
Software Similarity Patterns and Clones: A Curse or Blessing?

Stan Jarzabek
Bialystok University of Technology, Faculty of Computer Science, Bialystok, Poland

Keywords: Software Clones, Generic Design, Software Maintainability and Reusability, Software Complexity.

Abstract: Similarities are inherent in software. They show as software clones – similar code fragments, functions,
classes, source files, and bigger program structures spreading through software systems in multiple variant
forms. Often, these recurring program structures represent important concepts from software requirements
or design spaces. Interestingly, despite potential benefits, avoiding many of such redundancies is often
either impossible or would require developers to compromise important design goals. In this paper, I discuss
software similarity phenomenon, its sources, the many roles clones play in programs, the software
productivity benefits that can be gained by avoiding clones, and difficulties to realize these benefits with
conventional programming languages and design techniques. I point to generative techniques as a promising
approach to address software redundancy problems.

1 INTRODUCTION1

Much similarity within and across programs creates
potential for program simplification and reuse. The
extent to which similar program structures
deliberately spread through programs indicates that
this potential may not be fully exploited. The main
theme of this paper is software similarity
phenomenon and its manifestation in programs as
software clones, in relation to program
simplification, understanding, changeability and
reuse.

Similarity patterns arise in both problem domain
and program solution spaces. If not tackled,
similarities show as program structures repeated
many times within a program or across programs.
We observe similar program structures of various
types and granularity such as architectural patterns
of components, patterns of collaborating classes,
similar classes, source files, or code fragments.
Recurring program structures are termed as software
clones. Clone detection, analysis and visualization
has been an active area of research in last two
decades, e.g., see survey (Muhammad, et al., 2020).

1 This study was supported by a grant S/WI/2/2018 from
Bialystok University of Technology and founded from the
resources for research by Ministry of Science and Higher
Education

In a number of studies, my team at the National
University of Singapore (NUS) observed that
extensive cloning sometimes occurred due to the
lack of strong enough generic design mechanisms
that would allow programmers to avoid repetitions
without compromising other engineering goals that
mattered to them. Much redundancy is common in
old, heavily maintained programs. However, we
found much cloning also in newly developed
programs that, in our judgment, were well designed
in view of their design goals and technology used.

As many of these recurring program structures
represented important concepts from software
requirements or design spaces, these observations
seemed to point to some interesting and may be
fundamental issue, worth investigation. In follow up
research, my team developed a clone detection tool
called Clone Miner (Basit and Jarzabek, 2009) that
allowed us to find and study large-granular clones
(Kumar et al., 2016) in addition to similar code
fragments. We also developed an Adaptive Reuse
Technology, ART2 for representing groups of cloned
code structures with parameterized, generic,
adaptable, therefore, reusable meta-components. We
applied these tools in projects across a wide range of
application domains and programming platforms,
observing consistently 50%-90% levels of
redundancies. In this paper, I summarize our

2 Adaptive Reuse Technology, http://art-processor.org

Jarzabek, S.
Software Similarity Patterns and Clones: A Curse or Blessing?.
DOI: 10.5220/0009820000050017
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 5-17
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

5

findings, with references to relevant publications. A
detailed discussion of our earlier projects can be also
found in a monograph (Jarzabek, 2007).

Generic design can help avoid redundancies,
reducing conceptual complexity, as well as the
physical size of programs. STL (Musser and Saini,
1996) is a premier example of engineering benefits
of generic design in the domain of data structures.
However, in many other domains the potential of
similarity patterns for program simplification and
reuse remains often untapped. Software Product
Line SPL approach (Clements and Northrop, 2002)
attempts to address the problem at the architecture-
component level. As it is often the case, “the devil is
hidden in detail”, and we need much finer level
variability management mechanism to tackle
redundancies and fully reap their potential for
program simplification and reuse.

In this paper, I share experiences from my
research on clones. In the remaining sections, I
discuss the multi-faceted nature of software
redundancy, software clone definition, the reasons
why clones occur in programs, their impact on
software development and maintenance, productivity
benefits that can be gained by avoiding clones, and
difficulties to realize these benefits with
conventional programming languages and design
techniques.

2 DEFINING CLONES

Software similarity is a multi-faceted phenomenon
that escapes precise definition. The notion of
similarity changes depending on the context:
Whether or not we consider two code structures as
similar depends on what we want to do with them.

We can characterize clones that are likely to
meet our goals by metrics such as the minimum size
of clones, the percentage of common code among
clones (Kamiya et al., 2002), or the editing distance
(Levenhstein, 1966) among clones, measured in
terms of editing operations required to convert one
text fragment to another.

We introduce clones informally as follows: Two
program structures of considerable size are clones of
each other if they meet a certain user-defined
threshold of similarity measure. The required size
and similarity threshold are subjective, vary with
context, and therefore must be set by a programmer
to meet goals of a specific clone analysis exercise.

Most of the interesting clones are similar but not
identical. Differences among clones result from
changes in their intended behaviour, and from

dependencies on the specific program context in
which clones are embedded (such as different names
of referenced variables, methods called, or platform
dependencies).

Clones may or may not represent program
structures that perform well-defined functions.
Considering their form and size, we distinguish two
types of clones, namely:
 simple clones: similar segments of contiguous

code such as program functions or any code
fragments (Ducasse, 1999)(Kamiya et al., 2002)

 structural clones: patterns of inter-related
components/classes emerging from design and
analysis spaces, or from design solutions
repeatedly applied by programmers (Basit and
Jarzabek, 2005)(Basit and Jarzabek, 2009).
Examples include design patterns (Gamma et
al., 1995), analysis patterns (Fowler, 1997)
enterprise patterns using .NET™, core J2EE™
patterns, and so-called “mental templates”
(Baxter et al., 1998).

Figure 1: Simple clones.

CreateStaff.BL
validateStaff()

Staff.DB
addStaff()
Staff Table

Project.DB
addProject()
Project Table

CreateProject.BL
validateProject()

CreateStaff CreateProject

CreateStaff .UI
createStaff()

CreateProject.UI
createProject()

Product.DB
addProduct()
Product Table

CreateProduct.BL
validateProduct()

CreateProduct

CreateProduct.UI
createProduct()

Level 1

Level 2

Level 3

Figure 2: Structural clones.

