Performance Comparison of Two Generic MPC-frameworks with

Keywords:

Abstract:

Symmetric Ciphers

Thomas Loriinser®? and Florian Wohner®®

AIT Austrian Institute of Technology, Vienna, Austria

Multiparty Computation, Applied Cryptography, Privacy, Benchmarking.

Research on multiparty computation (MPC) made substantial progress over recent years. It can be used to pro-
tect the privacy of data and users in modern application scenarios like Blockchain and the Internet of Things
where different stakeholders want to collaborate. In this work we analyze practical aspects of two generic
MPC frameworks, MP-SPDZ and MPyC, to generate new insights into the state-of-the art for generic and
platform independent MPC. We implemented various symmetric ciphers and did extensive benchmarking on
both frameworks to see how universal and generic they are and if they can be used without special knowledge.
We found that the achieved performance cannot be trivially estimated from the algorithms without implement-
ing. The stream cipher Trivium was by far the fastest and most portable in our tests. Contrary to most of
existing literature we also addressed non optimal network settings and found surprising results. The asyn-
chronous architecture of MPyC turned out to make more efficient use of the network layer in scenarios with
higher network latency and loss and could even compensate for the optimizing compiler used by MP-SPDZ.

1 INTRODUCTION

Multiparty computation (MPC) is a technology for
computing on confidential data in a distributed set-
ting, i.e., with multiple nodes holding only fragments
of input data. It can be used to decentralize systems
where typically a central trusted authority is needed
to execute certain functionality. With MPC the func-
tionality is evaluated jointly between multiple parties
such that the correctness of the output is guaranteed
and the privacy of the inputs of the individual parties
is preserved, and only the output of the computation is
learned. The concept has been invented more than 30
years ago, but for a long time it was considered only
of theoretical interest. However, progress in recent
years has led to many interesting applications which
can be realized with practical efficiency.

1.1 Motivation

Many of the promising results published in research
papers have been obtained under ideal settings typ-
ically only considering a very limited scope. Addi-
tionally, many of the open source frameworks used to

(2 https://orcid.org/0000-0002-1829-4882
b hitps://orcid.org/0000-0002-8641-7522

Lorlnser, T. and Wohner, F.
Performance Comparison of Two Generic MPC-frameworks with Symmetric Ciphers.
DOI: 10.5220/0009831705870594

generate the results are not very mature. Experiment-
ing with these frameworks, we found it challenging to
correctly and efficiently implement certain algorithms
for specific MPC systems and manual optimization
was often necessary.

To better understand the potential of MPC in real
life application scenarios we analyze the problem of
interfacing with MPC by means of reading data from
encrypted storage (Happe et al., 2017). To the best
of our knowledge, there is so far no empirical study
which tries to identify important parameters in the us-
age of MPC technology in a systematic and platform
independent way. We tried to compare similar MPC
settings and protocols and therefore selected two of
the most actively developed frameworks which run
the same protocols under the hood and support the
same adversary model. For our study we are work-
ing in the honest-majority setting with information
theoretical security and only semi-honest adversaries.
This is the most basic setting which has all major in-
gredients to build more complex scenarios. Computa-
tionally secure protocols for dishonest majorities are
out of scope for this work. It should also be noted
that we do not intend to compare ciphers of equal
security strength. We are aware that stream ciphers
like Trivium do not provide the same security level as
AES, however, our goal is to compare how the two

587

In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 587-594

ISBN: 978-989-758-446-6

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SECRYPT 2020 - 17th International Conference on Security and Cryptography

selected MPC frameworks can deal with the differ-
ent structures of the various algorithms and what has
to be considered in the porting of algorithms to MPC
systems.

1.2 Contribution and Structure

We implemented, analyzed, and benchmarked four
different ciphers in two MPC frameworks. We found
that estimating the performance of algorithms for
MPC systems in advance is hard and real perfor-
mance deviated from the expected in many cases. Our
work also shows a performance comparison for net-
works with higher latency or loss, where we identi-
fied some unexpected behavior which suggests that
there is room for improvement. In our study Trivium
turned out to be most versatile cipher, i.e., it supports
the widest range of MPC frameworks, but it has also
the lowest security level. We also provide our imple-
mentations as open source modules!.

