
Quantum in the Cloud: Application Potentials and Research

Opportunities

Frank Leymann a, Johanna Barzen b, Michael Falkenthal c, Daniel Vietz d, Benjamin Weder e

and Karoline Wild f
Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstr. 38, Stuttgart, Germany

Keywords: Cloud Computing, Quantum Computing, Hybrid Applications.

Abstract: Quantum computers are becoming real, and they have the inherent potential to significantly impact many

application domains. We sketch the basics about programming quantum computers, showing that quantum

programs are typically hybrid consisting of a mixture of classical parts and quantum parts. With the advent of

quantum computers in the cloud, the cloud is a fine environment for performing quantum programs. The tool

chain available for creating and running such programs is sketched. As an exemplary problem we discuss

efforts to implement quantum programs that are hardware independent. A use case from machine learning is

outlined. Finally, a collaborative platform for solving problems with quantum computers that is currently

under construction is presented.

1 INTRODUCTION

Quantum computing advanced up to a state that urges

attention to the software community: problems that

are hard to solve based on classical (hardware and

software) technology become tractable in the next

couple of years (National Academies, 2019).

Quantum computers are offered for commercial use

(e.g. IBM Q System One), and access to quantum

computers are offered by various vendors like

Amazon, IBM, Microsoft, or Rigetti via the cloud.

However, todays quantum computers are error-

prone. For example, the states they store are volatile

and decay fast (decoherence), the operations they

perform are not exact (gate fidelity) etc.

Concequently, they are “noisy”. And their size

(measured in Qubits – see section 2.1) is of

“intermediate scale”. Together, todays quantum

computers are Noisy Intermediate Scale Quantum

(NISQ) computers (Preskill, 2019). In order to

perform a quantum algorithm reliably on a NISQ

machine, it must be limited in size.

a https://orcid.org/0000-0002-9123-259X
b https://orcid.org/0000-0001-8397-7973
c https://orcid.org/0000-0001-7802-1395
d https://orcid.org/0000-0003-1366-5805
e https://orcid.org/0000-0002-6761-6243
f https://orcid.org/0000-0001-7803-6386

Because of this, the overall algorithms are often

hybrid. They perform parts on a quantum computer,

other parts on a classical computer. Each part

performed on a quantum computer is fast enough to

produce reliable results. The parts executed on a

classical computer analyze the results, compute new

parameters for the quantum parts, and pass them on

to a quantum part. Typically, this is an iteration

consting of classical pre-processing, quantum

processing, and classical post-processing.

This iteration between classical parts and

quantum parts reveals why the cloud is a solid basis

for executing quantum applications: it offers classical

environments as well as quantum computers (see

before).

What are viable applications on NISQ computers?

For example, simulation of molecules in drug

discovery or material science is very promising

(Grimsley et al., 2019), many areas of machine

learning will realize significant improvements

(Dunjko et al., 2016), as well as solving optimization

problems (Guerreschi et al., 2017).

Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B. and Wild, K.
Quantum in the Cloud: Application Potentials and Research Opportunities.
DOI: 10.5220/0009819800090024
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 9-24
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

9

1.1 Paper Overview

Section 2 sketches the programming model of

quantum computers. Quantum computing in the

cloud is introduced in section 3. How to remove

hardware dependencies is addressed in section 4.

Section 5 outlines a use case of quantum machine

learning. A collaboration platform for developing and

exploiting quantum applications is subject of section

6. Section 7 concludes the paper.

2 PROGRAMMING MODEL

Next, we introduce the basics of the quantum

programming model – see (Nielsen et al., 2016).

2.1 Quantum Registers

The most fundamental notion of quantum computing

is the quantum bit or qubit for short. While a classical

bit can have either the value 0 or 1 at a given time, the

value of a qubit |x⟩ is any combination of these two

values: |x⟩=α∙|0⟩+β∙|1⟩ (to distinguish bits from qubits

we write |x⟩ instead of x for the latter). This so-called

superposition is one source of the power of quantum

computing.

The actual value of a qubit is determined by a so-

called measurement. α2 and β2 are the probabilities

that – once the qubit is measured – the classical value

“0” or “1”, respectively, results. Because either “0” or

“1” will definitively result, the probabilities sum up

to 1: α2+β2=1.

Just like bits are combined into registers in a

classical computer, qubits are combined into quantum

registers. A quantum register |r⟩ consisting of n qubits

has a value that is a superposition of the 2n values

|0…0⟩, |0…01⟩, up to |1…1⟩. A manipulation of the

quantum register thus modifies these 2n values at the

same time: this quantum parallelism is another source

of the power of quantum computing.

2.2 Quantum Operations

Figure 1 depicts two qubits α|0⟩+β|1⟩ and γ|0⟩ + δ|1⟩:
because α2+β2 = γ2+δ2 = 1, each qubit can be

represented as a point on the unit circle, i.e. as a vector

of length 1. Manipulating a qubit results in another

qubit, i.e. a manipulation U of qubits preserves the

lengths of qubits as vectors. Such manipulations are

called unitary transformations. A quantum algorithm

combines such unitary transformations to manipulate

qubits (or quantum registers in general). Since the

combination of unitary transformations is again a

unitary transformation, a quantum algorithm is

represented by a unitary transformation too.

Figure 1: Depicting a qubit and its manipulation.

This geometric interpretation of qubits is

extended to quantum registers: a quantum register

with n qubits can be perceived as a unit vector in a 2n-

dimensional vector space. A quantum algorithm is

then a unitary transformation of this vector space.

A quantum algorithm U takes a quantum register

|r⟩ as input and produces a quantum register |s⟩=U(|r⟩)
as output, with

 (1)

The actual result of the algorithm U is determined

by measuring |s⟩. Thus, the result is

with probability . Obviously, different executions

of U followed by a measurement to determine U’s

result will produce different bit-strings according to

their probability: A single execution of a quantum

algorithm is like a random experiment. Because of

this, a quantum algorithm is typically performed

many times to produce a probability distribution of

results (see Figure 2 for an example) – and the most

probable result is taken as “the” result of the quantum

algorithm.

Figure 2: Depicting a qubit and its manipulation.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

10

2.3 Quantum Algorithms

As shown in Figure 3, the core of a quantum

algorithm is a unitary transformation – which

represents the proper logic of the algorithm. Its input

register |r⟩ is prepared in a separate step (which turns

out to be surprisingly complex (Plesch et al., 2011;

Schuld et al, 2019; Schende et al., 2005). Once the

unitary transformation produced its output |s⟩, a

separate measurement step determines its result.

Figure 3: Basis structure of a quantum algorithm.

Optionally, some pre-processing or some post-

processing is performed in a classical environment

turning the overall algorithm into a hybrid one.

Especially, many successful algorithms in a NISQ

environment make use of classical processing to

reduce the execution time on a quantum computer:

the goal is to avoid decoherence and gate faults by

spending only a short amount of time on a noisy

quantum machine.

One example is a hybrid algorithm called

Variational Quantum Eigensolver for determining

eigenvalues (Peruzzo et al., 2014). This can be done

by using a parameterized quantum algorithm

computing and measuring expectation values, which

are post-processed on a classical computer. The post-

processing consists of a classical optimization step to

compute new parameters to minimize the measured

expectation values. The significance of this algorithm

lies in the meaning of eigenvalues for solving many

practical problems (see section 5.2.2).

Another example is the Quantum Approximate

Optimization Algorithm (Fhari et al., 2014) that is

used to solve combinatorial optimization problems. It

computes a state on a quantum machine the

expectation values of which relate to values of the

cost function to be maximized. The state is computed

based on a parameterized quantum algorithm, and

these parameters are optimized by classical

algorithms in a post-processing step as before. Since

many machine learning algorithms require solving

optimization problems, the importance of this

algorithm is obvious too (see section 5.2.4).