Figure 1 and Figure 2 show intuitive examples of
simple and structural clones. Three code fragments
(a1,a2,a3) in Figure 1 differ in code details
highlighted in bold. We can consider them as simple
clones of each other, provided they meet a user-
defined similarity threshold.

Figure 2 shows three structures implementing
features CreateStaff, CreateProject,
CreateProduct in a web portal for project
management. Boxes are PHP files implementing
user interface (at the top), business logic (in the

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

6

middle), and database aspects of respective features.
Each of the files consists of PHP functions.
Functions across files at each level (UI, BL and DB)
are similar to each other forming simple clones such
as shown in Figure 1. As PHP files are densely
covered by clones, we consider files at each level as
similar (abstraction step). As there is a calling
relation among functions in respective PHP files, the
three structures form a collaborative structural clone
class. We conclude that features CreateStaff,
CreateProject, and CreateProduct are
similar to each other (abstraction step).

Clone detection techniques (Basit and Jarzabek,
2009)(Baxter et al., 1998)(Ducasse et al.,
1999)(Kamyia et al., 2002) can automate finding
clones in programs, and refactorings (Fowler, 1999)
can help us to free programs from some clones. At
times, clone elimination may be hindered by risks
involved in changing programs (Cordy, 2003), or by
other design goals that conflict with refactorings
(Jarzabek and Li, 2003)(Kim et al., 2004).

3 SOFTWARE SIMILARITY
PHENOMENON

3.1 Reasons for Cloning

Whether clones are good or bad it all depends on the
motivation for cloning, the role clones play in a
program, and the perspective from which we judge
the impact of clones.

Similarities stem from different sources,
depending on the nature of an application domain
and design techniques used. Therefore, the form of
clones, as well as reasons why they are there, vary
across different program situations. Poor design and
ad hoc maintenance are the two often-mentioned
reasons for cloning. Such repetitions can often be
avoided with good design or refactored.

Despite the benefits of non-redundancy, at times,
cloning is done in a good cause. With copy-paste-
modify practice, we can speed up development,
achieving quick productivity gains. Developers also
duplicate code to improve program performance or
reliability. Such repetitions are intentional and
should not be eliminated from a program even if a
suitable refactoring could do the job. In maintenance
of legacy software, changes involved in refactoring
clones may create risks that are unacceptable for
business reasons (Cordy, 2003) – it is safer to
maintain own piece of code rather than a generic
solution shared with other developers who may also

be changing the same functionality. (Kapser and
Godfrey, 2006) discuss a number of situations that
justify cloning. Developers may choose to live with
repetitions, as the lesser of the two evils, for variety
of such reasons.

Modern component platforms (such as JEE™ or
.NET™) encourage architecture-centric, pattern-
driven design that naturally induces much
redundancy to programs. Patterns lead to beneficial
standardization of program solutions and are basic
means to achieve reuse of common service
components. Standardization of program solutions
has many benefits, and creates an interesting case for
our discussion of clones. At times IDEs support
application of major patterns, or programmers use
manual copy-paste-modify to apply yet other
patterns. Representing patterns in generic form and
enhancing their visibility can be beneficial, as it
reveals a simpler view of a program. With generic
pattern representation, we can provide better support
for pattern instantiation and injection of pattern
instances into a software system under construction.
Generic design can help us avoid explosion of look-
alike program structures, pattern instances. The
knowledge of the location of pattern instances and
the exact differences among them is helpful in
understanding, maintenance and reuse.

Yet other repetitions occur because avoiding
them with conventional approaches is either
impossible or would require developers to
compromise other important design goals. Kim
estimates that 34% of clones cannot be refactored
(Kim, 2004). This type of unavoidable repetitions is
of our primary interest in this paper. We pay special
attention to large-granularity program structures
(Kumar et al., 2016), signifying important design
concepts, recurring many times in variant forms,
whose noticing may bring significant engineering
benefits.

Summarizing the above discussion, we classify
clones into the following categories:

1. Desirable. Such clones are useful at runtime
(e.g., for performance or reliability) and cannot
be eliminated from programs. Intentional clones
induced by an implementation technique (e.g.,
by J2EE or .NET architecture and patterns) also
belong to this category.

2. Avoidable. These clones are caused by the
programmer’s carelessness. For example,
similar code fragments introduced by poor
design or ad hoc copy-paste-modify practice
during maintenance often fall into this category.

Software Similarity Patterns and Clones: A Curse or Blessing?

7

3. Problematic. These are all the clones that are
not desirable but are difficult to avoid using
conventional design techniques, without
compromising important design goals. As the
name suggests, nothing definite can be said
about problematic clones. They are relative to
design techniques and design goals. Despite
their enigmatic nature, we find the concept
useful in discussing cloning problems. Most of
the clones discussed in the Buffer library case
study belong to this category.

Katsuro Inoue, one of the precursors of software
clone research, is an author of CCFinder (Kamiya et
al., 2002), a clone detection tool used by thousands
of software companies in Japan and world-wide for
software quality assessment (Yamanaka et al.,
2012). They consider the extent of cloning as one of
the important indicators to estimate the expected
maintenance cost in outsourcing software
maintenance. The relation between cloning and the
cost of changing programs can be explained as
follows: Even if clones are created with good
intentions, most of the clones increase the risk of
update anomalies, and hinder program
understanding during the maintenance in at least,
two ways: (1) a programmer must maintain more
code than he/she would have to maintain should the
clones be removed, and (2) when one logical source
of change affects many instances of a replicated
program structure scattered throughout a program, to
implement a change, a programmer must find and
update all the instances of the replicated structure.
The situation is further complicated if instances of
an affected program structure must be changed in
slightly different ways, depending on the context.