The remainder of the paper is structured as fol-
lows. The related work as well as selected MPC
framework are presented in section 1 below. In sec-
tion 2 the algorithms chosen for implementation for
both frameworks are presented, as well as our find-
ings during software implementation and the manual
optimizations which were necessary to achieve good
performance. The performance results achieved are
presented and discussed in section 3. The conclusion
of the paper is then presented in section 4.

1.3 Related Work

The most recent and comprehensive work on com-
paring MPC frameworks was presented in (Hastings
et al., 2019) which tried to give an overview on the
state of the art from a users point of view and does not
focus on a particular technique or scheme. In particu-
lar, no performance benchmark was possible because
of the very different approaches considered. Addi-
tionally, only basic operations in the spirit of "hello
world” applications were analyzed, as was shown by
the code snippets in the appendix. In our work, we fo-
cus on benchmarking more complex algorithms, sym-
metric ciphers in our case, and MPC with similar pro-
tocols and adversary models but different program-
ming paradigms.

Besides comparing MPC frameworks, this work
was also motivated by the progress made in de-
veloping optimized ciphers for application in mul-
tiparty computation (MPC), fully homomorphic en-
cryption (FHE) and zero-knowledge proof systems

ISource code on GitHub: https://github.com/Archistar/
archistar4mpc-cipher, first published 29.4.2020.

588

(SNARKS) (Albrecht et al., 2015), (Albrecht et al.,
2016a), (Rechberger et al., 2018), (Grassi et al., 2019)
and (Albrecht et al., 2019), which are typically only
benchmarked in ideal settings (almost perfect connec-
tivity and fast servers). This somehow contradicts the
idea of generic platform-independent secure compu-
tation, which should be the goal for widespread use
of the technology. In our work we are using these
new cipher designs and compare them with AES and
well-known stream ciphers also considered interest-
ing candidates for MPC. It is not the goal of our work
to absolutely compare the many proposed ciphers, but
to see how good their structure is suited in general for
framework-independent application and this is only a
first step towards broader benchmarking activities.

1.4 MPC Frameworks

Various frameworks have been developed over the last
years, specifically in the open source domain. We
selected two candidate frameworks, MP-SPDZ and
MPyC, which both have the capability to work in the
semi-honest setting with honest majority and use se-
cret sharing based protocols. However, because they
use a fundamentally different programming model it
is interesting to see how they behave for the given
task.

141 MPyC

MPyC (Schoenmakers, 2018) is a fork of the discon-
tinued VIFF framework (Damgéard et al., 2009), but
only rarely used for MPC benchmarks. In our opin-
ion, it follows an interesting concept which could lead
to both easy access for programmers and reasonable
performance. It is a Python framework that implic-
itly represents multi-party computations as graphs of
regular Python values, secret-shared values, and oper-
ations on them. By overloading Python’s regular op-
erators, the whole process is made mostly invisible to
the user of the framework. The resulting graph is built
at runtime and evaluated asynchronously, so no static
analysis, and therefore no optimization, is performed.
However, heavily optimized primitives (mostly vector
and matrix operations) are available. The framework
is passively secure in an honest-majority setting.
Code written in the framework can be hand-
optimized with the help of the built-in gather () and
_reshare () methods. Applying the first method on
a shared value will run all outstanding asynchronous
computations and then unpack the share to return an
element of the underlying field. Any further compu-
tations on it will then be performed locally only. Ap-
plying the second method to this value will return a

Performance Comparison of Two Generic MPC-frameworks with Symmetric Ciphers

shared value again. Everything that happens in be-
tween is therefore part of a single round of communi-
cation. Obviously, this can destroy correctness, and it
is left to the programmer to ensure that it does not.

Internally, MPyC makes ample use of this facil-
ity to improve the performance of its built-in methods
and operators, and also to provide efficient vectorized
versions of some common operations. We looked at
four of those operations and compare them to their
unoptimized counterparts in Table 1.

142 MP-SPDZ

MP-SPDZ (Keller, 2019) is a fork of SPDZ2 which
was originally developed at the University of Bristol
and is based on the SPDZ type of protocols (Damgard
et al., 2012b). Since forking, MP-SPDZ has inte-
grated more and more protocols and is now the most
prominent framework used for benchmarking MPC
protocols in general. It supports very flexible use of
different protocols and also separation of online and
off-line phases for performance measurements.

