
Software Similarity Patterns and Clones: A Curse or Blessing?  

Stan Jarzabek 
Bialystok University of Technology, Faculty of Computer Science, Bialystok, Poland 

Keywords: Software Clones, Generic Design, Software Maintainability and Reusability, Software Complexity. 

Abstract: Similarities are inherent in software. They show as software clones – similar code fragments, functions, 
classes, source files, and bigger program structures spreading through software systems in multiple variant 
forms. Often, these recurring program structures represent important concepts from software requirements 
or design spaces. Interestingly, despite potential benefits, avoiding many of such redundancies is often 
either impossible or would require developers to compromise important design goals. In this paper, I discuss 
software similarity phenomenon, its sources, the many roles clones play in programs, the software 
productivity benefits that can be gained by avoiding clones, and difficulties to realize these benefits with 
conventional programming languages and design techniques. I point to generative techniques as a promising 
approach to address software redundancy problems.   

1 INTRODUCTION1 

Much similarity within and across programs creates 
potential for program simplification and reuse. The 
extent to which similar program structures 
deliberately spread through programs indicates that 
this potential may not be fully exploited. The main 
theme of this paper is software similarity 
phenomenon and its manifestation in programs as 
software clones, in relation to program 
simplification, understanding, changeability and 
reuse. 

Similarity patterns arise in both problem domain 
and program solution spaces. If not tackled, 
similarities show as program structures repeated 
many times within a program or across programs. 
We observe similar program structures of various 
types and granularity such as architectural patterns 
of components, patterns of collaborating classes, 
similar classes, source files, or code fragments. 
Recurring program structures are termed as software 
clones. Clone detection, analysis and visualization 
has been an active area of research in last two 
decades, e.g., see survey (Muhammad, et al., 2020).  

                                                                                                 
1 This study was supported by a grant S/WI/2/2018 from 
Bialystok University of Technology and founded from the 
resources for research by Ministry of Science and Higher 
Education 

In a number of studies, my team at the National 
University of Singapore (NUS) observed that 
extensive cloning sometimes occurred due to the 
lack of strong enough generic design mechanisms 
that would allow programmers to avoid repetitions 
without compromising other engineering goals that 
mattered to them. Much redundancy is common in 
old, heavily maintained programs. However, we 
found much cloning also in newly developed 
programs that, in our judgment, were well designed 
in view of their design goals and technology used.  

As many of these recurring program structures 
represented important concepts from software 
requirements or design spaces, these observations 
seemed to point to some interesting and may be 
fundamental issue, worth investigation. In follow up 
research, my team developed a clone detection tool 
called Clone Miner (Basit and Jarzabek, 2009) that 
allowed us to find and study large-granular clones 
(Kumar et al., 2016) in addition to similar code 
fragments. We also developed an Adaptive Reuse 
Technology, ART2 for representing groups of cloned 
code structures with parameterized, generic, 
adaptable, therefore, reusable meta-components. We 
applied these tools in projects across a wide range of 
application domains and programming platforms, 
observing consistently 50%-90% levels of 
redundancies. In this paper, I summarize our 
                                                                                                 
2 Adaptive Reuse Technology, http://art-processor.org 
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findings, with references to relevant publications. A 
detailed discussion of our earlier projects can be also 
found in a monograph (Jarzabek, 2007).  

Generic design can help avoid redundancies, 
reducing conceptual complexity, as well as the 
physical size of programs. STL (Musser and Saini, 
1996) is a premier example of engineering benefits 
of generic design in the domain of data structures. 
However, in many other domains the potential of 
similarity patterns for program simplification and 
reuse remains often untapped. Software Product 
Line SPL approach (Clements and Northrop, 2002) 
attempts to address the problem at the architecture-
component level. As it is often the case, “the devil is 
hidden in detail”, and we need much finer level 
variability management mechanism to tackle 
redundancies and fully reap their potential for 
program simplification and reuse.  

In this paper, I share experiences from my 
research on clones. In the remaining sections, I 
discuss the multi-faceted nature of software 
redundancy, software clone definition, the reasons 
why clones occur in programs, their impact on 
software development and maintenance, productivity 
benefits that can be gained by avoiding clones, and 
difficulties to realize these benefits with 
conventional programming languages and design 
techniques. 

2 DEFINING CLONES 

Software similarity is a multi-faceted phenomenon 
that escapes precise definition. The notion of 
similarity changes depending on the context: 
Whether or not we consider two code structures as 
similar depends on what we want to do with them.  

We can characterize clones that are likely to 
meet our goals by metrics such as the minimum size 
of clones, the percentage of common code among 
clones (Kamiya et al., 2002), or the editing distance 
(Levenhstein, 1966) among clones, measured in 
terms of editing operations required to convert one 
text fragment to another. 

We introduce clones informally as follows: Two 
program structures of considerable size are clones of 
each other if they meet a certain user-defined 
threshold of similarity measure.  The required size 
and similarity threshold are subjective, vary with 
context, and therefore must be set by a programmer 
to meet goals of a specific clone analysis exercise.  

Most of the interesting clones are similar but not 
identical. Differences among clones result from 
changes in their intended behaviour, and from 

dependencies on the specific program context in 
which clones are embedded (such as different names 
of referenced variables, methods called, or platform 
dependencies). 