An overview on several fundamental (non-hybrid)

algorithms can be found in (Montanro, 2016).

2.4 Quantum Software Stack

Programming a quantum computer is supported by a

software stack the typical architecture of which is

shown in Figure 4. (LaRose, 2019) describes

incarnations of this stack by major vendors. Also,

section 3 discusses details of some implementations.

Figure 4: Principle architecture of today’s quantum

software stack.

The heart of the stack is a quantum assembler: it

provides a textual rendering for key unitary

transformations that are used to specify a quantum

algorithm.

Since a quantum assembler is very low level,

quantum programming languages are offered that

host the elements of the quantum assembler in a

format more familiar to traditional programmers – but

still, the assembler flavor is predominant. In addition,

functions to connect to quantum machines (a.k.a.

quantum processing unit QPU) and simulators etc. are

provided.

Quantum programming languages also come with

libraries that provide implementations of often used

quantum algorithms to be used as subroutines.

A compiler transforms a quantum assembler

program into an executable that can be run on a

certain QPU. Alternatively, the compiler can

transform the quantum assembler into something

executable by a simulator on a classical CPU.

2.5 Sample Research Questions

The most fundamental question is about a proper

engineering discipline for building (hybrid) quantum

applications. For example: What development

approach should be taken? How do quantum experts

interact with software engineers? How are quantum

applications tested, debugged?

Quantum in the Cloud: Application Potentials and Research Opportunities

11

3 QUANTUM AS A SERVICE

Since quantum algorithms promise to speed up

known solutions of several hard problems in

computer science, research in the field of software

development for quantum computing has increased in

recent years. In order to achieve speedup against

classical algorithms, quantum algorithms exploit

certain quantum-specific features such as

superposition or entanglement (Jozsa and Linden,

2003). The implementation of quantum algorithms is

supported by the quantum software stack as shown in

Figure 4. In this section, we give an overview of

current tools for the development of quantum

software. We further discuss deployment, different

service models, and identify open research areas.

3.1 Tooling

Several platforms implementing the introduced
quantum computing stack have been released in
recent years (LaRose, 2019). This includes platforms
from quantum computer vendors, such as Qiskit
(Qiskit, 2020) from IBM or Forest (PyQuil, 2020)
from Rigetti, as well as platforms from third-party
vendors such as ProjectQ (Steiger et al., 2018) or
XACC (McCaskey et al., 2019).

The quantum algorithms are described by so-
called quantum circuits which are structured
collections of quantum gates. These gates are unitary
transformations on the quantum register (see section
2.3). Each platform provides a universal set of gates
that can be used to implement any quantum
algorithm. Figure 5 shows a simple example of such
a circuit. It uses two qubits (each represented as a
horizontal line), both of which are initialized as |0⟩. A
classical two-bit register c is used for the results of
measurement and depicted as one single line. The
Hadamard gate (H), which creates an equal
superposition of the two basis states |0⟩ and |1⟩, is
applied to the qubit at quantum register position 0.
Then, the Controlled Not gate (CNOT) is applied to
the qubits at quantum register positions 0 and 1,
whereby the former acts as control-bit and a NOT
operation is applied to the second qubit iff the control

Figure 5: Example of a quantum circuit.

Listing 1: Sample code snippet for the creation and

execution of a quantum circuit.

1 from SDK import lib

2 # create circuit and add gates

3 circuit = lib.Circuit()

4 circuit.H(0)

5 circuit.CNOT(0, 1)

6 ...

7 # many more

8 ...

9 circuit.measure()

10 # choose QPU

11 backend = lib.getBackend('...')

12 # compile circuit and send to QPU

13 result = lib.execute(circuit,

 backend, shots)

qubit is |1⟩. Finally, measurement gates are added to

both qubits stating that these qubits will be measured

and the resulting values will be stored in the classical

bit register.
The different platforms support different quantum

programming languages which are embedded in
classical host languages, such as PyQuil from Forest
embedded in Python, or Qiskit embedded in Python,
JavaScript, and Swift. The platforms provide libraries
with methods for implementing a quantum circuit.
Listing 1 shows a code snippet example of the
creation and execution of the circuit from Figure 5.
The first line imports the library. Then, a circuit
object is created to accumulate the gates in sequential
order. Gate H is added to the circuit in line 4 and the
CNOT gate is added to the circuit in line 5. Finally,
measurement is added to the circuit in line 9. After
the circuit is built, a concrete backend is chosen in
line 11, which can be either a local simulator, a
simulator in the cloud, or a QPU. The execution of the
circuit is initiated in line 13. This execute method
requires the circuit, the chosen backend, and the
number of shots as input. As stated in section 2.2, a
quantum algorithm is normally executed multiple
times and the number of executions can be configured
using the shots parameter.

The circuit is then converted to quantum
assembler language by the complier of the respective
platform, e.g., to OpenQASM (Cross et al., 2017) for
QPUs of IBM, or Quil (Smith et al., 2016) for QPUs
of Rigetti. In section 4.4 quantum compilers are
introduced in more detail. The compiled code is sent
to the selected backend. The execution itself normally
is job-based, meaning that it will be stored in a queue
before it gets eventually executed. The result, as
mentioned before, is a probability distribution of all
measured register states and must be interpreted
afterwards.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

12

Although the vendor-specific libraries are embedded

in high-level programming languages, the

implementation of quantum algorithms using the

universal sets of gates requires in-depth quantum

computing knowledge. Therefore, libraries

sometimes already provide subroutines for common

quantum algorithms, such as the Variational Quantum

Eigensolver, or Quantum Approximate Optimization

Algorithm. (LaRose, 2019) compares different

libraries with regards to their provided subroutines.

However, these subroutines can often not be called

without making assumptions about their concrete

implementation and the used QPU.
Currently, most platforms are provided by the

quantum computer vendors and are, thus, vendor-
specific. However, there are also vendor-agnostic
approaches, such as ProjectQ or XACC that both are
extensible software platforms allowing to write
vendor-agnostic source code and run it on different
QPUs. Section 4 gives more details on the hardware-
agnostic processing of quantum algorithms.

3.2 Deployment and Quantum
Application as a Service

Several quantum computer vendors provide access to
their quantum computers via the cloud. This cloud
service model can be called Quantum Computing as
a Service (QCaaS) (Rahaman et al., 2015). Also cloud
providers, such as Amazon or 1Qbit, have taken
QCaaS offerings to their portfolio. The combination
of quantum and traditional computing infrastructure
is essential for the realization of quantum
applications. As already shown in Figure 3, a
quantum computer is typically not used on its own but
in combination with classical computers: the latter are
still needed to store data, pre- and post-process data,
handle user interaction, etc. Therefore, the resulting
architecture of a quantum application is hybrid
consisting of both quantum and classical parts.

The deployment logic of the quantum part is
currently included in the source code as shown in
Listing 1. For running a quantum application (i) the
respective platform has to be installed on a classical
computer, (ii) the circuit must be implemented, (iii)
the backend has to be selected, and (iv) the circuit
must be executed. Therefore, we propose another
service model that we call Quantum Application as a
Service (QaaS), which is depicted in Figure 6. The
QaaS offering wraps all application and deployment
logic of a quantum application, including the
quantum circuit as well as data pre- and post-
processing, and provides an APIs that can then be
used for integration with traditional application, e.g.,
web applications or workflows.

Figure 6: Quantum Algorithm as a Service (QaaS) and

Quantum Computing as a Service (QCaaS).