Its approach is to let users write their programs in
a Python-like language that is then heavily optimized
and compiled to byte-code for a fast virtual machine
implemented in C++. The framework implements a
wide variety of protocols for several different security
models, based on arithmetic as well as Boolean cir-
cuits. Both integer and fixed-point numbers are sup-
ported and security models of honest majority as well
as dishonest majority are supported, even for both
semi-honest and malicious adversaries. In this work
we were only using the shamir-party.x program as
this resembles the same protocol used by MPyC.

2 ALGORITHMS

In the following section we will briefly review the ba-
sic principles and properties of the algorithms we se-
lected for implementation, and discuss our findings.
The algorithms have been selected because they are
considered to be lightweight or because they were
specifically proposed as ciphers optimized for appli-
cation in MPC settings based on secret-sharing with a
low circuit depth for multiplication gates. In general,
the algorithms should help to understand how the two
approaches of MP-SPDZ and MPyC are able to op-
timize the processing of the various ciphers and how
suitable the structures of the ciphers are for the re-
spective frameworks.

2.1 AES

The advanced encryption standard is the de-facto
benchmark when it comes to MPC for evaluation of
symmetric ciphers since (Pinkas et al., 2009). It
is particularly challenging for systems operating on
arithmetic circuits, because AES does not lend it-
self well to secure computation over prime fields
(Damgard et al., 2012a). In spite of this, a lot of
progress was made in the evaluation of AES in secret-
sharing based systems with (Araki et al., 2016) claim-
ing the best performance. They report on a cluster
of three 20-core servers with a 10Gbps connection,
which carries out over 1.3 million AES computations
per second, processing over 7 billion gates per second.
However, these results are achieved with a dedicated
protocol for Boolean circuits supporting only three
parties, and a lot of parallelization on the block level,
which can always be achieved. AES implementations
were available in both frameworks and we took them
as baselines for our benchmarks.

2.2 ChaCha20

ChaCha20 (Bernstein, 2008) is a stream cipher and
the successor to Salsa20, and is one of several novel
ciphers recommended for new implementations by
the eSTREAM project (De Canniere and Preneel,
2008). It is a typical ARX-cipher, consisting only
of unsigned 32-bit integer additions, fixed-width bit
rotations, and XORs. In the MPC setting, this mix-
ing of integer and logical operations is a problem and
suggests two different implementation strategies: one
would be to represent the data as integers and con-
vert to and from a bit-level representation as needed.
The other, likely more efficient, strategy would be to
use a bit-level representation throughout, and imple-
ment the integer addition as a Boolean circuit. In this
approach, the multiplicative complexity of the cipher
depends on the type of addition circuit used. The pos-
sible complexity for adders ranges from linear (ripple-
carry) to inverse quadratic (carry-select) to logarith-
mic (carry-lookahead). For our implementation, we
tried only ripple-carry and carry-select adders.

In the first implementation variant, we use the
equivalent of unsigned 32-bit integers for the addi-
tions, switch to a bit-vector representation for the
XOR and bit rotations, then again back to the inte-
ger representation for the additions, and so on and so
forth. Given the structure of ChaCha20, this necessi-
tates 640 decompositions and 320 recompositions per
block of 64 bytes.

In the other implementation variant, we convert
the input values only at the beginning and end, and

589

SECRYPT 2020 - 17th International Conference on Security and Cryptography

therefore have to perform addition on the bit-level.
The simplest way to achieve this is with a ripple-carry
adder that takes one vectorized multiplication of all
bits of the addends plus 30 multiplications with the
carry bit, for a total of 31 communication rounds per
addition. At 336 integer additions per block, this is
obviously very expensive and can easily be improved.
In MP-SPDZ there is a built-in carry-select adder, and
in our implementation, compared to the ripple-carry
adder, it reduced the rounds of communication neces-
sary for one block from 1731 to 811. As expected, this
implementation variant performs better, regardless of
which adder is used. Nonetheless, the results confirm
that ChaCha20 is not a suitable cipher for MPC.

