and a heating plate are used
to exemplify the modeling approach from the previ-
ous section and to verify parameter identification with
measurement data. The rubber specimen consists
of a rubber compound with two temperature sensors
placed near the center-line of the cross-section (see
Figure 1a). Its dimensions are 25cm x 20cm x 2cm.
The full order model is created in a 2D-plane with
nxub = 3271 nodes, representing the central cross-
section. The reduction is performed with moment
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Figure 1: Exemplary thermal systems plane rubber speci-
men (a) and heating plate (b).

matching and empirically determined shifts, leading
to reduced dimension g, = 21. In addition an ade-
quate heating plate is used for curing processes (Fig-
ure 1b) (Bosselmann et al., 2017). The heating plate
is made of aluminum alloy. A 10mm thick layer out
of thermoplastic resin polyetheretherketon (PEEK) is
added to side and bottom surface for insulating pur-
poses. Six electric cartridge heater and ng = 12 Pt100
sensors are embedded into the heating plate. The sen-
sors are placed Smm underneath the aluminum sur-
face and are used to approximate surface temperature
distribution. Each cartridge heater has a maximum
power of 825W and is divided into three segments
each, resulting in 18 independently controllable seg-
ments with a maximum power of 275W. Due to a
slightly asymmetrical build and volumetric heat gen-
eration, the model is created in 3 dimensions. Dimen-
sion ny gp = 29173 is reduced to gup = 95.

3.2 Parameter Variation

This section presents the results of modeling parame-
ter variations. These variations can be taken into ac-
count by using Equations (21) and (22). According
to the presented method, projectors of model order
reductions are calculated at a predefined parameter
vector p. This reduced order model is used to ap-
proximate original system states Xy at p, and is kept
as ground truth, since the projectors are specifically
calculated for this scenario. Subsequently, multiple
reduced order models are constructed at different pa-
rameter vectors p,,. These models are then corrected
to match the system at p,, according to Equations (21)
and (22). Since the projectors are calculated for the
ground truth at p,, approximation errors occur. For
the rubber sample system it is assumed that material
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Figure 2: Rubber specimen material parameters verification
results for a sample curing process. Tolerance bands depict
highest deviation for a single state.
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Figure 3: Distribution of state deviation with Xrms(z1,22)
calculated over all time-steps for a material parameter de-
viation of 10% in the rubber specimen. With no parameter
adaption such small deviations can lead to a significant tem-
perature error (lower picture), whereas the proposed method
shows accurate results throughout the whole cross-section.

properties A and cp are varying. Deviation between
corrected systems and original reduced system at p,
is depicted in Figure 2.

The error Axgms is calculated for all simulated
time-steps K and for all reconstructed states x € R"™
of the rubber cross-section. Moreover, tolerance
bands are shown to represent minimal and maximal
error for the worst approximated states in the cross-
section. Three different materials are chosen to rep-
resent low (rubber), medium (compound) and high
(steel) thermal conductivity and different specific
heats/densities, respectively. Especially for small pa-
rameter deviations around the operating point, used to
calculate reduction projectors V, W, a correction with-
out costly recalculation of the reduction is a valid ap-
proach.

Spatial distribution of temperature errors are de-
picted in Figure 3, if material parameters (A and cp)
of the rubber specimen vary with 10%. The lower il-
lustration shows the deviation Xgrms (z1,22) calculated
over all simulated timesteps, if no further adaption is
made to the model. The upper figure depicts a proper
adaption in regard to the proposed method. It can be
stated that throughout the whole cross-section a pre-
cise approximation of temperature can be achieved.
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Figure 4: Adaption results of material and heat transition
parameters for the heating plate model. Blue indicates
results for adapted parameters according to the proposed
method, whereas orange depicts model errors with no adap-
tions.

Similar results arise for material properties and heat
transitions parameters of the heating plate model.
Figure 4 depicts parameter adaption results for the
heating plate. 4 parameters are assumed to be un-
known or varying. Material parameters of the heat-
ing cartridges cpuc,Anc as well as heat transitions
between aluminum and heating cartridges Agc_a, in-
sulation material Ap_;. Deviation for all states is
shown if no adaption of parameter variation is con-
sidered (orange) and parameters are adapted accord-
ing to the proposed method (blue). It can be stated
that accuracy is significantly increased, if parameter
adaption is considered. Moreover the same conclu-
sion as for the rubber specimen can be made: For
slight changes around the initial operating point, the
proposed method is applicable to accurately approx-
imate system behaviour. Thus, it is well suitable to
identify unknown parameters, with sufficiently accu-
rate results if the initial guess is not completely unad-
equate. Identification procedures and results are pre-
sented in the subsequent section.