Clones may or may not represent program 
structures that perform well-defined functions. 
Considering their form and size, we distinguish two 
types of clones, namely:  
 simple clones: similar segments of contiguous 

code such as program functions or any code 
fragments (Ducasse, 1999)(Kamiya et al., 2002) 

 structural clones: patterns of inter-related 
components/classes emerging from design and 
analysis spaces, or from design solutions 
repeatedly applied by programmers (Basit and 
Jarzabek, 2005)(Basit and Jarzabek, 2009). 
Examples include design patterns (Gamma et 
al., 1995), analysis patterns (Fowler, 1997) 
enterprise patterns using .NET™, core J2EE™ 
patterns, and so-called “mental templates” 
(Baxter et al., 1998).  

 

Figure 1: Simple clones. 
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Figure 2: Structural clones. 

Figure 1 and Figure 2 show intuitive examples of 
simple and structural clones. Three code fragments 
(a1,a2,a3) in Figure 1 differ in code details 
highlighted in bold. We can consider them as simple 
clones of each other, provided they meet a user-
defined similarity threshold.  

Figure 2 shows three structures implementing 
features CreateStaff, CreateProject, 
CreateProduct in a web portal for project 
management. Boxes are PHP files implementing 
user interface (at the top), business logic (in the 
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middle), and database aspects of respective features. 
Each of the files consists of PHP functions. 
Functions across files at each level (UI, BL and DB) 
are similar to each other forming simple clones such 
as shown in Figure 1. As PHP files are densely 
covered by clones, we consider files at each level as 
similar (abstraction step). As there is a calling 
relation among functions in respective PHP files, the 
three structures form a collaborative structural clone 
class. We conclude that features CreateStaff, 
CreateProject, and CreateProduct are 
similar to each other (abstraction step). 

Clone detection techniques (Basit and Jarzabek, 
2009)(Baxter et al., 1998)(Ducasse et al., 
1999)(Kamyia et al., 2002) can automate finding 
clones in programs, and refactorings (Fowler, 1999) 
can help us to free programs from some clones. At 
times, clone elimination may be hindered by risks 
involved in changing programs (Cordy, 2003), or by 
other design goals that conflict with refactorings 
(Jarzabek and Li, 2003)(Kim et al., 2004).  

3 SOFTWARE SIMILARITY 
PHENOMENON  

3.1 Reasons for Cloning 

Whether clones are good or bad it all depends on the 
motivation for cloning, the role clones play in a 
program, and the perspective from which we judge 
the impact of clones. 

Similarities stem from different sources, 
depending on the nature of an application domain 
and design techniques used. Therefore, the form of 
clones, as well as reasons why they are there, vary 
across different program situations. Poor design and 
ad hoc maintenance are the two often-mentioned 
reasons for cloning. Such repetitions can often be 
avoided with good design or refactored.  

Despite the benefits of non-redundancy, at times, 
cloning is done in a good cause. With copy-paste-
modify practice, we can speed up development, 
achieving quick productivity gains. Developers also 
duplicate code to improve program performance or 
reliability. Such repetitions are intentional and 
should not be eliminated from a program even if a 
suitable refactoring could do the job. In maintenance 
of legacy software, changes involved in refactoring 
clones may create risks that are unacceptable for 
business reasons (Cordy, 2003) – it is safer to 
maintain own piece of code rather than a generic 
solution shared with other developers who may also 

be changing the same functionality. (Kapser and 
Godfrey, 2006) discuss a number of situations that 
justify cloning. Developers may choose to live with 
repetitions, as the lesser of the two evils, for variety 
of such reasons. 

Modern component platforms (such as JEE™ or 
.NET™) encourage architecture-centric, pattern-
driven design that naturally induces much 
redundancy to programs. Patterns lead to beneficial 
standardization of program solutions and are basic 
means to achieve reuse of common service 
components. Standardization of program solutions 
has many benefits, and creates an interesting case for 
our discussion of clones. At times IDEs support 
application of major patterns, or programmers use 
manual copy-paste-modify to apply yet other 
patterns. Representing patterns in generic form and 
enhancing their visibility can be beneficial, as it 
reveals a simpler view of a program. With generic 
pattern representation, we can provide better support 
for pattern instantiation and injection of pattern 
instances into a software system under construction. 
Generic design can help us avoid explosion of look-
alike program structures, pattern instances. The 
knowledge of the location of pattern instances and 
the exact differences among them is helpful in 
understanding, maintenance and reuse. 

Yet other repetitions occur because avoiding 
them with conventional approaches is either 
impossible or would require developers to 
compromise other important design goals. Kim 
estimates that 34% of clones cannot be refactored 
(Kim, 2004). This type of unavoidable repetitions is 
of our primary interest in this paper. We pay special 
attention to large-granularity program structures 
(Kumar et al., 2016), signifying important design 
concepts, recurring many times in variant forms, 
whose noticing may bring significant engineering 
benefits. 

Summarizing the above discussion, we classify 
clones into the following categories: 

1. Desirable. Such clones are useful at runtime 
(e.g., for performance or reliability) and cannot 
be eliminated from programs. Intentional clones 
induced by an implementation technique (e.g., 
by J2EE or .NET architecture and patterns) also 
belong to this category. 