2.3 Trivium

Trivium, based on a nonlinear feedback shift register
(NFSR), is another cipher of the eSTREAM portfo-
lio (De Canniere and Preneel, 2008). It has a simple
structure with only bit operations, so that it can be
applied to resource-constrained environments such as
wireless sensors in IoT. The internal state of Trivium
consists of 288 bits. It is initialized by a key and IV
of 80 bits each, with all other bits except for the last
three set to 0. To complete the initialization, 1152
keystream bits are generated and discarded. The gen-
eration of a keystream bit is the same for initialization
phase and regular operation: the state is shifted by in-
serting three new bits, each generated by two XORs
and one AND. The XOR of these new bits is the out-
put bit. We chose Trivium because of this very simple
construction and the low multiplicative complexity it
promised. As detailed, it only takes three multiplica-
tions to produce one output bit, but by construction,
this operation can be parallelized for at least 64 bits.?
This means that a fully optimized implementation of
Trivium should be able to generate 8§ bytes in a single
communication round.

Thanks to the simplicity of Trivium, we were able
to realize this parallelisation with a (mostly) straight-
forward translation of the specification. We imple-
mented the cipher so that it always generates blocks
of 64 bits, by simply running the output function 64
times in a loop. MP-SPDZ was able to generate op-
timal code from this without any additional work on
our part, but for the MPyC implementation, we had to
do some optimizations by hand finally achieving the
same results that the MP-SPDZ had produced auto-
matically.

272 bits can be computed per round and by turning over
the internal state (288 bits) four times, the cipher can be
initialized in 16 rounds of communication.

590

2.4 LowMC

LowMC is a block cipher based on a substitution-
permutation network which can be parametrized in
a very flexible way. The number of rounds needed
to achieve the desired level of security is determined
as a function of several parameters. The way this is
done is to consider and try to bound all known attacks
and choose the number of rounds so that the most ef-
fective attack for a particular set of parameters is just
not able to violate the security expectation. The first
version of this round "formula’ was introduced at Eu-
rocrypt 2015 (Albrecht et al., 2015). Soon after, op-
timized attacks were demonstrated and as a result, an
updated round formula for LowMC was proposed by
the designers (Albrecht et al., 2016a).

Implementing LowMC was a surprise in many
ways. It has already been observed by (Albrecht et al.,
2016a) that the high number of XORs entailed by
the matrix operations of LowMC means that they can
no longer be considered free. We found this to be
true to an even larger extent in our setting. Even
though it was clear that the MPyC implementation
could only be done on a bit-level representation with
all the overhead it entails - using one of the recom-
mended parameter sets (256 bits blocksize, 80 bits
keysize, 12 rounds), and keeping in mind that even a
small Python integer weighs in at 26 bytes, the multi-
plication matrices take up almost 50 mega-bytes - we
were still negatively surprised by the resulting perfor-
mance. The MP-SPDZ implementation immediately
performed closer to our expectations, achieving 6 KB
per second.

2.5 MiMC/HADES

Introduced by (Albrecht et al., 2016b), MiMC is a
radically simplified construction based on the idea to
explore the typical field size used in MPC. The num-
bers of rounds is [@] (with n mod 2 = 1 as the
chosen block size). The round function just adds the
key and a round constant, then takes the result to the

power of three. To decrypt, the process is performed
ontl_q

in reverse, but with the exponent instead of 3.
As decryption is therefore massively more expensive
than encryption, the authors recommend using modes
where it is not needed. Encryption, however, should
be very efficient. Since the design does not contain
any S-boxes and only uses addition and multiplica-
tion, the cipher can be evaluated in a binary field with-
out any conversion, and needs only two multiplica-
tions per round. Later, (Grassi et al., 2019) developed
what they call the HADES design. The core idea of
this approach is to apply reduced versions of the non-

Performance Comparison of Two Generic MPC-frameworks with Symmetric Ciphers

linear layer in some rounds. Instantiated for MiMC,
this means that the cipher now operates not on a sin-
gle, but any number of blocks, and in certain rounds,
the exponentiation is only applied to some (in this in-
stantiation: the first) of them. Additionally, (Albrecht
et al., 2019) presented a generalized MiMC that can
cope with prime fields and work on many field el-
ements at once and therefore gives good amortized
cost if it can be parallelized. Our work is based on
the initial design (Albrecht et al., 2016b) but can be
naturally extended to the new versions.

