
In-memory k Nearest Neighbor GPU-based Query Processing

Polychronis Velentzas1, Michael Vassilakopoulos1 and Antonio Corral2
1Data Structuring & Eng. Lab., Dept. of Electrical & Computer Engineering, University of Thessaly, Volos, Greece

2Dept. of Informatics, University of Almeria, Spain

Keywords: Nearest Neighbors, GPU Algorithms, Spatial Query, In-memory Processing, Parallel Computing.

Abstract: The k Nearest Neighbor (k-NN) algorithm is widely used for classification in several application domains
(medicine, economy, entertainment, etc.). Let a group of query points, for each of which we need to compute
the k-NNs within a reference dataset to derive the dominating feature class. When the reference points volume
is extremely big, it can be proved challenging to deliver low latency results. Furthermore, when the query
points are originating from streams, the need for new methods arises to address the computational overhead.
We propose and implement two in-memory GPU-based algorithms for the k-NN query, using the CUDA API
and the Thrust library. The first one is based on a Brute Force approach and the second one is using heuristics
to minimize the reference points near a query point. We also present an extensive experimental comparison
against existing algorithms, using synthetic and real datasets. The results show that both of our algorithms
outperform these algorithms, in terms of execution time as well as total volume of in-memory reference points
that can be handled.

1 INTRODUCTION

Modern applications utilize big spatial or multidimen-
sional data. Processing of these data is demanding
and the use of parallel processing plays a crucial role.
Parallelism based on GPU devices is gaining popular-
ity during last years (Barlas, 2014). A GPU device
can host a very large number of threads accessing the
same device memory. In most cases, GPU devices
have much larger numbers of processing cores than
CPUs and faster device memory than main memory
accessed by CPUs, thus, providing higher computing
power. GPU devices that have general computing ca-
pabilities appear in many modern commodity com-
puters. Therefore, GPU-devices can be widely used
to efficiently compute demanding spatial queries.

Since GPU device memory is expensive in com-
parison to main memory, it is important to take advan-
tage of this memory as much as possible and scale-
up to larger datasets and avoid the need for costly
distributed processing. Distributed processing suffers
from excessive network cost which sometimes over-
comes the benefits of distributed parallel execution.

The k Nearest Neighbor (k-NN) algorithm is
widely used for classification in many problems areas
(medicine, economy, entertainment, etc.). For exam-
ple, k-NN classification has been used for economic

forecasting, including bankruptcy prediction. (Chen
et al., 2011) present a model for bankruptcy predic-
tion using adaptive fuzzy k-NN, where k and the fuzzy
strength parameter are adaptively specified by particle
swarm optimization, while (Cheng et al., 2019) use k-
NN for predicting financial distress (a key factor for
bankruptcy).

Let a group of query points, for each of which
we need to compute the k-NNs within a reference
dataset to derive the dominating feature class. When
the reference points volume is extremely big, it can
be proved challenging to deliver low latency results
and GPU-based techniques may improve efficiency.
Furthermore, when the query points are originating
fast from streams, the computational overhead is even
larger and the need for new parallel methods arises.

In this paper, We propose and implement two in-
memory GPU-based algorithms for the k-NN query,
using the CUDA API (NVIDIA, 2020) and the Thrust
library (Barlas, 2014). The first one is Brute-force
based and the second one is using heuristics to mini-
mize the reference points near a query point.

We also present an extensive experimental com-
parison against existing algorithms, using synthetic
and real datasets. The results show that both of our
algorithms outperform these algorithms, in terms of
execution time as well as total volume of in-memory

310
Velentzas, P., Vassilakopoulos, M. and Corral, A.
In-memory k Nearest Neighbor GPU-based Query Processing.
DOI: 10.5220/0009781903100317
In Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2020), pages 310-317
ISBN: 978-989-758-425-1
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



reference points that can be handled.
The rest of this paper is organized as follows. In

Section 2, we review related work and present the mo-
tivation for our work. Next, in Section 3, we present
the new algorithms that we developed for the k-NN
GPU-based Processing and in Section 4, we present
the experimental study that we performed for study-
ing the performance of our algorithms and for com-
paring them to their predecessors. Finally, in Sec-
tion 5, we present the conclusions arising form our
work and discuss our future plans.

2 RELATED WORK AND
MOTIVATION

In this section, we review the most representative al-
gorithms to solve k-NN queries in GPU. k-NN is typ-
ically implemented on GPUs using brute force (BF)
methods applying a two-stage scheme: (1) the com-
putation of distances and (2) the selection of the near-
est neighbors. For the first stage, a distance matrix is
built grouping the distance array to each query point.
In the second stage, several selections are performed
in parallel on the different rows of the matrix.