2. Avoidable. These clones are caused by the 
programmer’s carelessness. For example, 
similar code fragments introduced by poor 
design or ad hoc copy-paste-modify practice 
during maintenance often fall into this category.  
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3. Problematic. These are all the clones that are 
not desirable but are difficult to avoid using 
conventional design techniques, without 
compromising important design goals. As the 
name suggests, nothing definite can be said 
about problematic clones. They are relative to 
design techniques and design goals. Despite 
their enigmatic nature, we find the concept 
useful in discussing cloning problems. Most of 
the clones discussed in the Buffer library case 
study belong to this category. 

Katsuro Inoue, one of the precursors of software 
clone research, is an author of CCFinder (Kamiya et 
al., 2002), a clone detection tool used by thousands 
of software companies in Japan and world-wide for 
software quality assessment (Yamanaka et al., 
2012). They consider the extent of cloning as one of 
the important indicators to estimate the expected 
maintenance cost in outsourcing software 
maintenance. The relation between cloning and the 
cost of changing programs can be explained as 
follows: Even if clones are created with good 
intentions, most of the clones increase the risk of 
update anomalies, and hinder program 
understanding during the maintenance in at least, 
two ways: (1) a programmer must maintain more 
code than he/she would have to maintain should the 
clones be removed, and (2) when one logical source 
of change affects many instances of a replicated 
program structure scattered throughout a program, to 
implement a change, a programmer must find and 
update all the instances of the replicated structure. 
The situation is further complicated if instances of 
an affected program structure must be changed in 
slightly different ways, depending on the context. 

3.2 How Much Cloning? 

In controlled lab experiments and industrial projects, 
we typically observed 50%-90% rates of repetitions 
in newly developed, well-designed programs. Our 
studies covered a range of application domains 
(business systems, Web Portals, command and 
control, mobile device applications, class libraries), 
programming languages (Java, C++, C#, JSP, PHP) 
and platforms (J2EE, .NET, Unix, Windows). For 
example, the extent of similarities in Java Buffer 
library was 68% (Jarzabek and Li, 2003), in parts of 
STL (C++) - over 50% (Basit et al., 2005), in Web 
Portal (J2EE) – 68% (Yang and Jarzabek, 2006), and 
in certain .NET Web Portal modules – up to 90% 
(Pettersson and Jarzabek, 2005). A survey of 17 
Web Applications revealed 17-60% of code 
contained in clones (Rajapakse and Jarzabek, 2005). 

We measured the percentage of redundancies by 
comparing the subject program against a non-
redundant representation for the subject program 
built with ART outlined later in this paper. Not 
always does size reduction lead to program 
simplification. However, we focused only on 
repetitions that created reuse opportunities, induced 
extra conceptual complexity into a program, and/or 
were counter-productive for maintenance.  

Other studies revealed lower, but still substantial 
rates of repetitions, 20%-30% (Kim et al., 2004), 
and indicated that 49%-64% of clones “were not 
easily refactorable due to programming language 
limitations”. It is important to note that these other 
studies focus only on cloned code fragments, while 
our notion of similarity and studies cover large-
granularity program structures, that may involve, for 
example, patterns of collaborating components 
recurring in variant forms.  

4 GENERIC DESIGN 

Generic design aims at achieving non-redundancy 
by unifying differences among similar program 
structures. The importance of generic design in 
managing software complexity have been 
recognized for long. Macros were one of the early 
attempts to parameterize programs and make them 
more generic. (Gougen, 1984) popularized ideas of 
parameterized programming. Among programming 
language constructs, type parameterization (called 
generics in Ada, Eiffel, Java and C#, and templates 
in C++), higher-order functions, iterators, and 
inheritance can help avoid repetitions in certain 
situations (Garcia et al., 2003). Design techniques 
such as design patterns (Gamma et al., 1995), table-
driven design, and information hiding are supportive 
to building generic programs. 

There are three engineering benefits of generic 
design (and three reasons to avoid unnecessary 
repetitions): Firstly, genericity is an important theme 
of software reuse where the goal is to recognize 
similarities to avoid repetitions across projects, 
processes and products. Indeed, many repetitions 
merely indicate unexploited reuse opportunities. 
Secondly, repetitions hinder program understanding. 
Repeated similar program structures cause update 
anomalies complicating maintenance. Thirdly, by 
revealing design-level similarities, we reduce the 
number of distinct conceptual elements a 
programmer must deal with. Not only do we reduce 
an overall software complexity, but also enhance 
conceptual integrity of a program which Brooks 
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calls “the most important consideration in system 
design” (Brooks, 1986). Common sense suggests 
that developers should be able to express their 
design and code without unwanted repetitions, 
whenever they wish to do so. 

5 REDUNDANCIES IN STL 

STL (Musser, 1996) is a classical and powerful 
example of what skilful generic design can do for 
complexity reduction. STL implements commonly 
used algorithms, such as sort or search, for a variety 
of container data structures. Without generic 
containers and algorithms, the STL’s size and 
complexity would be enormous, hindering its 
evolution. Such simple-minded solution would 
unwisely ignore similarity among containers, and 
among algorithms applied to different containers, 
which offers endless reuse opportunities. Generic 
design with templates and iterators helped STL 
designers to avoid these complications, without 
compromising efficiency.  

 

Figure 3: Associative container features (STL). 

In STL, generic solutions are mainly facilitated 
by templates and iterators. We analysed associative 
containers - variable-sized containers that support 
efficient retrieval of elements based on keys. Figure 
3 shows variant features of associative containers. 
There are eight STL templates, one for each of the 
eight legal combinations of features. 