The drawback of all versions of this approach,
however, is the large number of rounds required to
obtain adequate security. In our tests, we used a block
size of 127 bits which works out to 82 rounds. With
two multiplications per round, this adds up to 164
communication rounds per block. MiMC is specified
for GF(2n), but can also be used in GF(p). We chose
the first variant, for which no conversion is necessary,
as only XORs and multiplications are performed. Our
findings indicate that encryption is indeed fast, as ex-
pected. However, the high amount of rounds has a
noticeable impact on performance. Only a few mea-
surements were done on decryption because it was
immediately obvious that the high cost of reversing
the exponentiation made it as slow as predicted.

3 PERFORMANCE EVALUATION

In this section we report our performance comparison
results. We started from an ideal setting with three
nodes and an almost ideal network setting, i.e., all
nodes running on the same physical host. All tests
were done on rather standard hardware, namely a Dell
Latitude E7440 notebook with a Core 17-4600U CPU
running on 2.1 Ghz with 4 cores. In all our tests
we did not try to optimize the overall throughput by
exhausting all hardware resources through massive
block level parallelism, we only intended to measure
the time for one block (or a fixed number of blocks) in
sequential mode. Compared to other works which op-
timize overall throughput by parallelization, we think
it is essential to understand the behavior of a single
block. In particular, we wanted to also understand
how the frameworks behave in practical network set-
tings from LAN configurations to worldwide deploy-
ments as well as how many nodes can reasonably be
supported for the given task.

3.1 Performance of Basic Operations

As a basis for understanding of the expected perfor-
mance, and as a reference for the actual platform we

use, we provide the actual measured latency for basic
operations in Table 1.

Table 1: Time (ms) for 100 basic operations over vectors a,
b of length n.

n MP-SPDZ | MPyC MPyC Vec
map(operator.add, a, b) | vector_add(a, b)

1 <1 7 14

10 <1 46 19

100 | <1 353 71
map(operator.mul, a, b) | schur_prod(a, b)

1 12 59 60

10 13 258 82

100 | 17 2309 336
reduce(operator.add, a) | mpc.sum(a)

1 <1 <1 9

10 <1 33 12

100 | <1 507 18
reduce(operator.mul, a) | mpc.prod(a)

1 <1 1 12

10 | 97 381 163

100 | 1017 3834 416

In MP-SPDZ, latency for addition is vanishingly
small; for multiplication, it grows slightly (but clearly
sublinearly) with increasing vector size, except for
the multiplicative reduction, which exhibits an almost
exactly linear slowdown with increasing input size.
This may seem surprising at first, but is actually to
be expected. Contrary to the other three operations
under test, the multiplicative reduction cannot be per-
formed in one communication round. As it is writ-
ten, the multiplication operations form a linear list, so
one should expect it to scale linearly with input size.
The only optimization possible would be to organize
the multiplications as a tree, so that multiplications on
the same level could be performed in parallel, and the
whole operation would scale logarithmically. Such
an optimization is, however, not trivial to find and
prove correct. It is therefore not surprising that the
MP-SPDZ compiler did not perform it.

In MPyC, the unvectorized operations scale about
linearly with vector size. The vectorized operations
are faster, but only the sum is clearly sublinear in
its behavior, scaling somewhat similar to MP-SPDZ’s
vector multiplication; the other operations exhibit a
noticeable slowdown as their input vectors grow in
size.

3.2 Performance of Cipher
Implementations

The benchmarking results of cipher implementations
with an almost ideal network (localhost) is shown in