The traditional application passes input data to the
API. However, this input data must be properly
encoded in order to initialize the quantum register for
the following computation (Leymann, 2019). This
data encoding, the construction of an appropriate
quantum circuit, its compilation, and the deployment
is all handled by the service. For the execution of the
circuit itself a QCaaS offering can be used. A
hardware-agnostic processing of quantum algorithms
would also enable the dynamical selection of different
QCaaS as further discussed in section 4. The result of
this execution is interpreted by the quantum
application and finally returned to the traditional
application.

This concept would enable to separate quantum
applications from traditional applications,
particularly with regard to their deployment.
Furthermore, the integration of quantum computing
features can be eased since QaaS enables to use
common technologies of service-based architectures.

3.3 Sample Research Questions

To realize the proposed concept, the driving question
is: How are hybrid quantum-classical applications
deployed? In addition, the integration of quantum
applications with traditional applications must be
considered. This raises further questions. For
example: What are the details of quantum algorithms,
and especially their input and output formats? What
are efficient encodings of input data? And for which
parts of an application can a speedup be achieved?

Quantum in the Cloud: Application Potentials and Research Opportunities

13

Figure 7: Processing of hardware-independent quantum algorithms.

4 REMOVING HARDWARE

DEPENDENCIES

In this section, we motivate the need for removing the

dependencies of quantum algorithms from quantum

hardware and vendor-specific quantum programming

languages. Afterwards, we present a method for the

processing of hardware-independent quantum

algorithms. Further, we sketch existing approaches to

compile quantum algorithms to executables, optimize

them, and show open research questions for selecting

and distributing the quantum algorithms over suitable

quantum and classical hardware.

4.1 Problem

Due to the rapid development and improvement of

quantum computers (National Academies, 2019), it is

important to keep implementations of quantum

algorithms as hardware-independent and portable as

possible, to enable the easy exchange of utilized

quantum machines. Novel quantum algorithms are

mostly specified and published in the abstract

quantum circuit representation (Svore et al., 2006).

Therefore, to execute them, they must be

implemented using the quantum programming

language of a specific vendor (see section 3.1).

However, the quantum programming languages are

not standardized and are usually only supported by a

small subset or even only one quantum hardware

vendor (LaRose, 2019). Therefore, the

implementation of a quantum algorithm utilizing a

specific quantum programming language can lead to

a vendor lock-in. To circumvent this problem, a

standardized, machine-readable, and vendor-agnostic

representation for quantum circuits is required, which

can be automatically translated into the

representations of the different vendor-specific

quantum programming languages (see section 2.4).

Furthermore, after specifying a quantum algorithm

using a certain quantum programming language, the

utilized qubits and gates must be automatically

mapped to qubits, gates, and measurements that are

provided by the quantum machine to keep them

independent of different quantum machines of a

specific vendor (Booth Jr, 2012).

4.2 Hardware-independent Processing

In this section, we present a method for the processing

of hardware-independent quantum algorithms, which

is based on the works of (Häner et al., 2018) and

(McCaskey et al., 2020). First, the required steps are

presented and afterwards the following sections

introduce available research works that can be

integrated into the approach and provide an overview

of open research questions for the different steps.
The required processing steps for hardware-

independent quantum algorithms are sketched in
Figure 7. The inputs and outputs of the different steps
are depicted by the arrows connecting them. First, the
quantum algorithm is defined utilizing a vendor-
agnostic quantum programming language, which
should be standardized and comprise all relevant parts
of quantum algorithms (McCaskey et al., 2020).
Then, a hardware-independent optimization can be
performed (see section 4.5), which, e.g., deletes
unnecessary qubits or gates (Häner et al., 2018).

Based on the optimized quantum algorithm,
suitable quantum hardware is selected in the next
step. For this, important properties characterizing the
quantum algorithm, such as the required number of
qubits or the utilized gate set, are retrieved (Suchara
et al., 2013). Due to the limited quantum hardware in
the NISQ era (Preskill, 2019), this information is
important and can be used to select a quantum
computer that can successfully execute the quantum
algorithm. Furthermore, this selection can be based
on different metrics, such as the error-probability, the
occurring costs, or the set of vendors that are trusted
by the user (McCaskey et al., 2020).

After the selection of the quantum hardware to
execute an algorithm, the algorithm must be
translated from the vendor-agnostic quantum

Hardware

Selection
Translation

Hardware-

Independent

Optimization

Compilation &

Optimization
Execution

Quantum

Algorithm

Executable/

Machine Instructions

Vendor-Agnostic Quantum

Programming Language
Quantum Assembler

Hardware-Independent Processing Framework

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

14

programming language to the quantum assembler of
a vendor that supports the execution on the selected
quantum hardware (McCaskey et al., 2020). Next, it
can be compiled to an executable for the selected
quantum hardware. For this, the available vendors
usually provide suitable compilers (see section 4.4)
(LaRose, 2019). During the compilation process,
hardware-dependent optimizations are performed.
Finally, the executable can be deployed and executed
on the selected quantum machine (see section 3.2).

4.3 NISQ Analyzer

The NISQ Analyzer is a component which analyzes

quantum algorithms and extracts the important

details, such as the number of required qubits or the

utilized gate set (Suchara et al., 2013). Therefore, the

quantum algorithm specified in the hardware-

independent quantum programming language can be

used as an input for the NISQ Analyzer. However, the

analysis of quantum algorithms and the precise

estimation of resource requirements are difficult

problems (Scherer et al., 2017). For example, the

required gates for the initial data encoding (Leymann,

2019) or the overhead due to required error correction

codes (Laflamme et al., 1996) must be considered.

Additionally, the resource requirements for oracle

implementations are often ignored but lead to a large

overhead that should be noted (Scherer et al., 2017).

Thus, tooling support is required that extracts all

relevant characteristics of quantum algorithms and

provides them to the other components, such as the

quantum compiler.

4.4 Quantum Compiler

The quantum compiler is in charge of performing the

mapping from the quantum assembler representing a

quantum algorithm to an executable for a concrete

quantum computer (Booth Jr, 2012; Heyfron and

Campbell, 2018). The mapping of gates and

measurements that are physically implemented by a

quantum computer can be performed directly.

However, gates and measurements that are not

physically available have to be mapped to a

“subroutine” consisting of physical gates and

measurements (Heyfron and Campbell, 2018). For

example, if a measurement using a certain basis is not

implemented, the quantum state must be transferred

into a basis for which a measurement is provided by

the quantum hardware and the measurement must be

done in this basis. The utilized subroutines strongly

influence the execution time and error probability of

the calculation, as they add additional gates and

measurements (Steiger et al., 2018). Hence, suited

metrics and algorithms to select the required

subroutines are important to reduce the overhead of

the mapping (see section 4.5). Additionally, the

qubits must be mapped to available physical qubits,

which influences the quantum algorithm execution as

well, due to different characteristics of the qubits,

such as decoherence time or connectivity (Zhang et

al., 2019). However, the available quantum compilers

are mostly vendor-specific (LaRose, 2019), and

therefore, compile the quantum algorithm

implementations defined in the quantum assembler of

a certain vendor to the executable for concrete

quantum hardware that is provided by this vendor.

Other quantum compilers define their own quantum

assembler language to specify quantum algorithms

and map them to executables for a certain quantum

computer as well (Javadi-Abhari et al., 2015). Thus,

the dependency on the vendor- or compiler-specific

quantum assembler language cannot be removed by

these kinds of quantum compilers. Hence, quantum

compilers must be integrated into the approach for

processing hardware-independent quantum

algorithms (see Figure 7).