We focused on the STL regions that showed 
high cloning rates. We ran a clone detector to 
identify these regions. We found that container 
classes displayed a remarkable amount of similarity 
and code repetition. Four ‘sorted’ associative 
containers and four ‘hashed’ associative containers 
could be unified into two generic ART containers, 
achieving 57% reduction in the related code. Stack 
and queue classes contained 37% of cloned code. 
Algorithms set union, set intersection, set difference, 
and set symmetric difference (along with their 
overloaded versions) formed a clone class with eight 
instances. On overall, non-redundant representation 

of these parts of STL in ART contained 48% of code 
found in the original STL (Basit et al., 2005).  

There were many non-type-parametric 
differences among associative container templates. 
For example, certain otherwise similar methods, 
differed in operators or algorithmic details. While it 
is possible to treat many types of non-parametric 
differences using sophisticated forms of C++ 
template meta-programming, often the resulting 
code becomes “cluttered and messy” (Czarnecki and 
Eisenecker, 2000). We did not spot such solutions in 
STL, and believe their practical value needs to be 
further investigated.  

The reader may find full details of the STL case 
study in (Basit et al., 2005). 

6 REDUNDANCIES IN THE JAVA 
BUFFER LIBRARY 

A buffer contains data in a linear sequence for 
reading and writing. Buffer classes differ in features 
such as a memory scheme: Heap or Direct; element 
type: byte, char, int, double, float, long, or short; 
access mode: writable or read-only; byte ordering: S 
– non-native or U – native; B – BigEndian or L – 
LittleEndian.  

Each legal combination of features yields a 
unique buffer class, with much similarity among 
classes. As we combine features, buffer classes grow 
in number, as observed in (Batory et al., 1993). 
Some of the buffer classes are shown in Figure 4. A 
class name, such as DirectIntBufferRS, reflects 
combination of features implemented into a given 
class. Class names are derived from a template: 
[MS][T]Buffer[AM][BO], where MS – memory 
scheme: Heap or Direct; T – type: int, short, float, 
long double, char, or byte; AM – access mode: W – 
writable (default) or R - read-only; BO – byte 
ordering: S – non-native or U – native; B – 
BigEndian or L – LittleEndian. All the classes 
whose names do not include ‘R’, by default are ‘W’ 
– writable. VB – View Buffer is yet another feature 
that allows us to interpret byte buffer as Char, Int, 
Double, Float, Long, or Short. Combining VB with 
other features, yields 24 classes 
ByteBufferAs[T]Buffer[R][B|L]. The last parameter 
[B|L] means “B or L”.  

The experiment covered 74 buffer classes that 
contained 6,719 LOC (physical lines of code, 
without blanks or comments). We identified seven 
groups of similar classes where each group 
comprised 7-13 classes: 
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1.  [T]Buffer: 7 classes at Level 1 that differ in 
buffer element type, T: int, short, float, long 
double, char, or byte 

2. Heap[T]Buffer: 7 classes at Level 2, that differ in 
buffer element type, T 

3. Heap[T]BufferR: 7 read-only classes at Level 3 

4. Direct[T]Buffer[S|U]: 13 classes at Level 2 for 
combinations of buffer element type, T, with byte 
orderings: S – non-native or U – native byte 
ordering (notice that byte ordering is not relevant 
to buffer element type ‘byte’) 

5. Direct[T]BufferR[S|U]: 13 read-only classes at 
Level 3 for combinations of parameters T, S and 
U, as above 

6. ByteBufferAs[T]Buffer[B|L]: 12 classes at Level 
2 for combinations of buffer element type, T, 
with byte orderings: B – Big_Endian or L – 
Little_Endian 

7. ByteBufferAs[T]BufferR[B|L]: 12 read-only 
classes at Level 3 for combinations of parameters 
T, B and L, as above. 

Classes in each of the above seven groups 
differed in details of method signatures, data types, 
keywords, operators, and editing changes. We paid 
attention only to similarities whose noticing could 
simplify class understanding and help in 
maintenance. Some of the classes had extra methods 
and/or attributes as compared to other classes in the 
same group. Many similar classes or methods 
occurred due to the inability to unify small 
variations in otherwise the same classes or methods. 
Generics could unify 15 among 74 classes under 
study, reducing the code size by 27%. The solution 
with generics was subject to certain restrictions that 
we discussed in (Jarzabek and Li, 2006). 

So why did Buffer library designers chose to 
keep redundancies? 

Any solutions to unifying similarities must be 
considered in the context of other design goals 
developers must meet. Usability, conceptual clarity 
and good performance are important design goals for 
the Buffer library. To simplify the use of the Buffer 
library, the designers decided to reveal to 
programmers only the top eight classes (Figure 4). 
For conceptual clarity, designers of the Buffer 
library decided not to multiply classes beyond what 
was absolutely needed. We see almost one-to-one 
mapping between legal feature combinations and 
buffer classes.  

In many situations, designers could introduce a 
new abstract class or a suitable design pattern to 
avoid repetitions. However, such a solution would 
compromise the above design goals, and therefore 
was not implemented. Many similar classes or 
methods were replicated because of that. 