3.2 How Much Cloning?

In controlled lab experiments and industrial projects,
we typically observed 50%-90% rates of repetitions
in newly developed, well-designed programs. Our
studies covered a range of application domains
(business systems, Web Portals, command and
control, mobile device applications, class libraries),
programming languages (Java, C++, C#, JSP, PHP)
and platforms (J2EE, .NET, Unix, Windows). For
example, the extent of similarities in Java Buffer
library was 68% (Jarzabek and Li, 2003), in parts of
STL (C++) - over 50% (Basit et al., 2005), in Web
Portal (J2EE) – 68% (Yang and Jarzabek, 2006), and
in certain .NET Web Portal modules – up to 90%
(Pettersson and Jarzabek, 2005). A survey of 17
Web Applications revealed 17-60% of code
contained in clones (Rajapakse and Jarzabek, 2005).

We measured the percentage of redundancies by
comparing the subject program against a non-
redundant representation for the subject program
built with ART outlined later in this paper. Not
always does size reduction lead to program
simplification. However, we focused only on
repetitions that created reuse opportunities, induced
extra conceptual complexity into a program, and/or
were counter-productive for maintenance.

Other studies revealed lower, but still substantial
rates of repetitions, 20%-30% (Kim et al., 2004),
and indicated that 49%-64% of clones “were not
easily refactorable due to programming language
limitations”. It is important to note that these other
studies focus only on cloned code fragments, while
our notion of similarity and studies cover large-
granularity program structures, that may involve, for
example, patterns of collaborating components
recurring in variant forms.

4 GENERIC DESIGN

Generic design aims at achieving non-redundancy
by unifying differences among similar program
structures. The importance of generic design in
managing software complexity have been
recognized for long. Macros were one of the early
attempts to parameterize programs and make them
more generic. (Gougen, 1984) popularized ideas of
parameterized programming. Among programming
language constructs, type parameterization (called
generics in Ada, Eiffel, Java and C#, and templates
in C++), higher-order functions, iterators, and
inheritance can help avoid repetitions in certain
situations (Garcia et al., 2003). Design techniques
such as design patterns (Gamma et al., 1995), table-
driven design, and information hiding are supportive
to building generic programs.

There are three engineering benefits of generic
design (and three reasons to avoid unnecessary
repetitions): Firstly, genericity is an important theme
of software reuse where the goal is to recognize
similarities to avoid repetitions across projects,
processes and products. Indeed, many repetitions
merely indicate unexploited reuse opportunities.
Secondly, repetitions hinder program understanding.
Repeated similar program structures cause update
anomalies complicating maintenance. Thirdly, by
revealing design-level similarities, we reduce the
number of distinct conceptual elements a
programmer must deal with. Not only do we reduce
an overall software complexity, but also enhance
conceptual integrity of a program which Brooks

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

8

calls “the most important consideration in system
design” (Brooks, 1986). Common sense suggests
that developers should be able to express their
design and code without unwanted repetitions,
whenever they wish to do so.

5 REDUNDANCIES IN STL

STL (Musser, 1996) is a classical and powerful
example of what skilful generic design can do for
complexity reduction. STL implements commonly
used algorithms, such as sort or search, for a variety
of container data structures. Without generic
containers and algorithms, the STL’s size and
complexity would be enormous, hindering its
evolution. Such simple-minded solution would
unwisely ignore similarity among containers, and
among algorithms applied to different containers,
which offers endless reuse opportunities. Generic
design with templates and iterators helped STL
designers to avoid these complications, without
compromising efficiency.

Figure 3: Associative container features (STL).

In STL, generic solutions are mainly facilitated
by templates and iterators. We analysed associative
containers - variable-sized containers that support
efficient retrieval of elements based on keys. Figure
3 shows variant features of associative containers.
There are eight STL templates, one for each of the
eight legal combinations of features.

We focused on the STL regions that showed
high cloning rates. We ran a clone detector to
identify these regions. We found that container
classes displayed a remarkable amount of similarity
and code repetition. Four ‘sorted’ associative
containers and four ‘hashed’ associative containers
could be unified into two generic ART containers,
achieving 57% reduction in the related code. Stack
and queue classes contained 37% of cloned code.
Algorithms set union, set intersection, set difference,
and set symmetric difference (along with their
overloaded versions) formed a clone class with eight
instances. On overall, non-redundant representation

of these parts of STL in ART contained 48% of code
found in the original STL (Basit et al., 2005).

There were many non-type-parametric
differences among associative container templates.
For example, certain otherwise similar methods,
differed in operators or algorithmic details. While it
is possible to treat many types of non-parametric
differences using sophisticated forms of C++
template meta-programming, often the resulting
code becomes “cluttered and messy” (Czarnecki and
Eisenecker, 2000). We did not spot such solutions in
STL, and believe their practical value needs to be
further investigated.

The reader may find full details of the STL case
study in (Basit et al., 2005).

6 REDUNDANCIES IN THE JAVA
BUFFER LIBRARY

A buffer contains data in a linear sequence for
reading and writing. Buffer classes differ in features
such as a memory scheme: Heap or Direct; element
type: byte, char, int, double, float, long, or short;
access mode: writable or read-only; byte ordering: S
– non-native or U – native; B – BigEndian or L –
LittleEndian.

Each legal combination of features yields a
unique buffer class, with much similarity among
classes. As we combine features, buffer classes grow
in number, as observed in (Batory et al., 1993).
Some of the buffer classes are shown in Figure 4. A
class name, such as DirectIntBufferRS, reflects
combination of features implemented into a given
class. Class names are derived from a template:
[MS][T]Buffer[AM][BO], where MS – memory
scheme: Heap or Direct; T – type: int, short, float,
long double, char, or byte; AM – access mode: W –
writable (default) or R - read-only; BO – byte
ordering: S – non-native or U – native; B –
BigEndian or L – LittleEndian. All the classes
whose names do not include ‘R’, by default are ‘W’
– writable. VB – View Buffer is yet another feature
that allows us to interpret byte buffer as Char, Int,
Double, Float, Long, or Short. Combining VB with
other features, yields 24 classes
ByteBufferAs[T]Buffer[R][B|L]. The last parameter
[B|L] means “B or L”.