4.5 Optimization of Quantum
Algorithms

Quantum algorithms can be optimized in two ways:

(i) hardware-independent or (ii) hardware-dependent

(Häner et al., 2018). For the hardware-independent

optimization, general optimizations at the quantum

circuit level are performed, according to a cost

function, such as the circuit size or the circuit depth

(Svore et al., 2006). In contrast, hardware-dependent

optimization takes hardware-specific characteristics,

such as the available gate set of the target quantum

computer or the decoherence time of different qubits,

into account (Itoko et al., 2020). Hence, this

optimization is often combined with the compilation

to an executable for a certain quantum computer.
In the following, we sketch some existing works

regarding the optimization of quantum algorithms.
(Heyfron and Campbell, 2018) propose a quantum
compiler that reduces the number of T gates, while
using the Clifford + T gate set. They show that the
cost of the T gate is much higher than for the other
Clifford gates, and therefore, they improve the circuit
costs by decreasing the T count. (Itoko et al., 2020)
present an approach to improve the hardware-
dependent mapping from the utilized qubits and gates
in the quantum algorithm to the provided qubits and
gates of the quantum computer during the
compilation process. (Maslov et al., 2008) propose an
approach that is based on templates to reduce the
circuit depth, which means the number of gates that

Quantum in the Cloud: Application Potentials and Research Opportunities

15

are executed in sequence on the qubits. A template is
a subroutine that can be used to replace functionally
equivalent circuit parts by more efficient ones in
terms of different metrics like cost or error
probability. Hence, they introduce a method to detect
and replace suitable circuit parts with templates.

4.6 Sample Research Questions

For the definition and processing of hardware-
independent quantum algorithms and the selection of
suitable quantum hardware, different research
questions must be solved, some of which are
presented in the following.

The definition of an abstract hardware-

independent quantum programming language is

important to remove the hardware dependencies of

quantum algorithms. Therefore, sample research

questions are: What elements are required to define

quantum algorithms? How should suited modeling

tooling support look like? What subroutines are

important and should be provided as libraries?

To automatically select the best available

quantum hardware for a quantum algorithm, suited

tooling support must be developed. Hence, open

research questions are: What characteristics of

quantum algorithms are important for the hardware

selection? How can these characteristics be retrieved

automatically? What are suited metrics and

algorithms for the hardware selection? What are the

interesting optimization goals?

The hardware-dependent and -independent

optimization of quantum algorithms are especially

important in the NISQ era. Therefore, interesting

research questions are: What are new or improved

optimization algorithms? What data about quantum

hardware is relevant for the optimization and how can

it be obtained?

By comparing the performance of different

quantum compilers, the compiler with the best

optimization result or best execution time can be

selected. Hence, sample research questions are: What

are suited benchmarks for the comparison of quantum

compilers? How can the optimality of the compiled

executable be verified with respect to different

optimization goals, like the number of required gates

or the number of fault paths?

5 QUANTUM MACHINE

LEARING: A USE CASE

Determining how quantum computing can solve

problems in machine learning is an active and fast-

growing field called quantum machine learning

(Schuld, 2015). In this section we give a use case from

the digital humanities (Berry, 2012) that shows how

quantum machine learning can be applied.

5.1 MUSE

The use case presented is from our digital humanities
project MUSE (Barzen et al., 2018; MUSE, 2020). It
aims at identifying costume patterns in films.
Costume patterns are abstract solutions of how to
communicate certain stereotypes or character traits by
e.g. the use of specific clothes, materials, colors,
shapes, or ways of wearing. To determine the
conventions that have been developed to
communicate for example a sheriff or an outlaw,
MUSE developed a method and a corresponding
implementation to support the method to capture and
analyze costumes occurring in films.

The method consists of five main steps: (1)

defining the domain by an ontology, (2) identifying –

based on strict criteria – the films having most impact

within the domain, (3) capturing all detailed

information about costumes in films in the MUSE

repository, (4) analyzing this information to

determine costumes that achieve a similar effect in

communicating with the recipient, and (5) abstracting

these similarities to costume patterns (Barzen et al.,

2018; Barzen, 2018). This method has been proven to

be generic by applying it in our parallel project

MUSE4Music (Barzen et al., 2016).

5.1.1 Ontology

To structure costume parameters that have a potential

effect on the recipient of a film a detailed ontology

was developed (Barzen, 2013). This ontology brings

together several taxonomies structuring subparts like

types of clothes, materials, function, or condition, as

well as relations (e.g. worn above, tucked inside,

wrapped around, etc.) on how base elements (e.g.

trousers, shirts, boots, etc.) are combined into an

overall outfit. The 3151 nodes of the ontology induces

the schema of the MUSE repository. The repository

facilitates the structured capturing of all relevant

information about the films, their characters and their

costumes.

5.1.2 Data Set

The MUSE data set currently (February 2020)
contains more than 4.700 costumes out of 57 films,
consisting of more than 26.00 base elements, 57,000
primitives (e.g. collar, sleeves, buttons, etc.), 145.000
colors and 165.000 material selections.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

16

Being part of the open data initiative, this data set

is freely available to be used and analyzed (MUSE

GitHub, 2020). It provides a well-structured and

labelled data set that allows several analysis

techniques to be applied. Especially promising are

techniques from machine learning like feature

extraction, clustering, or classification.

5.1.3 Data Analysis

As a first approach to analyze the data to identify

those significant elements a costume designer uses to

achieve a certain effect, a two-step analysis process

was introduced (Falkenthal et al., 2016). The first step

applies data mining techniques – mainly association

rule mining – to determine hypotheses about which

elements are used to communicate a certain

stereotype, for example. The second step aims at

refining and verifying such hypotheses by using

online analytical processing (OLAP) techniques

(Falkenthal et al., 2015) to identify indicators for

costume patters.

To improve the process of building hypotheses

that hint to potential costume patterns we are

currently extending the analysis of the MUSE data by

various techniques from machine learning. Each

costume has several properties that describe it in

detail. Simply mapping each property of a costume to

a feature, the resulting feature space would be of huge

dimension. Therefore, feature extraction, namely

principle component analysis (PCA), is applied to

reduce the dimension of the feature space without

losing important information (see section 5.2.2). To

group those costumes together that achieve the same

effect different cluster algorithms are applied and

evaluated (see section 5.2.4). As there are new

costumes stored at the database frequently the usage

of classification algorithms is investigated (see

section 5.2.5) to enable that these costumes get

classified as part of the right pattern identified before.

Currently, this approach is implemented on a

classical computer with classical machine learning

algorithms. But since quantum computing can

contribute to solve several problems in machine

learning – as shown in the following section – it is

promising to improve the approach by not only using

classical computer but to also use the potentials

offered by quantum computers (Barzen et al., 2020).

5.2 Potential Improvements

Several machine learning algorithms require the

computation of eigenvalues or apply kernel functions:

these algorithms should benefit from improvements

in the quantum domain. Many machine learning

algorithms are based on optimization, i.e.

improvements in this area like Quantum Approximate

Optimization Algorithm QAOA should imply

improvements of those machine learning algorithms.

Whether or not such improvements materialize is

discussed in several papers that compare sample

classical and quantum machine learning algorithms,

e.g. (Biamonte et al., 2017; Ciliberto et al., 2018;

Havenstein et al., 2018).

5.2.1 Data Preparation

The data captured in MUSE are categorical data

mostly. Since most machine learning algorithms

assume numerical data, such categorical data must be

transformed accordingly: this is a complex problem.

For example, the different colors of pieces of

clothes could be assigned to integer numbers. But the

resulting integers have no metrical meaning as

required by several machine learning algorithms.

Instead of this, we exploited the taxonomy that

structures all of our categorical data by applying the

Wu and Palmer metric (Wu et al., 1994) to derive

distances between categorial data. In addition, we

used word embeddings based on restricted Boltzmann

machines (Hinton, 2012).

As described above, costumes have a large

number of features, thus, this number must be

reduced to become tractable. We experiment with

feature extraction based on restricted Boltzmann

machines (Hinton et al., 2006) as well as with

principal component analysis (see section 5.2.2).