Many similarities in buffer classes sparked from 
feature combinations. As buffer features (such as 
element type, memory scheme, etc.) could not be 
implemented independently of each other in separate 
implementation units (e.g., class methods), code 
fragments related to specific features appeared with 
many variants in different classes, depending on the 
context. Whenever such code could not be 
parameterized to unify the variant forms, and placed 
in some upper-level class for reuse via inheritance, 
similar code structures spread through classes. 

Method hasArray() shown in Figure 5 illustrates 
a simple yet interesting case. This method is 
repeated in each of the seven classes at Level 1. 
Although method hasArray() recurs in all seven 
classes, it cannot be implemented in the parent class 
Buffer, as variable hb must be declared with a 
different   type   in   each  of  the  seven  classes. For 

 

Figure 4: A fragment of the Buffer library. 
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example, in class ByteBuffer the type of variable hb 
is byte and in class IntBuffer, it is int. 

 

Figure 5: Recurring method hasArray(). 

One could presume that type parameterization, 
JDK 1.5 supports generics, should have a role to 
play in unifying parametric differences among 
similar classes. However, generics have not been 
applied to unify similarity patterns described in our 
study. Groups of classes that differ only in data type 
are obvious candidates for generics. There are three 
such groups comprising 21 classes, namely 
[T]Buffer, Heap[T]Buffer and Heap[T]BufferR. 
In each of these groups, classes corresponding to 
Byte and Char types differ in non-type parameters 
and are not generics-friendly. This leaves us with 15 
generics-friendly classes whose unification with 
three generics eliminates 27% of code. There is, 
however, one problem with this solution. In Java, 
generic types cannot be primitive types such as int or 
char. This is a serious limitation, as one has to create 
corresponding wrapper classes just for the purpose 
of parameterization. Wrapper classes introduce extra 
complexity and hamper performance. Application of 
generics to 15 buffer classes is subject to this 
limitation.  

 

Figure 6: Method slice(). 

Repetitions often arise due to the inability to 
specify small variations in otherwise identical code 
fragments. Many similar classes and methods differ 
in parameters representing constants, keywords or 
algorithmic elements rather than data types. This 
happens when the impact of various features affects 
the same class or method. For example, method 
slice() (Figure 6) recurs 13 times in all the 
Direct[T]Buffer[S|U] classes with small changes 

highlighted in bold in. Generics are not meant to 
unify this kind of differences in classes.  

In summary, generics are rather limited in 
unifying similarity patterns that we find in practical 
situations, e.g., such as we observed in the Buffer 
library. It is interesting to note that repetitions occur 
across classes at the same level of inheritance 
hierarchy, as well as in classes at different levels of 
inheritance hierarchy. Programming languages do 
not have a proper mechanism to handle such 
variations at an adequate (that is a sufficiently small) 
granularity level. Therefore, the impact of a small 
variation on a program may not be proportional to 
the size of the variation.  

Developers of the Buffer library used macros, 
scripts and makefiles in order to exploit similarities 
and write/maintain buffer classes with less effort 
(these macros and scripts can be found in the 
Community Source Release for the Buffer library). 
While the reasons why Sun developers escaped to 
non-OO solution and the solution itself are not 
explained or documented, its existence hints at 
difficulties to treat similarity patterns with 
conventional OO techniques, given the overall 
design goals the Buffer library had to meet. 

7 TOWARDS  
NON-REDUNDANCY 

While practitioners are aware of much repetitions in 
software, they also know how difficult it is to avoid 
them. Problems with implementing effective reuse 
strategies (Deelstra et al., 2000) evidence these 
difficulties, as well.  

It is not clear if and how we could implement 
buffer classes without redundancies in any of the 
conventional programming languages. A possible 
solution calls for flexible parametrization 
unconstrained by the rules of a programming 
language. It is as if our need to express program 
behaviour was in conflict with our need to achieve 
non-redundancy. To resolve this conflict, generative 
approaches propose to think about programs at two 
levels: a meta-level that provides a platform for 
program construction, and a level of actual program 
that is compiled and executed. Program generation 
technologies offer solutions for specific application 
domains, with abstract notations to specify required 
program behaviour (a meta-level), and a generator 
that encodes the semantics of a given application 
domain, and generates a program ready for 
execution. Quite often much redundancy can be 

/* Tells whether or not this buffer is backed by 
 an accessible byte array. */ 
public final boolean hasArray() { 
return (hb != null) && !isReadOnly; } 

/*Creates a new byte buffer containing a shared  
  subsequence of this buffer's content. */ 
public ByteBuffer slice() { 
 int pos = this.position(); 
 int lim = this.limit(); 
 assert (pos <= lim); 
 int rem = (pos <= lim ? lim - pos : 0); 
 int off = (pos << 0); 
 return new DirectByteBuffer(this, -1, 0, rem, 
          rem, off); } 
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avoided in abstract program specifications. We 
comment further on generation approaches in the 
following section, and here we outline a general-
purpose solution to non-redundancy, based on 
flexible parameterization at the meta-level, and code 
manipulation in pre-processing fashion. We explain 
the solution in a way that ART (Adaptive Reuse 
Technology) implements these concepts.  