The experiment covered 74 buffer classes that
contained 6,719 LOC (physical lines of code,
without blanks or comments). We identified seven
groups of similar classes where each group
comprised 7-13 classes:

Software Similarity Patterns and Clones: A Curse or Blessing?

9

1. [T]Buffer: 7 classes at Level 1 that differ in
buffer element type, T: int, short, float, long
double, char, or byte

2. Heap[T]Buffer: 7 classes at Level 2, that differ in
buffer element type, T

3. Heap[T]BufferR: 7 read-only classes at Level 3

4. Direct[T]Buffer[S|U]: 13 classes at Level 2 for
combinations of buffer element type, T, with byte
orderings: S – non-native or U – native byte
ordering (notice that byte ordering is not relevant
to buffer element type ‘byte’)

5. Direct[T]BufferR[S|U]: 13 read-only classes at
Level 3 for combinations of parameters T, S and
U, as above

6. ByteBufferAs[T]Buffer[B|L]: 12 classes at Level
2 for combinations of buffer element type, T,
with byte orderings: B – Big_Endian or L –
Little_Endian

7. ByteBufferAs[T]BufferR[B|L]: 12 read-only
classes at Level 3 for combinations of parameters
T, B and L, as above.

Classes in each of the above seven groups
differed in details of method signatures, data types,
keywords, operators, and editing changes. We paid
attention only to similarities whose noticing could
simplify class understanding and help in
maintenance. Some of the classes had extra methods
and/or attributes as compared to other classes in the
same group. Many similar classes or methods
occurred due to the inability to unify small
variations in otherwise the same classes or methods.
Generics could unify 15 among 74 classes under
study, reducing the code size by 27%. The solution
with generics was subject to certain restrictions that
we discussed in (Jarzabek and Li, 2006).

So why did Buffer library designers chose to
keep redundancies?

Any solutions to unifying similarities must be
considered in the context of other design goals
developers must meet. Usability, conceptual clarity
and good performance are important design goals for
the Buffer library. To simplify the use of the Buffer
library, the designers decided to reveal to
programmers only the top eight classes (Figure 4).
For conceptual clarity, designers of the Buffer
library decided not to multiply classes beyond what
was absolutely needed. We see almost one-to-one
mapping between legal feature combinations and
buffer classes.

In many situations, designers could introduce a
new abstract class or a suitable design pattern to
avoid repetitions. However, such a solution would
compromise the above design goals, and therefore
was not implemented. Many similar classes or
methods were replicated because of that.

Many similarities in buffer classes sparked from
feature combinations. As buffer features (such as
element type, memory scheme, etc.) could not be
implemented independently of each other in separate
implementation units (e.g., class methods), code
fragments related to specific features appeared with
many variants in different classes, depending on the
context. Whenever such code could not be
parameterized to unify the variant forms, and placed
in some upper-level class for reuse via inheritance,
similar code structures spread through classes.

Method hasArray() shown in Figure 5 illustrates
a simple yet interesting case. This method is
repeated in each of the seven classes at Level 1.
Although method hasArray() recurs in all seven
classes, it cannot be implemented in the parent class
Buffer, as variable hb must be declared with a
different type in each of the seven classes. For

Figure 4: A fragment of the Buffer library.

Buffer

DoubleBufferByteBuffer CharBuffer IntBuffer FloatBuffer LongBuffer ShortBuffer

MappedByteBuffer

HeapByteBuffer

DirectByteBuffer

HeapCharBuffer

DirectCharBufferS

DirectCharBufferU

HeapIntBuffer

DirecIntBufferS

DirectIntBufferU

HeapByteBuffeR

DirectByteBufferR

HeapCharBufferR

DirectCharBufferRS

DirectCharBufferRU

HeapIntBufferR

DirecIntBufferRS

DirectIntBufferRU

Level 1

Level 2

Level 3

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

10

example, in class ByteBuffer the type of variable hb
is byte and in class IntBuffer, it is int.

Figure 5: Recurring method hasArray().

One could presume that type parameterization,
JDK 1.5 supports generics, should have a role to
play in unifying parametric differences among
similar classes. However, generics have not been
applied to unify similarity patterns described in our
study. Groups of classes that differ only in data type
are obvious candidates for generics. There are three
such groups comprising 21 classes, namely
[T]Buffer, Heap[T]Buffer and Heap[T]BufferR.
In each of these groups, classes corresponding to
Byte and Char types differ in non-type parameters
and are not generics-friendly. This leaves us with 15
generics-friendly classes whose unification with
three generics eliminates 27% of code. There is,
however, one problem with this solution. In Java,
generic types cannot be primitive types such as int or
char. This is a serious limitation, as one has to create
corresponding wrapper classes just for the purpose
of parameterization. Wrapper classes introduce extra
complexity and hamper performance. Application of
generics to 15 buffer classes is subject to this
limitation.

Figure 6: Method slice().

Repetitions often arise due to the inability to
specify small variations in otherwise identical code
fragments. Many similar classes and methods differ
in parameters representing constants, keywords or
algorithmic elements rather than data types. This
happens when the impact of various features affects
the same class or method. For example, method
slice() (Figure 6) recurs 13 times in all the
Direct[T]Buffer[S|U] classes with small changes

highlighted in bold in. Generics are not meant to
unify this kind of differences in classes.

In summary, generics are rather limited in
unifying similarity patterns that we find in practical
situations, e.g., such as we observed in the Buffer
library. It is interesting to note that repetitions occur
across classes at the same level of inheritance
hierarchy, as well as in classes at different levels of
inheritance hierarchy. Programming languages do
not have a proper mechanism to handle such
variations at an adequate (that is a sufficiently small)
granularity level. Therefore, the impact of a small
variation on a program may not be proportional to
the size of the variation.

Developers of the Buffer library used macros,
scripts and makefiles in order to exploit similarities
and write/maintain buffer classes with less effort
(these macros and scripts can be found in the
Community Source Release for the Buffer library).
While the reasons why Sun developers escaped to
non-OO solution and the solution itself are not
explained or documented, its existence hints at
difficulties to treat similarity patterns with
conventional OO techniques, given the overall
design goals the Buffer library had to meet.