There are different approaches for these two
stages. In (Kuang and Zhao, 2009), the distance
matrix is split into blocks of rows and each matrix
row is sorted using radix sort method. In (Garcia
et al., 2010), the previous distance matrix calcula-
tion scheme is used, but insertion sort method is ap-
plied instead of radix sort. (Liang et al., 2009) uses
the same approach as (Kuang and Zhao, 2009) and
(Garcia et al., 2010) to compute the distance matrix
and, for the selection phase, they calculate a local
k-NN for each block of threads and obtain a global
k-NN by merging. In (Komarov et al., 2014), for
the matrix computation uses the (Kuang and Zhao,
2009) and (Garcia et al., 2010) scheme and modi-
fies the selection phase with a quicksort-based selec-
tion. Each block performs a selection operation with a
large number of threads per block. In (Sismanis et al.,
2012), the truncated sort algorithm was introduced in
the selection phase.

In (Arefin et al., 2012), the GPU-FS-kNN algo-
rithm was presented. It divides the computation of
the distance matrix into squared chunks. Each chunk
is computed using a different kernel call, reusing the
allocated GPU-memory. A selection phase is per-
formed after each chunk is processed.

In (Gutiérrez et al., 2016), an incremental neigh-
borhood computation that eliminates the dependen-
cies between dataset size and memory is presented.
The iterative process copies several reference point

subsets into the GPU. Then, the algorithm runs the
local neighborhood search to find the k nearest neigh-
bors from the query points to the reference point sub-
sets. Merging candidate result sets with new reference
point subsets is used to reach the final solution.

In (Barrientos et al., 2011), a GPU heap-based al-
gorithm (called Batch Heap-Reduction) is presented.
Since it requires large shared memory, it is not able
to solve k-NN queries for high k values. In (Barri-
entos et al., 2017), new approaches to solving k-NN
queries in GPU using exhaustive algorithms based
on the selection sort, quicksort and state-of-the-art
heaps-based algorithms are presented.

(Kato and Hosino, 2012) proposes a new algo-
rithm that is also suitable for several GPU devices.
The distance matrix is split into blocks of rows. Each
thread computes the distances for a row. Parallel
threads push new candidates to a max-heap using
atomic operations. (Masek et al., 2015) presents a
multi-GPU implementation of a k-NN algorithm.

In (Li and Amenta, 2015), a new BF k-NN imple-
mentation is proposed by using a modified inner loop
of the SGEMM kernel in MAGMA library, a well-
optimized open source matrix multiplication kernel.
This brute force k-NN approach has been used in
(Singh et al., 2017) to accelerate calibration process
of a k-nearest neighbors classifier using GPU.

Some of these algorithms (like the ones of (Gar-
cia et al., 2010) and their improved implementations
(Garcia et al., 2018)) consume a lot of device mem-
ory, since a Cartesian product matrix, containing the
distances of reference points to the query points, is
stored. In this paper, we present alternative algo-
rithms that focus on maximizing the total reference
points stored in the device memory, which could ac-
celerate execution by avoiding the creation of ex-
tra (unnecessary) data chunks and could scale-up to
larger reference datasets.

3 k-NN GPU-BASED
ALGORITHMS

In this section, we present the two new algorithms that
we developed and implemented using this library.

3.1 Thrust Brute-force

The first method is based on a “brute force” algorithm
(Fig.1), using the Thrust library (denoted by T-BF).
Brute force algorithms are highly efficient when ex-
ecuted in parallel. The algorithm has two input pa-
rameters, a dataset R consisting of m reference points
R = {r1,r2,r3..rm} in a 3d space and a dataset Q of

In-memory k Nearest Neighbor GPU-based Query Processing

311



Figure 1: Query point (red), k= 5 nearest neighbors (black).

n query points Q = {q1,q2,q3..qn} also in a three-
dimensional space. For every query point q ∈ Q, the
following steps are executed:

1. Calculate all the Euclidean distances between the
query point q and the reference points r E R. Store
the calculated distances in a dataset D consisting
of m distances D = {d1,d2,d3..dm}

2. Sort the distances D dataset

3. Create the KNN dataset K of the k nearest neigh-
bor points
K = {k1,k2,k3..kk}. These points contain the
sorted distances as well as the R dataset indices.