On the left-hand-side of Figure 7, we see a non-
redundant meta-level representation of buffer 

classes. Boxes are ART templates that represent 
building blocks for Buffer classes. As such, they 
contain relevant Java code instrumented 
(parameterized) with ART commands. The purpose 
of parameterization is to enable reuse of ART 
templates in multiple contexts of the situations when 
a given functionality is need for building buffer 
classes. ART Processor interprets ART commands 
embedded in templates and generates buffer classes 
on the right-hand-side of Figure 7. 

hasArray()

attribute declarations

slice()

Heap[T]Buffer.s[T]Buffer.s

[T]Buffer.gen Heap[T]Buffer.gen

SPC

generic classes

class specifications

generic methods

Buffer specifications

method fragmentgeneric fragments

ART  Processor
IntBuffer

ByteBuffer

CharBuffer

Java buffer classes

…

…

ART template framework  

Figure 7: Non-redundant representation of Buffer classes in ART/Java. 

SPC // specifies how to generate all the buffer classes
#set elmtType = Int, Short, Float, Long, Double, Char, Byte 
#set type = int, short, float, long double, char, byte  
#set elmntSize = 0, 1, 3, 2, 2, 3, 1  
#adapt [T]Buffer.s  
#adapt Heap[T]Buffer  
…
#adapt ByteBufferAs[T]BufferR[B|L]  

[T]Buffer.s // specifies how to generate 7 [T]Buffer classes
#while elmtType, type, elmntSize

#select option = elmtType
#option Byte

#adapt [T]Buffer.gen
#insert moreMethods

#adapt methodsForByteBuffer.x
#option Char

#adapt [T]Buffer.gen
#insert toString

Public String toString()
{ return toString( position(), limit()); }

#otherwise
#adapt [T]Buffer.gen

#/select
#/while

[T]Buffer.gen outfile @elmtTypeBuffer.java
// a generic [T]Buffer class
package @packageName;
public abstract class @elmtTypeBuffer extends
Buffer implements Comparable 
#adapt commonAttributes.gen
#break moreAttributes
#adapt commonMethods.gen
#break moreMethods
#break toString

public String toString() {
StringBuffer sb = new StringBuffer();
sb.append(getClass().getName()); 
etc.
return sb.toString();   } }

#break

commonMethods.gen // generic representation of methods 
common to [T]Buffer and may be yet other classes, e.g.,
public static @elmtTypeBuffer wrap(@type[] array) {

return wrap(array, 0, array.length);  }

methodsForByteBuffer.x // methods specific to ByteBuffer only
public static ByteBuffer allocateDirect(int capacity) 
{ return new DirectByteBuffer(capacity);  }

 

Figure 8: Non-redundant representation for seven [T]Buffer classes in Java/ART (partial). 
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An arrow between two templates: X → Y is read 
as “X adapts Y”, meaning that X controls adaptation 
of Y. We have seven generic class templates, one 
for each of the seven groups of similar classes 
described in Section 6 (we show only two of them in 
Figure 7). Each class template defines common part 
of classes in the respective group. The essence of a 
generic component (generic class, in our case) is that 
it can be adapted to produce its instances (specific 
classes in a group, in our case). Smaller granularity 
generic building blocks for classes are defined 
below, namely class methods and fragments of 
method implementation or attribute declaration 
sections. Therefore, lower-level templates are 
composed, after possible adaptations, to construct 
required instances of higher-level generic 
components. At the top, we have specification 
elements – they tell the ART Processor how to 
generate specific buffer classes, from templates. 
Top-most SPC, sets up global parameters and 
exercises the overall control over the generation 
process.  

ART Processor interprets the template 
framework starting from the SPC, traverses 
templates below, adapting visited templates and 
emitting buffer class code. By varying 
specifications, we can instantiate the same template 
framework in different ways, deriving different, but 
similar, program components from it.  

We now explain the parameterization and 
adaptation mechanism, which is the “heart and soul” 
of how ART achieves goals of non-redundancy: 

ART variables and expressions provide a basic 
parameterization mechanism to make templates 
generic. #set command assigns a value to a variable. 
Typically, names of program elements manipulated 
by ART, such as components, source files, classes, 
methods, data types, operators or algorithmic 
fragments, are represented by ART expressions. 
Such expressions are then instantiated by the ART 
Processor, according to the context. For example, 
names and other parameters of the seven similar 
classes [T]Buffer are represented by ART 
expressions in the a template [T]Buffer.gen.  

ART variables have global scope, so that they 
can coordinate chains of all the customizations 
related to the same source of variation or change that 
spans across multiple templates. During processing 
of templates, values of variables propagate from an 
template where the value of a variable is set, down 
to the lower-level templates. While each template 
usually sets default values for its variables, values 
assigned to variables in higher-level templates take 
precedence over the locally assigned default values. 

Thanks to this overriding rule, templates become 
generic and adaptable, with potential for reuse in 
many contexts.  

Other ART commands that help us design 
generic and adaptable templates include #select, 
#insert into #break and #while. We use #select 
command to direct processing into one of the many 
pre-defined branches (called options), based on the 
value of a variable. With #insert command, we can 
modify templates at designated #break points in 
arbitrary ways. ART expressions, #select and 
#insert into #break are analogous to AOP’s 
mechanism for weaving advices at specified join 
points (Kiczales et al., 1997). The difference is that 
ART allows us to modify templates in arbitrary 
ways, at any explicitly designated variation points.  

#while command iterates over template(s), with 
each iteration generating similar, but also different, 
program structures. A #select command in the 
#while loop allows us to generate classes in each of 
the seven groups discussed in Section 6. 

Figure 8 illustrates how ART mechanisms 
realize the scheme outlined in Figure 7.  