591

SECRYPT 2020 - 17th International Conference on Security and Cryptography

Table 2. In MP-SPDZ AES latency is about 20 times
lower than in MPyC with optimized code. Chacha20,
the lightweight stream cipher, did not perform bet-
ter. In MP-SPDZ it took almost the same time and
in MPyC it took even twice the time of AES. Most
surprisingly LowMC performed worse than expected.
Leaving aside the initialization time it took twice the
time of AES on MP-SPDZ and was 6 times slower
on MPyC. MiMC, the second cipher designed specif-
ically for MPC, performed very well. It could not
achieve a speed-up on MP-SPDZ but performed 10
times faster on MPyC for encryption. Because of its
design, decryption takes substantially more time (be-
tween a factor of 30 and 50), which makes it less at-
tractive for applications. Trivium, another stream ci-
pher under test, performed exceptionally well on both
frameworks. On MP-SPDZ it was more than 5 times
faster and in MPyC with certain manual optimization
we achieved roughly a 20 time speed-up compared
to AES. However, it has to be noted that Trivium in
the standard configuration has only a security level
of 80 bits compared to the other ciphers which pro-
vide at least 128 bits. Nevertheless, the structure of
Trivium seems well suited for MPC implementations
and should be used as a basis for future designs with
stronger security levels.

Table 2: Ms / Byte for encryption in 3-party MPC, no la-
tency.

Cipher MPyC unopt | MPyC opt | MP-SPDZ
init ‘ enc | init ‘ enc | init ‘ enc
AES-128 - - - 110 | - 5
ChaCha20 - - - 1216 - 6
LowMC 764 | 679 | 772 | 637 | 28 9
MiMC - - - 11 - 5
Trivium 3300 | 23 | 780 | 6 18 | <1

3.3 Network Latency and Loss

Besides the basic performance in ideal settings it is
also important to investigate other aspects that are
relevant for the real-world performance of MPC but
sometimes get sidelined: network latency and net-
work loss. One stated reason for not caring (too
much) about it is that it is assumed that performance
degrades linearly with increasing latency. This is in-
deed what we found in our experiments. What was
surprising though was the size of the constant fac-
tor, and that it was significantly different between the
frameworks.

We measured the behaviour of the implementa-
tions under increasing network delay and loss. The
measurements were done on the very same hardware
with all processes running on the same host and by
using kernel level netem features to simulate net-

592

work delay and loss. To make the results easier to
compare, we performed computations that used about
1000 rounds of communication, then normalized the
obtained time to one communication round.

The results of our experiments with variable la-
tency are shown in Figure 1 and Figure 2 for a one-
way delay from 0 to 50 ms. In the ideal zero-latency
setting, a multiplication round takes less than a milli-
second in both MPyC and MP-SPDZ; every 5 ms of
one-way delay (which can be estimated to equal about
10 ms of round-trip delay) adds about 5 ms to MPyC,
but almost 10 ms to MP-SPDZ. This means that the
seemingly superior performance of MP-SPDZ ver-
sus MPyC disappears rapidly with increasing latency.
The situation is slightly, but not fundamentally, dif-
ferent when we look at batched multiplications. Re-
peating the same test with vectors of length 100, with
zero latency we get about 3 ms and again less than one
ms for MPyC and MP-SPDZ respectively, and once
again an increase of about 5 ms vs. almost 10 ms for
5 ms of one-way delay. This means that multiplica-
tions (looked at in isolation) are faster in MPyC than
MP-SPDZ even in low-latency contexts. The break-
even point for Trivium, on the other hand, is around
35 ms in our measurements, which is in a realistic
range for reasonable distributed deployments which
go beyond a single data center implementation.

All this indicates that although the Python based
implementation of MPyC may be slower and seem-
ingly less capable than MP-SPDZ with its impres-
sive optimizing compiler, MPC operations are ul-
timately bound by the network, and MPyC profits
from Python’s highly-optimized asynchronous net-
work stack.

In a second series of experiments we tried to sim-
ulate packet loss. The results are shown in Figure Fig-
ure 3 and the slowdown is comparable to the one we
observed with one-way delay.

120

—®— MPyC (n=1)
100- | —A— MP-SPDZ (n=1)
—e— MPyC (n=100)
—¥— MP-SPDZ (n=100)

time (ms)

one-way delay (ms)

Figure 1: Time for one multiplication with increasing net-
work delay.

Performance Comparison of Two Generic MPC-frameworks with Symmetric Ciphers

time (ms)

0 T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50

one-way delay (ms)

Figure 2: Time per communication round of Trivium with
increasing network delay.

120

1004 | —@— MPyC
—— MP-SPDZ

80

60
40+

time (ms)

loss (%)

Figure 3: Time per communication round of Trivium with
increasing network loss.