7 TOWARDS
NON-REDUNDANCY

While practitioners are aware of much repetitions in
software, they also know how difficult it is to avoid
them. Problems with implementing effective reuse
strategies (Deelstra et al., 2000) evidence these
difficulties, as well.

It is not clear if and how we could implement
buffer classes without redundancies in any of the
conventional programming languages. A possible
solution calls for flexible parametrization
unconstrained by the rules of a programming
language. It is as if our need to express program
behaviour was in conflict with our need to achieve
non-redundancy. To resolve this conflict, generative
approaches propose to think about programs at two
levels: a meta-level that provides a platform for
program construction, and a level of actual program
that is compiled and executed. Program generation
technologies offer solutions for specific application
domains, with abstract notations to specify required
program behaviour (a meta-level), and a generator
that encodes the semantics of a given application
domain, and generates a program ready for
execution. Quite often much redundancy can be

/* Tells whether or not this buffer is backed by
 an accessible byte array. */
public final boolean hasArray() {
return (hb != null) && !isReadOnly; }

/*Creates a new byte buffer containing a shared
 subsequence of this buffer's content. */
public ByteBuffer slice() {
 int pos = this.position();
 int lim = this.limit();
 assert (pos <= lim);
 int rem = (pos <= lim ? lim - pos : 0);
 int off = (pos << 0);
 return new DirectByteBuffer(this, -1, 0, rem,
 rem, off); }

Software Similarity Patterns and Clones: A Curse or Blessing?

11

avoided in abstract program specifications. We
comment further on generation approaches in the
following section, and here we outline a general-
purpose solution to non-redundancy, based on
flexible parameterization at the meta-level, and code
manipulation in pre-processing fashion. We explain
the solution in a way that ART (Adaptive Reuse
Technology) implements these concepts.

On the left-hand-side of Figure 7, we see a non-
redundant meta-level representation of buffer

classes. Boxes are ART templates that represent
building blocks for Buffer classes. As such, they
contain relevant Java code instrumented
(parameterized) with ART commands. The purpose
of parameterization is to enable reuse of ART
templates in multiple contexts of the situations when
a given functionality is need for building buffer
classes. ART Processor interprets ART commands
embedded in templates and generates buffer classes
on the right-hand-side of Figure 7.

hasArray()

attribute declarations

slice()

Heap[T]Buffer.s[T]Buffer.s

[T]Buffer.gen Heap[T]Buffer.gen

SPC

generic classes

class specifications

generic methods

Buffer specifications

method fragmentgeneric fragments

ART Processor
IntBuffer

ByteBuffer

CharBuffer

Java buffer classes

…

…

ART template framework

Figure 7: Non-redundant representation of Buffer classes in ART/Java.

SPC // specifies how to generate all the buffer classes
#set elmtType = Int, Short, Float, Long, Double, Char, Byte
#set type = int, short, float, long double, char, byte
#set elmntSize = 0, 1, 3, 2, 2, 3, 1
#adapt [T]Buffer.s
#adapt Heap[T]Buffer
…
#adapt ByteBufferAs[T]BufferR[B|L]

[T]Buffer.s // specifies how to generate 7 [T]Buffer classes
#while elmtType, type, elmntSize

#select option = elmtType
#option Byte

#adapt [T]Buffer.gen
#insert moreMethods

#adapt methodsForByteBuffer.x
#option Char

#adapt [T]Buffer.gen
#insert toString

Public String toString()
{ return toString(position(), limit()); }

#otherwise
#adapt [T]Buffer.gen

#/select
#/while

[T]Buffer.gen outfile @elmtTypeBuffer.java
// a generic [T]Buffer class
package @packageName;
public abstract class @elmtTypeBuffer extends
Buffer implements Comparable
#adapt commonAttributes.gen
#break moreAttributes
#adapt commonMethods.gen
#break moreMethods
#break toString

public String toString() {
StringBuffer sb = new StringBuffer();
sb.append(getClass().getName());
etc.
return sb.toString(); } }

#break

commonMethods.gen // generic representation of methods
common to [T]Buffer and may be yet other classes, e.g.,
public static @elmtTypeBuffer wrap(@type[] array) {

return wrap(array, 0, array.length); }

methodsForByteBuffer.x // methods specific to ByteBuffer only
public static ByteBuffer allocateDirect(int capacity)
{ return new DirectByteBuffer(capacity); }

Figure 8: Non-redundant representation for seven [T]Buffer classes in Java/ART (partial).

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

12

An arrow between two templates: X → Y is read
as “X adapts Y”, meaning that X controls adaptation
of Y. We have seven generic class templates, one
for each of the seven groups of similar classes
described in Section 6 (we show only two of them in
Figure 7). Each class template defines common part
of classes in the respective group. The essence of a
generic component (generic class, in our case) is that
it can be adapted to produce its instances (specific
classes in a group, in our case). Smaller granularity
generic building blocks for classes are defined
below, namely class methods and fragments of
method implementation or attribute declaration
sections. Therefore, lower-level templates are
composed, after possible adaptations, to construct
required instances of higher-level generic
components. At the top, we have specification
elements – they tell the ART Processor how to
generate specific buffer classes, from templates.
Top-most SPC, sets up global parameters and
exercises the overall control over the generation
process.

ART Processor interprets the template
framework starting from the SPC, traverses
templates below, adapting visited templates and
emitting buffer class code. By varying
specifications, we can instantiate the same template
framework in different ways, deriving different, but
similar, program components from it.

We now explain the parameterization and
adaptation mechanism, which is the “heart and soul”
of how ART achieves goals of non-redundancy:

ART variables and expressions provide a basic
parameterization mechanism to make templates
generic. #set command assigns a value to a variable.
Typically, names of program elements manipulated
by ART, such as components, source files, classes,
methods, data types, operators or algorithmic
fragments, are represented by ART expressions.
Such expressions are then instantiated by the ART
Processor, according to the context. For example,
names and other parameters of the seven similar
classes [T]Buffer are represented by ART
expressions in the a template [T]Buffer.gen.