Feature selection based on deep Boltzmann machines

(Taherkhania et al., 2018) may also be used.

5.2.2 Eigenvalues

Principal component analysis strives towards

combining several features into a single feature with

high variance, thus, reducing the number of features.

For example, in Figure 8 the data set shown has high

variance in the A axis, but low variance in the B axis,

i.e. A is a principal component. Consequently, the X

and Y features of the data points are used to compute

A values as a new feature, reducing the two features

X and Y into a single feature A.

The heart of this analysis is the calculation of the

half axes and their lengths of the ellipse “best”

surrounding the data set. This is done by determining

the eigenvalues of the matrix representing the ellipse.

Computing eigenvalues can be done on a quantum

computer much faster than classically by means of

quantum phase estimation and variational quantum

eigensolvers. Thus, Quantum principal component

Quantum in the Cloud: Application Potentials and Research Opportunities

17

Figure 8: Principal component of a data set.

analysis (Lloyd et al., 2014) is an algorithm we will

use in our use case.

5.2.3 Quantum Boltzmann Machines

(Zhang et al., 2015) provided a quantum algorithm of

a quantum restricted Boltzmann machine. In a use

case, it has shown performance superior to a classical

restricted Boltzmann machine.

Similarly, (Amin et al., 2018) described an

approach for both, quantum Boltzmann machines as

well as quantum restricted Boltzmann machines.

They report that the quantum restricted Boltzmann

machine outperforms the classical restricted

Boltzmann machine for small size examples.

Thus, quantum Boltzmann machines are

candidates for our use case, especially because they

can be exploited in clustering and classification tasks.

5.2.4 Clustering

Several quantum clustering algorithms and their

improvements over classical algorithms are presented

in (Aimeur et al., 2007). Since clustering can be

achieved by solving Maximum Cut problems, some

attention has been paid to solve MaxCut on quantum

computers.

For example, (Crooks, 2018) as well as (Zhou et

al., 2019) use QAOA to solve MaxCut problems on

NISQ machines. A similar implementation on a

Rigetti quantum computer has been described by

(Otterbach et al., 2017)

Thus, quantum clustering is promising.

5.2.5 Classification

Support vector machines (SVM) are established

classifiers. (Rebentrost et al., 2014) introduce

quantum support vector machines and show an

exponential speedup in many situations.

(Schuld et al., 2014) present a quantum version of

the k-nearest neighbour algorithm, and an

implementation of a classifier on IBM Quantum

Experience (Schuld et al., 2017). A hybrid classifier

has been introduced by (Schuld et al., 2018).

The use of kernels in machine learning is well-

established (Hofman et al., 2008), and kernels are

used in case non-linear separable data must be

classified. A hybrid classifier that makes use of

kernels is given in (Schuld et al., 2019). (Ghobadi et

al., 2019) describe classically intractable kernels for

use even on NISQ machines.

Thus, quantum classifiers are promising.

5.3 Quantum Humanities

As stressed by the presented use case there are

promising application areas for quantum computing

not only in industry or natural science but also in the

humanities. We coined the term quantum humanities

for using quantum computing to solve problems in

this domain (Barzen et al., 2019). It aims at exploiting

the potentials offered by quantum computers in the

digital humanities and raise research questions and

describe problems that may benefit from applying

quantum computers.

Figure 9: MUSE data analysis.

Figure 9 shows the process and algorithms used to

analyze the MUSE data. Its application provides a

first feasibility study in the domain of quantum

humanities. Furthermore, it derives knowledge for

researchers as well as components reusable in other

domains. Sharing knowledge with other researchers

about solving problems with quantum computers is

right at the core of the vision of quantum humanities.

Therefore, a pattern language for quantum computing

as introduced in (Leymann, 2019) can provide

reusable knowledge that enables interested parties

that are not too familiar with the algorithmic or

mathematical aspects of quantum computing to also

participate at the potentials offered by quantum

computers. In order to provide not only reusable

knowledge, but also an advanced platform that

supports several steps in the work with quantum

computers (Leymann et al., 2019), section 6 outlines

Repository

(MUSE)

Feature
Extraction

Clustering

Classification

PCA

Maximum

Cut

SVM

Restricted

Boltzmann

Machines

Restricted

Boltzmann

Machines

Restricted

Boltzmann

Machines

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

18

the collaborative quantum platform we are currently

building.

5.4 Sample Research Questions

The most essential and fundamental question for
quantum humanities is to evaluate which existing and
new problems from the humanities can be addressed
by quantum computers. Especially, which problems
are best solved by classical, hybrid, or quantum
algorithms? Beside speedup, which algorithms result
in higher precision?

Which language allows to communicate between

many disciplines (e.g. mathematics, physics,

computer science, and the different areas from the

humanities)? Are there completely new questions

from the humanities that are only addressable based

on a quantum computer?

6 COLABORATIVE QUANTUM

APPLICATION PLATFORM

Driven by the continuous improvement of quantum
hardware, specialists in various fields have developed
new quantum algorithms and applications in recent
years. The use of these quantum applications requires
in-depth knowledge of theory and practice, which is
often lacking in small and medium-sized companies.
A major challenge today is to facilitate the transfer of
knowledge between research and practice to identify
and fully exploit the potential of new emerging
technologies. To prepare a body of knowledge for
quantum computing reasonably and make it usable
for different stakeholders, a collaborative platform
where all participants come together is essential
(Leymann et al., 2019). For this purpose, the quantum
application platform must cover the entire process
from the development of quantum algorithms to their
implementation and execution. The diversity of
stakeholders and their different objectives lead to a
variety of requirements for such a quantum platform.

Building upon the stakeholders identified by

(Leymann et al., 2019), we firstly identify key

entities, which serve as an anchor for the knowledge

on a quantum platform, secondly identify essential

requirements for their expedient implementation and,

finally, show a general extendable architecture for a

collaborative quantum software platform.

6.1 Key Entities

To foster a clear structuring of the knowledge created
on a quantum software platform the following key
entities can be used. They allow different experts to

hook into the platform and enables to share and
contribute knowledge.

Quantum Algorithm: As mentioned before,

quantum algorithms are developed and specified

typically by experts with in-depth quantum physics

background. Thus, for a quantum software platform it

is essential to capture quantum algorithms as artifacts.

Besides generally sharing them, further valuable

information can be attached to quantum algorithms,

such as discussion among experts regarding resource

consumption of an algorithm, its speedup against

classical algorithms, or its applicability to NISQ

computers.

Algorithm Implementation: Besides the

representation of quantum algorithms in their

conceptual form, i.e., as mathematical formulas or

abstract circuits, the heterogeneous field of quantum

hardware demands to capture vendor- and even

hardware-specific implementations of quantum

algorithms. This is because, implementations for a

particular quantum computer offering of a vendor

requires the use of a vendor-specific SDK. Thus,

implementations of an algorithm for quantum

computers offered by different vendors ends up in

different code or even the usage of completely

different quantum programming languages. Thus,

enabling sharing of different algorithm

implementations on a quantum software platform

stimulates knowledge transfer and reduces ramp-up

especially for unexperienced users.

Data Transformator: Since quantum algorithms

rely on the manipulation of quantum states they do

not operate directly on data as represented in classical

software. Instead, the data to be processed must be

encoded in such a way that they can be prepared into

a quantum register. Different problem classes such as

clustering or classification of data have specific

requirements for the data to be processed. It can be of

great benefit to identify general transformation and

coding strategies for relevant problem classes. Such

strategies can then be represented and discussed on

the platform as data transformators.

Hybrid Quantum Application: Since only the

quantum parts of an algorithm are executed on a

quantum computer, they must be delivered together

with classical software parts that run on classical

computers. To exploit the full potential of quantum

algorithms, they often have to be properly integrated

into an already running system landscape, which

includes proper data preparation and transformation.