ART template names, ART commands and 
references to ART variables are shown in bold. 
References to ART variables parameterize code. For 
example, a reference to variable @elmtType is 
replaced by the variable’s value during processing. 
Figure 6 shows ART template for method slice() 
from Direct[T]Buffer[S|U] classes. Values of 
variables set in SPC reach all their references in 
adapted ART templates. The value of variable 
byteOrder is set to an empty string, “S” or “U”, in a 
respective #set command placed in one of the ART 
templates that #adapt’s ART template slice.gen (not 
shown in our pictures).  

The #while loop in [T]Buffer.s is controlled by 
two multi-value variables, namely elmtType and 
elmtSize. The i’th iteration of the loop uses i’th 
value of each of the variables. In each iteration of 
the loop, the #select command uses the current value 
of elmtType to choose a proper #option for 
processing. 

Attribute outfile of [T]Buffer.gen defines the 
name of a file where ART Processor will emit the 
code for a given class. 

Having set values for ART variables, SPC 
initiates generation of classes in each of the seven 
groups of similar classes via suitable #adapt 
commands. ART template [T]Buffer.gen defines 
common elements found in all seven classes in the 
group. Five of those classes, namely DoubleBuffer, 
IntBuffer, FloatBuffer, IntBuffer, and 
LongBuffer differ only in type parameters (as in the 
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sample method wrap() shown in ART template 
commonMethods.gen). These differences are 
unified by ART variables, and no further 
customizations are required to generate these five 
classes from ART template [T]Buffer.gen. These 
five classes are catered for in #otherwise clause 
under #select. However, classes ByteBuffer and 
CharBuffer have some extra methods and/or 
attribute declarations. In addition, method toString() 
has different implementation in CharBuffer than in 
the remaining six classes. Customizations specific to 
classes ByteBuffer and CharBuffer are listed in the 
#adapt commands, under #option s Byte and Char, 
respectively. 

We refer the reader to (Jarzabek and Li, 
2003)(Jarzabek and Li, 2006) for further the details 
of this study.  

A shorter program without redundancies does 
not automatically mean that such a program is easier 
to understand and maintain than a longer program 
with redundant code. For example, compressed code 
is short but impossible to read and understand. To 
further support claims of easier maintainability of 
the ART solution, we extended the Buffer library 
with a new type of buffer element – Complex. Then, 
we compared the effort involved in changing each of 
the two solutions, Java classes and Java/ART 
representation. Many classes must be implemented 
to address the Complex element type, but in this 
experiment we concentrated only on three of them, 
namely ComplexBuffer, HeapComplexBuffer and 
HeapComplexBufferR. In Java, class 
ComplexBuffer could be implemented based on the 
class IntBuffer, with 25 modifications that could be 
automated by an editing tool, and 17 modifications 
that had to be done manually. On the other hand, in 
the ART representation, all the changes had to be 
done manually, but only 5 modifications were 
required. To implement class HeapComplexBuffer, 
we needed 21 “automatic” and 10 manual 
modifications in Java, versus 3 manual 
modifications in ART. To implement class 
HeapComplexBufferR, we needed 16 “automatic” 
and 5 manual modifications in Java, versus 5 manual 
modifications in ART.  

8 CLONES IN WEB PORTALS 

8.1 ASP.NET Portal 

In the ASP Web Portal (WP) Product Line project, 
our industry partner ST Electronics Pte. Ltd.,  
Singapore, applied state-of-the-art conventional 

methods to maximize reusability of a Team 
Collaboration Portal (TCP). Still, a number of 
problem areas were observed that could be improved 
by applying ART to reduce redundancies. The 
benefits of ASP/ART TCP were the following: 
 Short time (less than 2 weeks) and small effort (2 

persons) to transform the ASP TCP into the first 
version of a mixed-strategy ASP/ART Product 
Line architecture. 

 High productivity in building new portals from 
the ASP/ART solution. Based on the ASP/ART 
solution, ST Electronics could build new portal 
modules by writing as little as 10% of unique 
custom code, while the rest of code could be 
reused. This code reduction translated into an 
estimated eight-fold reduction of effort required 
to build new portals. 

 Significant reduction of maintenance effort when 
enhancing individual portals. The overall 
managed code lines for nine portals under the 
ASP/ART were 22% less than the original single 
portal. 

 Wide range of portals differing in a large number 
of inter-dependent features supported by the 
ASP/ART solution. 
The reader may find full details of this project in 

(Pettersson and Jarzabek, 2005). 

8.2 JEE Portal 

In the follow up project, we evaluated J2EE™ as a 
platform for Product Line development.  Unlike 
ASP, J2EE supports inheritance, generics and other 
OO features via Java.   

Component platforms such as J2EE or .NET 
encourage organizing software around standard 
architectures. Patterns help programmers solve 
routine tasks in pre-defined ways in conformance to 
architectures. Application of patterns further 
standardizes software at macro and micro levels. Not 
surprisingly, we find much similarity in software 
developed in that way. Such uniformity of software 
structure is beneficial, as similar problems are 
always solved in a similar way across a system. It 
also facilitates easy reuse of common 
services/components provided by a platform. 
However, not always are pattern instances clearly 
visible in code. Pattern-driven development could be 
even more beneficial if we knew the exact location 
of pattern instances and how instances are similar 
and different one from each other. This would help 
in the future maintenance: When the pattern-related 
code is to be changed, it would be clear which of the 
pattern’s instances should be changed and how. 
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Currently, pattern-driven development is mainly 
limited to the middleware areas such as database 
communication, coordination between requests, 
application model and views (e.g., implied by the 
MVC organization) or reuse of common services. In 
application domain-specific areas, the benefits of 
patterns are less. At times, application of patterns 
may even scatter domain-specific functionality 
across many components (or classes), which 
complicates reuse of domain-specific code, and 
magnifies problems of tracing requirements to code. 