3.3 Parameter Identification and
Verification

Since rubber is a natural product, thermal mate-
rial properties (Prub,cp,Prub,) Of the compound may
vary. Moreover, due to previous processes geomet-
ric variation such as a thickness can alter. With
the use of orthotropic material properties, ther-
mal conductivity in this direction ppy 3, can be
adapted seperately. Moreover, during cooling pro-
cesses at ambient temperature, temperature depen-
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dent film-coefficient functions need to be identi-
fied and frequently adapted. Two functions are
used for top and bottom each, approximated with
splines at 3 query temperatures, leading t0 py, o €
RS. Thus, overall p,; € R? parameters need to
be identified for the plane rubber specimen p,, =
(Pmb,cp, Prub,\» pmbaMick ) prub,(!)T‘

Unknown parameters for the heating plate are heat
transitions between heating cartridges and aluminum
(Pac—a ) as well as between aluminum and insula-
tion (ps_1p4). Furthermore, material properties of
heating cartridges (puc,cp, Puc,)) and film-coefficient
functions for bottom and side insulation and metal
surfaces are unknown (pyp ). Since three different
surfaces are approximated with 3 query points each, 9
film coefficient parameters have to be identified. This
results in 12 identifiable parameters pyp for the heat-
ing plate. In order to determine the parameters of
both systems, an optimization problem is formulated
to minimize the temperature deviation between mea-
surement 7' meas and simulation output T's at the given
sensor positions. For all simulated time-steps K cost-
function J is calculated as

mm J(p) = \/— Z Z [TS,k,s P) Tmeasks]

(26)
It is obvious that for a large dimension of the affiliated
parameter vector p, computation-effort and complex-
ity of the optimization problem increases. For large
system scale all solving algorithms based on multi-
ple iterations are not a feasible approach. Hence, the
proposed modeling method is a promising remedy to
arising conflicting goals between number of parame-
ters, simulation accuracy and computation time, since
it allows for more options to balance between them.
Thus, Particle Swarm Optimization (PSO) with a vast
amount of required simulation iterations is used to
find the global minimum of cost function J and iden-
tify unknown parameters. For the heating plate update
threshold Tines,up Of thermal boundary conditions is
set to 1 K and a time step of 5s is used. This results in
a computation time of approximately 0.3 s, if a 60 min
curing process is simulated. Thus, whole optimiza-
tion duration is about half an hour for 6000 iterations
on a Dual-Core Intel Core i5-4690 3.5 GHz. Residual
cost function value is Jmin up = 0.7 K. Verification re-
sults for a sample heating process are depicted in Fig-
ure 5. Overall conformity between measured and sim-
ulated temperature at sensor positions is sufficiently
accurate, whereas load changes lead to higher short
term deviations. Main cause are different heat transi-
tions for each heating cartridge and thermal depen-
dencies of material properties have been neglected,
only film-coefficients are frequently corrected.
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Figure 5: Heating plate parameters verification results for a
sample heating process.
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Figure 6: Rubber specimen parameters verification results
for a sample curing process.

During a curing process, the rubber specimen is
heated up and subsequently cooled down. Thus, a
model for heating inside the mold and a model for
cool down at ambient temperature is required. The
inhomogeneous initial conditions of the cooling phase
can be accounted for, by splitting the system into load
dynamic and initial condition response (Beattie et al.,
2017) and perform model order reduction separately
for both dynamics. Figure 6 depicts parameter vali-
dation results for a sample curing process. The heat-
ing process finishes at 22 min. Until then no temper-
ature dependent boundary conditions occur since the
rubber is enclosed in the mold and thus, no triggered
additive function g is required. For the cooling pro-
cess strong nonlinear temperature dependencies have
to be accounted for, by using the triggered function g
to correct the deviation to the operating point. Overall
accuracy at sensor positions is well inside a 2K tol-
erance, which is sufficiently accurate for this process
example.

4 CONCLUSION

A method for reduced-order thermal modeling of
parameter variations for parameter identification in
process planning and control is presented in this
manuscript. Therefore, a generic approach is de-
scribed to extract parameter dependencies from nu-
merical models. The heat equation with tempera-
ture dependent boundary conditions is used to calcu-
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late temperature distributions over time in 2 or 3 di-
mensional problems. Since large system scales can
arise from finite element analysis, model order re-
duction is applied to reduce computation time. This
computation-efficient description is required for solv-
ing optimization problems with a high amount of iter-
ations or meeting real-time demands. However, basic
model order reduction methods are only valid for lin-
ear models. If the system can not be linearized prop-
erly, temperature dependent boundary conditions as
well as parameter uncertainties have to be accounted
for. Parametric reduction algorithms are either based
on system snapshots or entail higher reduced orders
and larger projection matrices. Thus, a method to pre-
serve physically interpretable parameters, while using
rational Krylov model order reduction algorithms is
proposed. This is especially applicable for small vari-
ations around a well defined initial operating point.
Hence, neither a validation of the full order model be-
fore formulating the reduced model is required nor
many time consuming experiments to get measure-
ment data. Instead system parameters are identi-
fied and validated with a reduced system formulation.
Moreover, temperature dependencies during the pro-
cess can be modeled and a parameterizable balancing
between computation time and accuracy is possible.
Thus, online process adaptions according to (stochas-
tic) parameter variations are possible without costly
recalculation of model order reduction. The approach
is demonstrated for two sample systems, which mate-
rial and heat transition parameters are identified with
reduced-order models. Therefore, particle swarm op-
timization can be used to find the global minimum of
a formulated cost-function. Moreover, computation
times are within real-time restrictions and thus, pre-
sented models are used for model-based temperature
control, process predictions and state estimation.
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