ART variables have global scope, so that they
can coordinate chains of all the customizations
related to the same source of variation or change that
spans across multiple templates. During processing
of templates, values of variables propagate from an
template where the value of a variable is set, down
to the lower-level templates. While each template
usually sets default values for its variables, values
assigned to variables in higher-level templates take
precedence over the locally assigned default values.

Thanks to this overriding rule, templates become
generic and adaptable, with potential for reuse in
many contexts.

Other ART commands that help us design
generic and adaptable templates include #select,
#insert into #break and #while. We use #select
command to direct processing into one of the many
pre-defined branches (called options), based on the
value of a variable. With #insert command, we can
modify templates at designated #break points in
arbitrary ways. ART expressions, #select and
#insert into #break are analogous to AOP’s
mechanism for weaving advices at specified join
points (Kiczales et al., 1997). The difference is that
ART allows us to modify templates in arbitrary
ways, at any explicitly designated variation points.

#while command iterates over template(s), with
each iteration generating similar, but also different,
program structures. A #select command in the
#while loop allows us to generate classes in each of
the seven groups discussed in Section 6.

Figure 8 illustrates how ART mechanisms
realize the scheme outlined in Figure 7.

ART template names, ART commands and
references to ART variables are shown in bold.
References to ART variables parameterize code. For
example, a reference to variable @elmtType is
replaced by the variable’s value during processing.
Figure 6 shows ART template for method slice()
from Direct[T]Buffer[S|U] classes. Values of
variables set in SPC reach all their references in
adapted ART templates. The value of variable
byteOrder is set to an empty string, “S” or “U”, in a
respective #set command placed in one of the ART
templates that #adapt’s ART template slice.gen (not
shown in our pictures).

The #while loop in [T]Buffer.s is controlled by
two multi-value variables, namely elmtType and
elmtSize. The i’th iteration of the loop uses i’th
value of each of the variables. In each iteration of
the loop, the #select command uses the current value
of elmtType to choose a proper #option for
processing.

Attribute outfile of [T]Buffer.gen defines the
name of a file where ART Processor will emit the
code for a given class.

Having set values for ART variables, SPC
initiates generation of classes in each of the seven
groups of similar classes via suitable #adapt
commands. ART template [T]Buffer.gen defines
common elements found in all seven classes in the
group. Five of those classes, namely DoubleBuffer,
IntBuffer, FloatBuffer, IntBuffer, and
LongBuffer differ only in type parameters (as in the

Software Similarity Patterns and Clones: A Curse or Blessing?

13

sample method wrap() shown in ART template
commonMethods.gen). These differences are
unified by ART variables, and no further
customizations are required to generate these five
classes from ART template [T]Buffer.gen. These
five classes are catered for in #otherwise clause
under #select. However, classes ByteBuffer and
CharBuffer have some extra methods and/or
attribute declarations. In addition, method toString()
has different implementation in CharBuffer than in
the remaining six classes. Customizations specific to
classes ByteBuffer and CharBuffer are listed in the
#adapt commands, under #option s Byte and Char,
respectively.

We refer the reader to (Jarzabek and Li,
2003)(Jarzabek and Li, 2006) for further the details
of this study.

A shorter program without redundancies does
not automatically mean that such a program is easier
to understand and maintain than a longer program
with redundant code. For example, compressed code
is short but impossible to read and understand. To
further support claims of easier maintainability of
the ART solution, we extended the Buffer library
with a new type of buffer element – Complex. Then,
we compared the effort involved in changing each of
the two solutions, Java classes and Java/ART
representation. Many classes must be implemented
to address the Complex element type, but in this
experiment we concentrated only on three of them,
namely ComplexBuffer, HeapComplexBuffer and
HeapComplexBufferR. In Java, class
ComplexBuffer could be implemented based on the
class IntBuffer, with 25 modifications that could be
automated by an editing tool, and 17 modifications
that had to be done manually. On the other hand, in
the ART representation, all the changes had to be
done manually, but only 5 modifications were
required. To implement class HeapComplexBuffer,
we needed 21 “automatic” and 10 manual
modifications in Java, versus 3 manual
modifications in ART. To implement class
HeapComplexBufferR, we needed 16 “automatic”
and 5 manual modifications in Java, versus 5 manual
modifications in ART.

8 CLONES IN WEB PORTALS

8.1 ASP.NET Portal

In the ASP Web Portal (WP) Product Line project,
our industry partner ST Electronics Pte. Ltd.,
Singapore, applied state-of-the-art conventional

methods to maximize reusability of a Team
Collaboration Portal (TCP). Still, a number of
problem areas were observed that could be improved
by applying ART to reduce redundancies. The
benefits of ASP/ART TCP were the following:
 Short time (less than 2 weeks) and small effort (2

persons) to transform the ASP TCP into the first
version of a mixed-strategy ASP/ART Product
Line architecture.

 High productivity in building new portals from
the ASP/ART solution. Based on the ASP/ART
solution, ST Electronics could build new portal
modules by writing as little as 10% of unique
custom code, while the rest of code could be
reused. This code reduction translated into an
estimated eight-fold reduction of effort required
to build new portals.

 Significant reduction of maintenance effort when
enhancing individual portals. The overall
managed code lines for nine portals under the
ASP/ART were 22% less than the original single
portal.

 Wide range of portals differing in a large number
of inter-dependent features supported by the
ASP/ART solution.
The reader may find full details of this project in

(Pettersson and Jarzabek, 2005).

8.2 JEE Portal

In the follow up project, we evaluated J2EE™ as a
platform for Product Line development. Unlike
ASP, J2EE supports inheritance, generics and other
OO features via Java.