In J2EE project, we applied ART to enhance the 
visibility of patterns and to achieve reuse in 
application domain-specific areas. We worked with 
a portal developed by ST Electronics, a variant of 
TCP. The portal supported collaborative work and 
included 14 modules such as Staff, Project and Task. 
We studied similarity patterns in presentation and 
business logic layers.  

Within modules, we found 75% of code 
contained in exact clones, and 20% of code 
contained in similar clones (leaving only 5% of code 
unique). Analysis across modules, revealed design-
level similarities, with 40% of code contained in 
structural clones. Both intra- and inter-module 
similarities were important for clarity of the design, 
however they could not be unified with generic 
design solutions expressed by J2EE mechanisms.  

In the second part of the experiment, we applied 
ART to unify similarity patterns. Unification 
reduced the solution size by 61%, and enhanced the 
clarity of portal’s conceptual structure as perceived 
by developers. In a controlled experiment, we found 
that to implement the same enhancement, J2EE/ART 
portal representation required 64% less 
modifications that the original J2EE portal. 

The reader may find full details of this project in 
(Yang and Jarzabek, 2006). 

9 GENERATORS 

Powerful domain-specific solutions can be built by 
formalizing the domain knowledge, and using 
generation techniques to produce custom programs 
in a domain. Advancements in modelling and 
generation techniques led to Model-Driven 
Engineering (MDE) (Schmidt, 2006), where 
multiple, inter-related models are used to express 
domain-specific abstractions. Models are used for 
analysis, validation (via model checking), and code 
generation. Platforms such as Microsoft Visual 
Studio™ and Eclipse™ support generation of source 
code using domain-specific diagrammatic notations. 

By constraining ourselves to a specific 
application domain, we can make assumptions about 
its semantics. A domain engineer encodes domain-
specific knowledge into a generic, parameterized 
program solution. A developer, rather than working 
out all the details of the program solution, writes a 
concise, declarative problem description in a 
Domain-Specific Language (DSL). A generator uses 
DSL specifications to instantiate parameters of a 
generic solution to produce a custom program. 
Problem specifications in DSL are much smaller and 
simpler than the instantiated, complete and 
executable program solution. While we do not 
reduce the overall program complexity, generation-
based solutions shield a programmer from 
complexities of the domain-specific code that is now 
manipulated by a generator. DSL may take many 
different forms, depending on a domain, from a 
formal text (e.g., BNF for parser generator), to 
visual interface (e.g., GUI) and to models (in Model-
Driven Engineering approaches).  

This is in contrast with ART which is an 
application domain- and programming language-
independent technique. There is no concept of DSL 
in ART. Generators can be built in well-understood 
and fairly stable application domains. On the other 
hand ART, performs best in domains where frequent 
changes occur at both large and small granularity 
levels. 

Generators must overcome a number of 
challenges to have a greater impact on practice. A 
common pitfall of generators is that abstract 
program specifications in DSL can get easily 
disconnected from the generated code. This happens 
when the generated code is modified by hand to 
accommodate changes not catered for by the DSL. 
As any re-generation of code would override such 
modifications, future maintenance must be done by 
hand and developers can’t benefit from the generator 
anymore. Round-trip engineering could overcome 
this problem, but is difficult to achieve. This 
problem is particularly acute in the situation when 
we need to evolve multiple generated programs 
differing in certain features, as it is often the case of 
a Product Line. Implementing variant features in the 
generator will propagate all the variant features to all 
the programs, which may not be desirable. On the 
other hand, implementing variant features directly 
into generated programs that need them, 
automatically disconnects those programs from the 
generator. 

Another problem faced by generators is that a 
problem domain served by a generator is often only 
a part of an overall programming problem 

Software Similarity Patterns and Clones: A Curse or Blessing?

15



developers need to solve. Strategies for integrating 
multiple domain-specific generators and embedding 
them into systems implemented using yet other 
techniques have yet to be developed. One of the 
reason for success of compiler generators is that 
compilation on its own is a self-contained domain. 

Rich abstractions lead to powerful generators. 
Without sufficient abstractions, there is not much we 
can automate. We believe not enough of general-
purpose abstractions is the main reason why, despite 
much research, we have not achieved success in 
domain-independent, generation-based automatic 
programming. This also reminds us Brooks’ doubts 
about reducing essential program complexity by 
means of abstraction (Brooks, 1986). 

10 CONCLUSIONS 

In the paper, I discussed a multi-faceted 
phenomenon of software similarities. Starting with 
software clone definition, I analysed common 
reasons why clones occur in programs, their impact 
on software development and maintenance, and 
productivity benefits that can be gained by avoiding 
clones. The core of the paper focused on 
redundancies that, despite potential benefits, are 
difficult to avoid with conventional programming 
languages and design techniques. Finally, I 
demonstrated a possible solution to avoiding such 
redundancies with meta-level generative techniques.  
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