This is why solutions that are rolled out in practice are

typically hybrid quantum applications (see section

3.2). Therefore, knowledge transfer about applicable

Quantum in the Cloud: Application Potentials and Research Opportunities

19

software solutions for particular use cases at hand is

bound to hybrid quantum applications.

Quantum Pattern: Software patterns are widely

used to capture proven solution principles for

recurring problems in many fields in computer

science. Thus, quantum patterns seem to be a

promising approach to also capture proven solutions

regarding the design of quantum algorithms, their

implementation and integration in existing systems.

First patterns for developing quantum algorithms

have already been published (Leymann, 2019).

6.2 Requirements

The essential challenge to create and provide a
reasonable body of knowledge on quantum
algorithms and applications involves the
collaboration among several stakeholders. In contrast
to traditional software engineering, quantum
algorithms are typically not specified by computer
scientist rather than by quantum physicists.
Furthermore, to understand and implement those
algorithms a different mindset is required because the
key buildings blocks of algorithms are no longer
loops, conditions, or procedure calls but quantum
states and their manipulation via unitary operators.

 By involving all participants identified by

(Leymann et al., 2019) in the platform, added value

can be created, both for experienced quantum

specialists and inexperienced customers. For this the

following listed requirements must be met.

Knowledge Access: Often only certain specialists

and scientists have the required expertise for

developing quantum algorithms and their

implementation. To identify and exploit the use cases

of quantum computing in practice, companies must

be empowered to gather knowledge and to exchange

with experts (developer, service provider,

consultants, and so on) (Mohseni et al., 2017).

Additionally, due to the high level of research

activities in this area, the exchange between experts

is important in order to share and discuss new

findings with the community at an early stage.

Best Practices for Quantum Algorithm

Development: The development of new algorithms

requires in-depth knowledge and expertise in theory

and practice. Documented, reusable best practices for

recurring problems, i.e. patterns, can support and

guide people in the development of new quantum

algorithms.

Decision-support for Quantum Applications and

Vendors: A two-stage decision-support is required to

identify appropriate solutions for real-world use

cases. First, quantum algorithms that prove to provide

a solution for a given problem have to be identified.

Second, the appropriate implementation and quantum

hardware have to be selected for integration and

execution. For the second stage the resource

consumption of algorithms and implementations on

different quantum hardware are of main interest (see

section 4.2).

Vendor-agnostic Usage of Quantum Hardware:

Currently, various algorithm implementations from

different vendors are available via proprietary SDKs

that have been developed specifically for their

hardware. To avoid vendor lock-in the quantum

algorithm must be portable between different vendors

which can be achieved by a standardized quantum

programming language (see section 3.1 and 4.2).

Data Transformation for Quantum Algorithms:

Especially for machine learning and artificial

intelligence data of sufficient quality is essential. This

applies to both, classical and quantum algorithms.

Such data have to be made available and respectively

encoded for the quantum algorithm (Mitarai et al.,

2019).

Quantum Application as a Service (QaaS): The

hybrid architecture of quantum applications

consisting of classical and quantum parts increases

the complexity of their deployment. Quantum

applications provided “as a Service” via a self-service

portal ease the utilization of the new technology (see

section 3.2).

6.3 Architecture

In Figure 10 the architecture of the collaborative

quantum software platform is depicted. In essence,

the platform consists of two parts: The analysis and

development platform as depicted on the left of the

figure for collecting, discussing, analyzing, and

sharing knowledge, and the marketplace as depicted

on the right that offers solutions in the form of

quantum applications and consulting services.

The analysis and development platform addresses

the needs of specialists and researchers in the field of

quantum computing and software engineering. In a

first step, knowledge in the form of publications,

software artifacts, datasets, or web content can be

placed on the platform – either manually via a user

interface or automatically using a crawler. This

knowledge can originate from various sources, such

as arXiv.org or github.com. In a first step it can be

stored as raw data in the QAlgo & data content store.

Content of interest has to be extracted from these raw

data, such as a quantum algorithm described in a

journal article. To facilitate collaboration among

different disciplines and to create a common

understanding, the representation of quantum circuits

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

20

Figure 10: Architecture for a collaborative quantum software platform.

and mathematical expressions must be normalized. A

qualified description of the knowledge artifact with

metadata is also essential to find and link relevant

knowledge. Therefore, metadata formats must be

normalized and enriched. The knowledge artifacts are

then stored and provided via an expert portal to

specialists and scientists and via a customer portal to

users looking for solutions for their use cases and the

community of interested people.

Specialists and scientists can discuss, evaluate,

and improve the different key entities on the platform.

Algorithms and their implementations can be linked

and evaluated based on defined metrics using the

NISQ-Analyzer (see section 4.3). Identified best

practices, e.g., for creating entanglement, can then be

stored as quantum patterns in a Quantum Computing

Pattern Repository. These patterns ease the

development of new algorithms as they provide

proven solutions for frequently occurring problems at

the design of quantum algorithms. Patterns solving

specific problems can then be combine and applied

for realizing a broader use case (Falkenthal et al.,

2014; Falkenthal et al., 2017). However, best

practices are not only relevant for the development,

but also for data preparation as input for quantum

algorithms and the integration of quantum algorithms

with classical applications. Data preparation is

essential, and must especially be considered in the

NISQ era.

Since most quantum algorithms are hybrid

algorithms, execution of quantum applications means

a distributed deployment of hybrid quantum

applications among classical and quantum hardware.

Such applications can be stored for reuse in the

Hybrid-App-Repository. For the quantum part, the

quantum computer vendor and more specific a single

QPU has to be selected, depending on the QPU

properties, the algorithm implementation, and the

input data. The platform automates this selection and

provides a vendor-agnostic access to quantum

hardware. For the deployment, technologies for

classical computing are evaluated to provide an

integrated deployment automation toolchain.

Standards such as the Topology and Orchestration

Specification for Cloud Applications (TOSCA)

(OASIS, 2019) have been developed precisely for this

purpose to enable portability, interoperability, and the

distribution across different environments (Saatkamp

et al., 2017; Saatkamp et al., 2019). Thus, TOSCA as

an international standard offers good foundation for

an integration of classical and quantum deployment.

While the expert portal is tailored to provide a

sufficient user interface and toolchain addressing the

needs of quantum computing experts the marketplace

on the right of Figure 10 enables service providers

and further stakeholders, such as consultants, to offer

solutions. Customers can place requests for solutions

for certain problems or use cases at hand. It is further

intended to also allow consulting services to be

offered in addition to hybrid quantum applications

and their deployments. This means that also business

models besides the development and distribution is

Quantum in the Cloud: Application Potentials and Research Opportunities

21

enabled by the interplay of the marketplace and the

analysis and development platform. For example,

hybrid quantum applications can be provided as a

Service, which is enabled through the automated

deployment capabilities by means of a TOSCA

orchestrator such as OpenTOSCA (Binz et al, 2013;

OpenTOSCA, 2020) or Cloudify (Cloudify, 2020).

Further, the selection of quantum algorithms fitting to

specific constraints of quantum hardware can be

supported by the NISQ-Analyzer and the discussions

of experts. With the help of the marketplace,

knowledge and software artifacts such as quantum

algorithm implementations and hybrid quantum

applications can be monetized. Every turnover on the

platform leads to incentives for participating experts

to make further knowledge available on the platform.

6.4 Sample Research Questions

The platform provides the basis for the technical

realization of the research questions already

discussed. However, further questions are raised:

What are best practices for data preparation as input

for quantum algorithms? What are best practices for

integrating quantum algorithms with classical

applications? How to combine the best practices in

quantum computing with other domains such as cloud

computing? Which metadata is required to adequately

describe the key entities on the platform?