After n repetitions, all the KNN points will be calcu-
lated. Although the BF is perfectly suitable for a GPU
implementation, we noticed that the sorting step is
extremely GPU computationally bound. The CUDA
profiler revealed the 90% (or more in large datasets)
of the GPU computation is dedicated to sorting.

3.2 Thrust Distance Refinement

The aforementioned method T-BF is memory efficient
and well-performing but when the reference dataset
is extremely big, the distance sorting step deteriorates
the overall performance. This observation led us to
our next implementation, which radically refines the
nearest reference points.

The main concept of distance refinement method
(denoted by T-DS) is that we can calculate the num-
ber of reference points by searching in concentric
ranges. We count the reference points of each con-
centric range until the total points counted exceed the
needed k points.

Our first approach was to search in concentric
rings of equal width. The width of the ring l is con-
stant and is calculated as k times double the maximum
width of reference points area tmax, divided by the
number of reference points t p.

l = k ∗2t ∗ tmax/t p

Experimentation revealed that this approach was only
efficient in dense and uniformly distributed reference

Figure 2: Distance Refinement, query point in red, refer-
ence points in black, k = 10.

points without gaps. When we used synthetic or real
data, the results were the same or only a bit better than
the T-BF method. The problem was that the search
area did not scale quickly enough.

On our second approach, we used a hybrid area
incrementation step. Every two search rings, we dou-
bled the search ring width (Fig.2). This way the
search increment was semi-exponential. The algo-
rithm can scale quickly and produce excellent results
for all kinds of datasets.

By refining the initial dataset, we create a very
small intermediate dataset that contains at least k ref-
erence points. This dataset will be used in the costly
sorting part of the algorithm and will speed up the ex-
ecution time (as we will experimentally show).

The algorithm has two input parameters, a dataset
R consisting of m reference points R = {r1,r2,r3..rm}
in a three-dimensional space and a dataset Q of n
query points Q = {q1,q2,q3..qn} also in a three-
dimensional space. For every query point q ∈ Q, the
following steps are executed:

1. Calculate the starting ring width l

2. Calculate all the Euclidean distances between the
query point q and the reference points r E R. Store
the calculated distances in a dataset D consisting
of m distances D = {d1,d2,d3..dm}

3. While the count of reference points c is less than
equal of k repeat

(a) If repetion%2 = 0, count the distance points
of the area ring between the circles with radius
repetion∗ l and (repetition+1)∗ l

(b) If repetion%2 = 1, count the distance points

GISTAM 2020 - 6th International Conference on Geographical Information Systems Theory, Applications and Management

312



of the area ring between the circles with radius
repetion∗ l and (repetition+1)∗ l. Double the
ring width l = 2∗ l

4. Refine the distance points of less than or equal
to distance (repetition + 1) ∗wr and copy them
to dataset DR consisting of c distances DR =
{dr1,dr2,dr3..drc}

5. Sort the distances DR dataset

6. Create the KNN dataset K of the k nearest neigh-
bor points
K = {k1,k2,k3..kk}. These points contain the
sorted distances as well as the R dataset indices.

After n repetitions, all the KNN points will be calcu-
lated. For example in Figure 2, we calculated a dis-
tance refinement of radius 4l resulting to a total of 12
distance points.

4 EXPERIMENTAL STUDY

We run a large set of experiments to compare the
repetitive application of the existing algorithms and
the newly implemented ones for processing batch
KNN queries. All experiments query at least 100K
reference points. We did not include less than 100K
reference points because we target the maximum
in-memory utilization and reference point less than
100K do not fit in this context. The maximum refer-
ence points limit is 200M, which only our algorithm
T-DS achieved.

We have created random and synthetic clustered
datasets of 100.000, 250.000, 500.000 and 1.000.000
points. All the existing methods could only be ex-
ecuted with 100.000 reference points and only one
of them scaled to 1.000.000 points. Furthermore,
in order to check our method scaling we also cre-
ated random datasets of 10.000.000, 100.000.000 and
200.000.000 reference points. We also used three
big real datasets (Eldawy and Mokbel, 2015), which
represent water resources of North America (Water
Dataset) consisting of 5.836.360 line-segments and
world parks or green areas (Parks Dataset) consisting
of 11.503.925 polygons and world buildings (Build-
ings Dataset) consisting of 114.736.539 polygons. To
create sets of points, we used the centers of the line-
segment MBRs from Water and the centroids of poly-
gons from Park and Build. For all datasets the 3-
dimensional data space is normalized to have unit
length (values [0, 1] in each axis).