3.4 Scalability

Although MPC is very appealing, in reality most sys-
tems only support two or three nodes. From an ap-
plication point of view this is often disappointing,
as in many use cases more parties than that want to
collaborate. For example, in a secure auction many
more users are submitting bids and if they are not
MPC nodes in their own right they have to trust the
MPC nodes not to collude, and as shown in (Fram-
ner et al., 2019) non-collusion assumptions are not
well accepted. From the protocol it is clear that the
communication overhead limits the number of nodes
for particular computations. In Figure 4 we show the
results for more parties. Here, MP-SPDZ performs
better with increasing number of parties than MPyC,
which experiences a significant slowdown.

4 CONCLUSIONS

In this work we compared two generic MPC frame-
works based on the same linear secret-sharing proto-
cols, but a fundamentally different software approach.
MP-SPDZ is the most used software framework to
benchmark algorithms and is supposed to perform

500

—@— MPyC Oms
—&— MP-SPDZ Oms
400 | —@— MPyC 10ms
—»— MP-SPDZ 10ms
—@— MPyC 20ms
MP-SPDZ 20ms

w

o

o
|

"

time (ms)
N
o
<

100+

0 » » —= .
3 5 7 9 11
parties

Figure 4: Time per communication round of Trivium with
increasing number of parties.

best. MPyC on the other hand is very flexible and easy
to use. For our tests we implemented various sym-
metric ciphers from the literature, some of them opti-
mized for MPC, and did extensive testing and bench-
marking on both frameworks. The goal was to under-
stand how universal and generic the available MPC
software is and to which extent they can be used with-
out special knowledge about core protocols.

From our tests we learned that even for the most
versatile software frameworks available and the ba-
sic MPC protocols it is hard to get things right, i.e.
MPC is still far from being usable by software devel-
opers not familiar with the field. We showed that the
practical performance cannot be trivially estimated
from the algorithms to be implemented by estimating
the multiplicative depth in advance, often additional
work (e.g. bit decomposition) significantly penalizes
the performance of the algorithms and manual opti-
mization is needed. We also found that some of the
algorithms that were specifically developed to have
lower numbers of multiplications did not perform as
expected, and that some stream ciphers are not well
suited to MPC.

Trivium was found to be the best cipher for
platform-independent application in MPC and we rec-
ommend it for cases where the lower security pa-
rameter is not an issue or it can be combined with
other mechanisms (Sell et al., 2018). Recently, (Can-
teaut et al., 2018) proposed Kreyvium to improve on
this, but an interesting question remains open: can the
Trivium approach be scaled up to generate more than
64 (and maybe even arbitrarily many) keystream bits
per round of communication without weakening secu-
rity or exponentially increasing the size of the internal
state?

Contrary to most of existing literature we also ad-
dressed non-optimal network settings. In our tests we
found that although MP-SPDZ performs by far better

593

SECRYPT 2020 - 17th International Conference on Security and Cryptography

in high throughput low latency settings, it gets sur-
prisingly outperformed by MPyC in scenarios with
higher network latency. The asynchronous architec-
ture of MPyC guarantees more efficient use of the net-
work layer in this scenarios which could even com-
pensate for the optimizing compiler used by MP-
SPDZ. However, for the scalability in the number of
parties we found the opposite; here MP-SPDZ be-
haved as expected and MPyC seems to experience sig-
nificant slowdowns.

ACKNOWLEDGEMENTS

This work has received funding from the Austrian
Research Promotion Agency (FFG) through project
FlexProd (GA No. 871395) and from the European
Union’s Horizon 2020 research and innovation pro-
gramme under GA No. 830929 (CyberSec4EU).

REFERENCES

Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T.,
and Zohner, M. (2016a). Ciphers for MPC and FHE.
Cryptology ePrint Archive, Report 2016/687.

Albrecht, M. R., Grassi, L., Perrin, L., Ramacher, S., Rech-
berger, C., Rotaru, D., Roy, A., and Schofnegger, M.
(2019). Feistel Structures for MPC, and More. In
Computer Security — ESORICS 2019, Lecture Notes
in Computer Science, pages 151-171. Springer.