Component platforms such as J2EE or .NET
encourage organizing software around standard
architectures. Patterns help programmers solve
routine tasks in pre-defined ways in conformance to
architectures. Application of patterns further
standardizes software at macro and micro levels. Not
surprisingly, we find much similarity in software
developed in that way. Such uniformity of software
structure is beneficial, as similar problems are
always solved in a similar way across a system. It
also facilitates easy reuse of common
services/components provided by a platform.
However, not always are pattern instances clearly
visible in code. Pattern-driven development could be
even more beneficial if we knew the exact location
of pattern instances and how instances are similar
and different one from each other. This would help
in the future maintenance: When the pattern-related
code is to be changed, it would be clear which of the
pattern’s instances should be changed and how.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

14

Currently, pattern-driven development is mainly
limited to the middleware areas such as database
communication, coordination between requests,
application model and views (e.g., implied by the
MVC organization) or reuse of common services. In
application domain-specific areas, the benefits of
patterns are less. At times, application of patterns
may even scatter domain-specific functionality
across many components (or classes), which
complicates reuse of domain-specific code, and
magnifies problems of tracing requirements to code.

In J2EE project, we applied ART to enhance the
visibility of patterns and to achieve reuse in
application domain-specific areas. We worked with
a portal developed by ST Electronics, a variant of
TCP. The portal supported collaborative work and
included 14 modules such as Staff, Project and Task.
We studied similarity patterns in presentation and
business logic layers.

Within modules, we found 75% of code
contained in exact clones, and 20% of code
contained in similar clones (leaving only 5% of code
unique). Analysis across modules, revealed design-
level similarities, with 40% of code contained in
structural clones. Both intra- and inter-module
similarities were important for clarity of the design,
however they could not be unified with generic
design solutions expressed by J2EE mechanisms.

In the second part of the experiment, we applied
ART to unify similarity patterns. Unification
reduced the solution size by 61%, and enhanced the
clarity of portal’s conceptual structure as perceived
by developers. In a controlled experiment, we found
that to implement the same enhancement, J2EE/ART
portal representation required 64% less
modifications that the original J2EE portal.

The reader may find full details of this project in
(Yang and Jarzabek, 2006).

9 GENERATORS

Powerful domain-specific solutions can be built by
formalizing the domain knowledge, and using
generation techniques to produce custom programs
in a domain. Advancements in modelling and
generation techniques led to Model-Driven
Engineering (MDE) (Schmidt, 2006), where
multiple, inter-related models are used to express
domain-specific abstractions. Models are used for
analysis, validation (via model checking), and code
generation. Platforms such as Microsoft Visual
Studio™ and Eclipse™ support generation of source
code using domain-specific diagrammatic notations.

By constraining ourselves to a specific
application domain, we can make assumptions about
its semantics. A domain engineer encodes domain-
specific knowledge into a generic, parameterized
program solution. A developer, rather than working
out all the details of the program solution, writes a
concise, declarative problem description in a
Domain-Specific Language (DSL). A generator uses
DSL specifications to instantiate parameters of a
generic solution to produce a custom program.
Problem specifications in DSL are much smaller and
simpler than the instantiated, complete and
executable program solution. While we do not
reduce the overall program complexity, generation-
based solutions shield a programmer from
complexities of the domain-specific code that is now
manipulated by a generator. DSL may take many
different forms, depending on a domain, from a
formal text (e.g., BNF for parser generator), to
visual interface (e.g., GUI) and to models (in Model-
Driven Engineering approaches).

This is in contrast with ART which is an
application domain- and programming language-
independent technique. There is no concept of DSL
in ART. Generators can be built in well-understood
and fairly stable application domains. On the other
hand ART, performs best in domains where frequent
changes occur at both large and small granularity
levels.

Generators must overcome a number of
challenges to have a greater impact on practice. A
common pitfall of generators is that abstract
program specifications in DSL can get easily
disconnected from the generated code. This happens
when the generated code is modified by hand to
accommodate changes not catered for by the DSL.
As any re-generation of code would override such
modifications, future maintenance must be done by
hand and developers can’t benefit from the generator
anymore. Round-trip engineering could overcome
this problem, but is difficult to achieve. This
problem is particularly acute in the situation when
we need to evolve multiple generated programs
differing in certain features, as it is often the case of
a Product Line. Implementing variant features in the
generator will propagate all the variant features to all
the programs, which may not be desirable. On the
other hand, implementing variant features directly
into generated programs that need them,
automatically disconnects those programs from the
generator.

Another problem faced by generators is that a
problem domain served by a generator is often only
a part of an overall programming problem

Software Similarity Patterns and Clones: A Curse or Blessing?

15

developers need to solve. Strategies for integrating
multiple domain-specific generators and embedding
them into systems implemented using yet other
techniques have yet to be developed. One of the
reason for success of compiler generators is that
compilation on its own is a self-contained domain.

Rich abstractions lead to powerful generators.
Without sufficient abstractions, there is not much we
can automate. We believe not enough of general-
purpose abstractions is the main reason why, despite
much research, we have not achieved success in
domain-independent, generation-based automatic
programming. This also reminds us Brooks’ doubts
about reducing essential program complexity by
means of abstraction (Brooks, 1986).

10 CONCLUSIONS

In the paper, I discussed a multi-faceted
phenomenon of software similarities. Starting with
software clone definition, I analysed common
reasons why clones occur in programs, their impact
on software development and maintenance, and
productivity benefits that can be gained by avoiding
clones. The core of the paper focused on
redundancies that, despite potential benefits, are
difficult to avoid with conventional programming
languages and design techniques. Finally, I
demonstrated a possible solution to avoiding such
redundancies with meta-level generative techniques.

ACKNOWLEDGEMENTS

Author thanks PhD students and research assistants
at the National University of Singapore who
developed clone detection tools, implemented ART
processor, and participated in studies on software
redundancies.