7 CONCLUSIONS

New possibilities to solve classically intractable

problems based on quantum computing is at the

horizon. Quantum computers appear as part of the

cloud infrastructure, and based on the hybrid nature

of quantum-based applications, cloud computing

techniques will contribute to the discipline of building

them. Lots of new research questions appeared.

 We are about to build the collaborative quantum

application platform, and exploit it for several use

cases, especially in the area of machine learning. A

pattern language for quantum computing is under

construction. Research on the removal of hardware

dependencies including deployment of hybrid

quantum applications is ongoing.

ACKNOWLEDGEMENTS

We are grateful to Marie Salm and Manuela Weigold

for discussing several subjects of this paper. Also, our

thanks go to Daniel Fink, Marcel Messer and Philipp

Wundrack for their valuable input and implementing

several aspects sketched here.

This work was partially funded by the BMWi

project PlanQK (01MK20005N) and the university of

Stuttgart funded Terra Incognita project Quantum

Humanities.

REFERENCES

Aimeur, E., Brassard, G., Gambs, S., 2007. Quantum

Clustering Algorithms. In Proceedings of the 24th

International Conference on Machine Learning,

Corvallis, OR, 2007.

Amin, M. A., Andriyash, E., Rolfe, J., Kulchytskyy,.B.,

Melko, R., 2018. Quantum Boltzmann Machine. In

Phys. Rev. X 8, 021050, 2018.

Barzen, J., 2018. Wenn Kostüme sprechen –

Musterforschung in den Digital Humanities am

Beispiel vestimentärer Kommunikation im Film (in

German). Dissertation University Cologne.

Barzen, J., 2013. Taxonomien kostümrelevanter Parameter:

Annäherung an eine Ontologisierung der Domäne des

Filmkostüms (in German). Technical Report University

Stuttgart No. 2013/04.

Barzen, J., Breitenbücher, U., Eusterbrock, L., Falkenthal,

M., Hentschel, F., Leymann, F., 2016. The vision for

MUSE4Music. Applying the MUSE method in

musicology. In Comput Sci Res Dev, Proceedings of

SummerSoC 2016, 32. https://doi.org/10.1007/s00450-

016-0336-1.

Barzen, J., Falkenthal, M., Leymann, F., 2018. Wenn

Kostüme sprechen könnten: MUSE - Ein

musterbasierter Ansatz an die vestimentäre

Kommunikation im Film (in German). In Bockwinkel,

P., Nickel, B., Viehhauser, G., (ed.) Digital Humanities.

Perspektiven der Praxis, Frank & Timme.

Barzen, J., Leymann, F., 2020. Quantum Humanities: A

First Use Case for Quantum-ML in Media Science. In

ISAAI’19 Proceedings — Artificial Intelligence,

Digitale Welt. Vol. 4(1).

Barzen, J., Leymann, F., 2019. Quantum humanities: a

vision for quantum computing in digital humanities. In

SICS Softw.-Inensiv. Cyber-Phys. Syst., Proceedings of

SummerSoC 2019. https://doi.org/10.1007/s00450-

019-00419-4.

Berry, D., (ed.) 2012. Understanding Digital Humanities.

Palgrave.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P.,

Wiebe, N., Lloyd, S., 2017. Quantum Machine

Learning. In Nature 549, 195-202 (2017).

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,

F., Nowak, A., Wagner, S., 2013. OpenTOSCA – A

Runtime for TOSCA-based Cloud Applications. In

Proceedings of the 11th International Conference on

Service-Oriented Computing (ICSOC 2013), pages

692-695. Springer.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

22

Booth Jr, J., 2012: Quantum Compiler Optimizations. arXiv

preprint arXiv:1206.3348

Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil M.,

Rocchetto, A., Severini, S., Wossnig, L., 2018.

Quantum machine learning: a classical perspective. In

Proc.R.Soc.A 474: 20170551, 2018.

Cloudify, 2020. https://cloudify.co/ (accessed 02/16/2020).

Crooks, G. E., 2018. Performance of the Quantum

Approximate Optimization Algorithm on the Maximum

Cut Problem. arXiv:1811.08419v1.

Dunjko, V., Taylor, J. M., Briegel, H. J., 2016. Quantum-

Enhanced Machine Learning. In Phys. Rev. Lett. 117,

130501, 2016.

Falkenthal, M., Barzen, J., Breitenbücher, U., Brügmann,

S., Joos, D., Leymann, F., Wurster, M., 2016. Pattern

Research in the Digital Humanities: How Data Mining

Techniques Support the Identification of Costume

Patterns. In Comput Sci Res Dev, Proceedings of

SummerSoC 2016, 32. https://doi.org/10.1007/s00450-

016-0336-1.

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C.,

Leymann, F., 2014. Effective Pattern Application:

Validating the Concept of Solution Implementation in

Different Domains. In International Journal on

Advances in Software, 7(3&4):710-726.

Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C.,

Leymann, F., Hadjakos, A., Hentschel, F., Schulze, H.,

2016. Leveraging Pattern Applications via Pattern

Refinement. In Proceedings of the Inernational

Conference on Pursuit of Pattern Languages for Social

Change (PURPLSOC), pages 38-61, epubli GmbH.

Falkenthal, M., Barzen, J., Breitenbücher, U., Leymann, F.,

2017. Solution Languages: Easing Pattern Composition

in Different Domains. In International Journal on

Advances in Software, 10 (3&4):263-274.

Falkenthal, M., Barzen, J., Dörner, S., Elkind, V., Fauser,

J., Leymann, F., Strehl, T., 2015 Datenanalyse in den

Digital Humanities – Eine Annäherung an

Kostümmuster mittels OLAP Cubes (in German). In

Datenbanksysteme für Business, Technologie und Web

(BTW), 16. Fachtagung des GI-Fachbereichs

"Datenbanken und Informationssysteme" (DBIS).

Farhi, E., Goldstone, J., Gutmann, S., 2014. A Quantum

Approximate Optimization Algorithm. In MIT-

CTP/4610, 2014.

Ghobadi, R., Oberoi, J. S., Zahedinejhad, E., 2019. The

Power of One Qubit in Machine Learning.

arXiv:1905.01390v2.

Grimsley, H. R., Economou, S. E., Barnes, E., Mayhall, N.

J., 2019. An adaptive variational algorithm for exact

molecular simulations on a quantum computer. In Nat

Commun 10, 3007 (2019).

Guerreschi, G. G., Smelyanskiy, M., 2017. Practical

optimization for hybrid quantum-classical algorithms.

arXiv:1701.01450v1.

Havenstein, Ch., Thomas, D., Chandrasekaran, S., 2018.

Comparisons of Performance between Quantum and

Classical Machine Learning. In SMU Data Science

Review: Vol. 1 : No. 4, 2018.

Häner, T., Steiger, D. S., Svore, K., Troyer, M., 2018. A

software methodology for compiling quantum

programs. Quantum Science and Technology,

3(2):020501.

Heyfron, L. E., Campbell, E. T., 2018. An efficient

quantum compiler that reduces T count. Quantum

Science and Technology, 4(1):015004.

Hinton, G.E., Salakhutdinov, R. R., 2006. Reducing the

dimensionality of data with neural networks. In Science

313 (5786) (2006).

Hinton, G.E., 2012. A Practical Guide to Training

Restricted Boltzmann Machines. In Montavon G., Orr

G.B., Müller KR. (eds) Neural Networks: Tricks of the

Trade. Lecture Notes in Computer Science, vol 7700.

Springer.

Hofmann, Th., Schölkopf, B., Smola, A. J., 2008. Kernel

Methods in Machine Learning. In The Annals of

Statistics 2008, Vol. 36, No. 3, 1.