Albrecht, M. R., Grassi, L., Rechberger, C., Roy, A., and
Tiessen, T. (2016b). MiMC: Efficient Encryption and
Cryptographic Hashing with Minimal Multiplicative
Complexity. In Advances in Cryptology - ASIACRYPT
2016, Hanoi, Vietnam, December 4-8, 2016, Proceed-
ings, Part I, pages 191-219.

Albrecht, M. R., Rechberger, C., Schneider, T., Tiessen,
T., and Zohner, M. (2015). Ciphers for MPC and
FHE. In Advances in Cryptology - EUROCRYPT
2015, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part I, pages 430—-454.

Araki, T., Furukawa, J., Lindell, Y., Nof, A., and Ohara, K.
(2016). High-Throughput Semi-Honest Secure Three-
Party Computation with an Honest Majority. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security - CCS’16,
pages 805-817, New York, New York, USA. ACM
Press.

Bernstein, D. J. (2008). ChaCha, a variant of Salsa20.

Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-
Plasencia, M., Paillier, P., and Sirdey, R. (2018).
Stream Ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression. Journal of
Cryptology, 31(3):885-916.

Damgird, 1., Geisler, M., Krgigaard, M., and Nielsen, J. B.
(2009). Asynchronous Multiparty Computation: The-

594

ory and Implementation. In Public Key Cryptography
- PKC 2009, Irvine, CA, USA, March 18-20, 2009.
Proceedings, volume 5443 of Lecture Notes in Com-
puter Science, pages 160—179. Springer.

Damgéard, 1., Keller, M., Larraia, E., Miles, C., and
Smart, N. P. (2012a). Implementing AES via an Ac-
tively/Covertly Secure Dishonest-Majority MPC Pro-
tocol. In Security and Cryptography for Networks -
8th International Conference, {SCN} 2012, Amalfi,
Italy, September 5-7, 2012. Proceedings, pages 241—
263.

Damgard, L., Pastro, V., Smart, N., and Zakarias, S. (2012b).
Multiparty computation from somewhat homomor-
phic encryption. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics).

De Canniere, C. and Preneel, B. (2008). Trivium, pages
244-266. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Framner, E., Fischer-Hiibner, S., Loriinser, T., Alagra, A. S.,
and Pettersson, J. S. (2019). Making secret sharing
based cloud storage usable. Information and Com-
puter Security.

Grassi, L., Liiftenegger, R., Rechberger, C., Rotaru, D.,
and Schofnegger, M. (2019). On a Generalization
of Substitution-Permutation Networks: The HADES
Design Strategy. Cryptology ePrint Archive, Report
2019/1107.

Happe, A., Wohner, F., and Loriinser, T. (2017). The
Archistar Secret-Sharing Backup Proxy. ARES °17,
pages 88:1-88:8, New York, NY, USA. ACM.

Hastings, M., Hemenway, B., Noble, D., and Zdancewic, S.
(2019). SoK: General Purpose Compilers for Secure
Multi-Party Computation. In 2019 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 479-496,
Los Alamitos, CA, USA. IEEE Computer Society.

Keller, M. (2019). Multi-Protocol ~ SPDZ.
https://github.com/data61/MP-SPDZ, accessed
2020-04-28.

Pinkas, B., Schneider, T., Smart, N. P., and Williams, S. C.
(2009). Secure Two-Party Computation Is Practical.
In Advances in Cryptology - ASIACRYPT 2009, Tokyo,
Japan, December 6-10, 2009. Proceedings, volume
5912 of Lecture Notes in Computer Science, pages
250-267. Springer.

Rechberger, C., Soleimany, H., and Tiessen, T. (2018).
Cryptanalysis of Low-Data Instances of Full
LowMCv2. {IACR} Trans. Symmetric Cryptol.,
2018(3):163-181.

Schoenmakers, B. (2018). MPyC—Python Package for Se-
cure Multiparty Computation. In Theory and Prac-
tice of Multi-Party Computation 2018 - TPMPC 2018,
Aarhus.

Sell, L., Pohls, H. C., and Lorunser, T. (2018). C3S: Cryp-
tographically combine cloud storage for cost-efficient
availability and confidentiality. In CloudCom 2018.