REFERENCES

Basit, A.H., Rajapakse, D. and Jarzabek, S. 2005. Beyond
Templates: a Study of Clones in the STL and Some
General Implications. In Int. Conf. Soft. Eng.,
ICSE’05, St. Louis, USA, May 2005, pp. 451-459

Basit, A.H. and Jarzabek, S. 2005. Detecting Higher-level
Similarity Patterns in Programs. In ESEC-FSE'05,
European Soft. Eng. Conf. and ACM SIGSOFT Symp.
on the Foundations of Soft. Eng., ACM Press,
September 2005, Lisbon, pp. 156-165

Basit, A.H. and Jarzabek, S. 2009. A data mining
approach for detecting higher-level clones. In IEEE
Trans. on Soft. Eng., 35(4): 497-514, 2009

Batory, D., Singhai, V., Sirkin, M. and Thomas, J. 1993.
Scalable software libraries.. In ACM SIGSOFT’93:
Symp. on the Foundations of Software Engineering,
Los Angeles, California, pp. 191-199

Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., and Bier,
L. 1998. Clone detection using abstract syntax trees. In
Proc. Int. Conf. Soft. Maintenance 1998, pp. 368–377

Brooks, F. 1995. The Mythical Man-Month, Addison
Wesley

Brooks, F.P. 1986. No Silver Bullet. 1986. In Proc. IFIP
10th World Computing Conference, H. K. Kugler, ed.,
Elsevier Science, pp. 1069-1076

Clements, P. and Northrop, L. 2002. Software Product
Lines: Practices and Patterns, Addison-Wesley

Cordy, J. R., 2003. Comprehending Reality: Practical
Challenges to Software Maintenance Automation. In
Proc. 11th IEEE Intl. Workshop on Program
Comprehension, pp. 196-206

Czarnecki, K. and Eisenecker, U., 2000. Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley

Deelstra, S., Sinnema, M. and Bosch, J., 2000.
Experiences in Software Product Families: Problems
and Issues during Product Derivation. Proc. Software
Product Lines Conf., SPLC3, Boston, pp/ 165-182

Ducasse, S., Rieger, M. and Demeyer, S. 1999. A
language independent approach for detecting
duplicated code. In Int. Conf. on Soft. Maintenance,
ICSM’99, Oxford, UK pp. 109-118

Fowler, M. 1997. Analysis Patterns: Reusable Object
Models, Addison-Wesley

Fowler M. 1999. Refactoring - improving the design of
existing code, Addison-Wesley

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995.
Design Patterns – Elements of Reusable Object-
Oriented Software, Addison-Wesley

Garcia, R. et al., 2003. A Comparative Study of Language
Support for Generic Programming. In Proc. 18th ACM
SIGPLAN Conf. on Object-oriented Prog., Systems,
Languages, and Applications, pp. 115-134.

Goguen, J.A. 1984. Parameterized Programming. IEEE
Trans. on Software Engineering, Vol. SE-10, No. 5,
pp. 528-543

Hammad, M. Basit, H., Jarzabek, S. and Koschke, R. A
Mapping Study of Clone Visualization. 2020.
Computer Science Review (accepted in final form)

Jarzabek, S. and Li, S. 2003. Eliminating Redundancies
with a “Composition with Adaptation” Meta-
programming Technique. In Proc. ESEC-FSE'03,
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Helsinki, pp. 237-246

Jarzabek, S. and Li, S. 2006. Unifying clones with a
generative programming technique: a case study. In
Journal of Software Maintenance and Evolution:
Research and Practice, John Wiley & Sons, Vol. 18,
Issue 4, pp. 267-292

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

16

Jarzabek, S. 2007. Effective Software Maintenance and
Evolution: Reused-based Approach, CRC Press Taylor
and Francis

Kamiya, T., Kusumoto, S., and Inoue, K. 2002. CCFinder:
A multi-linguistic token-based code clone detection
system for large scale source code. In IEEE Trans.
Software Engineering, 28(7): pp. 654-670

Kapser, C. and Godfrey M. 2006. “Cloning considered
harmful” considered harmful. In Working Conf. on
Software Reverse Engineering, WCRE, pp. 19-28
http://dx.doi.org/ 10.1007/s10664-008-9076-6

Kiczales, G, Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J-M., Irwin, J. 1997. Aspect-
Oriented Programming. In Europ. Conf. on Object-
Oriented Programming, Finland, Springer-Verlag
LNCS 1241, pp. 220-242

Kim, M., Bergman, L., Lau, T. and Notkin, D. 2004. An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL. In Proc. Int. Symposium on
Empirical Software Engineering , ISESE’04, Redondo
Beach, California, pp. 83-92

Kumar, K. Jarzabek. S. and Dan, D. 2016. Managing Big
Clones to Ease Evolution: Linux Kernel Example.
Federated Conference on Computer Science and
Information Systems, FedCSIS, 36th IEEE Soft. Eng.
Workshop, pp. 1767 – 1776

Levenshtein, V.I. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. In
Cybernetics & Control Theory 10-8, pp. 707-710

Musser, D. and Saini, A., 1996. STL Tutorial and
Reference Guide: C++ Programming with Standard
Template Library, Addison-Wesley

Pettersson, U., and Jarzabek, S. 2005. Industrial
Experience with Building a Web Portal Product Line
using a Lightweight, Reactive Approach. In ESEC-
FSE'05, European Soft. Eng. Conf. and ACM Symp. on
the Foundations of Soft. Eng., Lisbon, pp. 326-335

Rajapakse, D. and Jarzabek, S. 2005. An Investigation of
Cloning in Web Portals. In Int. Conf. on Web Eng,
ICWE’05, Sydney, pp. 252-262

Schmidt, D. 2006. Model-Driven Engineering. In IEEE
Computer, pp. 25-31

Zhang, H. and Jarzabek, S. 2004. A Mechanism for
Handling Variants in Software Product Lines. In
special issue on Software Variability Management,
Science of Computer Programming, Volume 53, Issue
3, pp. 255-436.

Yang, J. and Jarzabek, S. 2005. Applying a Generative
Technique for Enhanced Reuse on J2EE Platform. In
4th Int. Conf. on Generative Programming and
Component Engineering, GPCE'05, Tallinn, Estonia,
pp. 237-255

Yamanaka, Y., Choi, E., Yoshida, N., Inoue, K. and Sano,
T. 2012. Industrial Application of Clone Change
Management System. Proc. 6th Int. Workshop on
Software Clones, IWSC, pp.67-71.

Software Similarity Patterns and Clones: A Curse or Blessing?

17