Itoko, T., Raymond, R., Imamichi, T., Matsuo, A., 2020.

Optimization of quantum circuit mapping using gate

transformation and commutation. Integration, 70:43–

50.

Javadi-Abhari, A., Nation, P., Gambetta, J., 2019. Qiskit

– write once, target multiple architectures.

https://www.ibm.com/blogs/research/2019/11/qiskit-

for-multiple-architectures/ (accessed 02/14/2020).

Javadi-Abhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov,

A., Chong, F. T., Martonosi, M., 2015. ScaffCC: Scalable

Compilation and Analysis of Quantum Programs.

Parallel Computing, 45:2–17.

Jozsa, R., Linden, N., 2003. On the role of entan- glement

in quantum-computational speed-up. Pro- ceedings of

the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences, 459(2036):2011–

2032.

Laflamme, R., Miquel, C., Paz, J. P., Zurek, W. H., 1996.

Perfect Quantum Error Correcting Code. Physical

Review Letters, 77(1):198.

LaRose, M., 2019. Overview and Comparison of Gate

Level Quantum Software Platforms.

arXiv:1807.02500v2.

Leymann, F., 2019. Towards a Pattern Language for

Quantum Algorithms. In First International Workshop

on Quantum Technology and Optimization Problems

(QTOP 2019). Springer International Publishing.

Leymann, F., Barzen, J., Falkenthal, M., 2019. Towards a

Platform for Sharing Quantum Software. In

Proceedings of the 13th Advanced Summer School on

Service Oriented Computing (2019). IBM Research

Division.

Lloyd, S., Mohseni, M., Rebentrost, P., 2014. Quantum

principal component analysis. In Nature Physics 10,

631 (2014).

Maslov, D., Dueck, G. W., Miller, D. M., Negrevergne, C.,

2008. Quantum Circuit Simplification and Level

Compaction. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(3):436–

444.

McCaskey, A. J., Lyakh, D., Dumitrescu, E., Powers, S.,

Humble, T. S., 2020. XACC: a system-level software

Quantum in the Cloud: Application Potentials and Research Opportunities

23

infrastructure for heterogeneous quantumclassical

computing. Quantum Science and Technology.

Mitarai, K., Kitagawa, M., Fujii, K., 2019. Quantum

analog-digital conversion. In Phys. Rev. A 99(1).

American Physical Society.

Mohseni, M., Read, P., Neven, H., 2017. Commercialize

early quantum technologies. In Nature 543(7644).

Montanaro, A., 2016. Quantum algorithms: an overview. In

npj Quantum Information (2016) 2, 15023.

MUSE, 2020. https://www.iaas.uni-stuttgart.de/

forschung/projekte/muse/ (accessed 02/22/2020).

MUSE GitHub, 2020. https://github.com/Muster-Suchen-

und-Erkennen/muse-docker (accessed 02/22/2020).

National Academies of Sciences, Engineering, and

Medicine, 2019. Quantum Computing: Progress and

Prospects. The National Academies Press, Washington,

DC.

Nielsen, M. A., Chuang, I. L., 2016. Quantum Computation

and Quantum Information. Cambridge University

Press, 2016.

OASIS, 2019. TOSCA Simple Profile in YAML Version

1.2. OASIS. (accessed 02/22/2020).

OpenTOSCA, 2020. http://www.opentosca.org/

(accessed 02/22/2020).

Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A.,

Block, M., Bloom, B., Caldwell, S., Didier, N.,

Schuyler Fried, E., Hong, S., Karalekas, P., Osborn, C.

B., Papageorge, A., Peterson, E. C., Prawiroatmodjo,

G.,Rubin, N., Ryan, C. A., Scarabelli, D., Scheer, M.,

Sete, E. A., Sivarajah, P., Smith, R: S., Staley, A.,

Tezak, N., Zeng, W. J., Hudson, A., Johnson, B. R.,

Reagor, M., da Silva, M. P., Rigetti, C., 2017.

Unsupervised Machine Learning on a Hybrid Quantum

Computer. arXiv:1712.05771.

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,

X.-Q., Love, P. J., Aspuru-Guzik, A., O'Brien, J.L.,

2013. A variational eigenvalue solver on a quantum

processor. In Nature Communications, 5:4213, (2014).

Plesch, M., Brukner, Č., 2011. Quantum-state preparation

with universal gate decompositions. In Phys. Rev. A 83,

032302, 2011.

Preskill, J., 2018. Quantum Computing in the NISQ era and

beyond. In Quantum 2, 79 (2018).

Rebentrost, P., Mohseni, M., Lloyd, S., 2014. Quantum

support vector machine for big data classification. In

Phys. Rev. Lett. 113, 130503 (2014).

Saatkamp, K., Breitenbücher, B., Kopp, O., Leymann, F.,

2019. Method, formalization, and algorithms to split

topology models for distributed cloud application

deployments. Computing 102(2): 343-363.

Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.,

2017. Topology Splitting and Matching für Multi-

Cloud Deployments. In Proceedings of the 7th

International Conference on Cloud Computing and

Service Science (CLOSER 2017), pages 247-258,

SciTePress.

Scherer, A., Valiron, B., Mau, S.-C., Alexander, S., Van

den Berg, E., and Chapuran, T. E. (2017). Concrete

resource analysis of the quantum linear-system

algorithm used to compute the electromagnetic

scattering cross section of a 2d target. Quantum

Information Processing, 16(3):60.

Schuld, M., Fingerhuth, M., Petruccione, F., 2017.

Implementing a distance-based classifier with a

quantum interference circuit. arXiv:1703.10793.

Schuld, M.. Killoran, N., 2019. Quantum machine learning

in feature Hilbert spaces. In Phys. Rev. Lett. 122,

040504 (2019).

Schuld, M., Sinayskiy, I., Petruccione, F., 2014. Quantum

Computing for Pattern Classification. In Trends in

Artificial Intelligence, LNAI 8862, Springer, 2014.

Schuld, M., Sinayskiy, I., Petruccione, F., 2015. An

introduction to quantum machine learning. In

Contemporary Physics, 56:2, 172-185 (2015).

Shende, V. V., Markov, I. L., 2005. Quantum Circuits For

Incompletely Specified Two-Qubit Operators. In

Quantum Information & Computation 5, (2005).

Steiger, D. S., Haner, T., and Troyer, M. (2018). Pro- ¨

jectq: An open source software framework for quantum

computing. Quantum, 2:49.

Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F. T.,

Lai, C.-Y., and Paz, G. (2013). Qure: The quantum

resource estimator toolbox. In 2013 IEEE 31st

International Conference on Computer Design (ICCD),

pages 419–426. IEEE.

Svore, K. M., Aho, A. V., Cross, A. W., Chuang, I.,

Markov, I. L., 2006. A layered software architecture for

quantum computing design tools. Computer, 39(1):74–

83.

Taherkhania, A., Cosmaa, G., McGinnity, T. M., 2018.

Deep-FS: A feature selection algorithm for Deep

Boltzmann Machines. In Neurocomputing 322 (2018).

Wu, Z., Palmer, M., 1994. Verb semantics and lexical

selection. In Proceedings of the 32nd Annual Meeting

of the Associations for Computational Linguistics, Las

Cruces, New Mexico, (1994).

Zhang, Y., Deng, H., Li, Q., Song, H., Nie, L., 2019.

Optimizing Quantum Programs against Decoherence:

Delaying Qubits into Quantum Superposition. In 2019

International Symposium on Theoretical Aspects of

Software Engineering (TASE), pages 184–191. IEEE.

Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M. D.,

2019. Quantum Approximate Optimization Algorithm:

Performance, Mechanism, and Implementation on

Near-Term Devices. arXiv:1812.01041v2.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

24