We run a series of experiments searching for 20
Nearest Neighbors (k= 20), using the aforementioned
datasets with groups of 1,10,100,250,500,750 random
query points. Every experiment was run at least 10

times and the mean of the experiment results were
calculated for every method.

All experiments were performed on a Dell In-
spiron 7577 laptop, running Windows 10 64bit,
equipped with a quad-core (8-thread) Intel I7 CPU,
16GB of main memory, a 256SSD disk used for the
operating system, a 1TB 7.2K SATA-3 Seagate HDD
storing our data and a NVIDIA Geforce 1060 (Mobile
Max-Q) GPU with 6GB of memory.

We run experiments to compare the performance
of batch KNN queries, regarding execution time as
well as memory utilisation. We tested a total of five
algorithms. Three of them are existing ones and the
other two are the new algorithms we implemented.
The list of algorithms is as follows:

1. BF-Global, Brute Force algorithm using the
Global memory (Garcia et al., 2010)

2. BF-Texture, using the GPU texture memory (Gar-
cia et al., 2018)

3. BF-Cublas, using CUBLAS (BLAS highly opti-
mized linear algebra library) (Garcia et al., 2010)

4. T-BF, Brute Force algorithm using Thrust library

5. T-DS, Distance Refinement algorithm using
Thrust library

4.1 Random Reference Points

In our first series of tests, we used random datasets for
the reference points. We created the datasets in vari-
ous volumes using normalized random points. The re-
sulting datasets’ density increased analogously to the
reference points cardinality. The datasets created are
near uniformly distributed.

In the first chart (Fig. 3) with one query point,
we can see that our algorithms T-BF and T-DS are
extremely faster than the other methods. For one
query point T-BF finished in 0,53ms and T-DS in
0,59ms for the 100K reference points experiment.
The best of the other methods was BF-Texture achiev-
ing 39,68ms. It worths mentioning that the 100K ex-
periment was the only one that BF-Texture and BF-
Cublas finished. These two methods (BF-Texture and
BF-Cublas) could not scale at higher volumes of ref-
erence points, mainly due to execution exceptions re-
garding memory allocation problems. For the 1M ref-
erence points experiment the execution time differ-
ence is much greater, the BF-Global implementation
finished in 369,18ms while T-BF finished in 3,61ms
and T-DS in 0.92ms. The maximum speedup gain that
T-DS achieved was 529 (times faster) than BF-Global,
at 750K reference points (Table 1).

In the second chart with 10 query points, we can
observe about the same results as with the one query

In-memory k Nearest Neighbor GPU-based Query Processing

313



Figure 3: Random reference points, k = 20. X-axis: reference point cardinality, Y-axis: execution time measured in ms.

Table 1: Speedup gain of new methods T-BF,T-DS versus
BF-Global, using Random dataset.

Algo- Query Random Reference Points
rithm Points 100K 250K 500K 750K 1M
T-BF 1 117,27 101,69 123,58 122,25 102,41
T-DS 1 104,33 251,95 405,79 529,63 401,72
T-BF 10 15,36 11,62 11,98 13,82 10,47
T-DS 10 12,88 26,07 41,74 48,79 45,64
T-BF 100 1,80 1,24 1,40 1,38 1,15
T-DS 100 1,46 3,03 4,26 5,21 4,86
T-BF 250 0,86 0,54 0,59 0,63 0,71
T-DS 250 0,69 1,33 1,94 2,39 2,93

experiment. At 100K reference points, the best of
existing algorithms was again BF-Texture, finishing
at 40ms, while T-BF finished at 4.29ms and T-DS
at 5.11ms. For the 1M reference points experiment
the execution time difference is again much greater,
the BF-Global implementation finished in 377,91ms
while T-BF finished in 36.11ms and T-DS in 8.28ms.
T-DS was 45 times faster than BF-Global.

When reaching the group of 100 query points, we
can see that the execution time of T-BF is a slightly
better than the BF-Global. The overhead of sorting
large volumes of distance datasets begin to emerge.
The T-DS on the other hand continued its excellent
performance, finishing in 81.8ms at 1M reference
points, while BF-Global finished in 397.42ms.

In the following experiments, using groups of

250,500 and 700 query points, T-BF performance was
inferior compared to BF-Global. The T-DS algorithm
kept on outperforming the other ones, especially on
the large volumes of reference points.

In order to explore the limits of the algorithms,
we created random datasets ranging from 10M to
200M reference points (Fig. 4). The existing al-
gorithms could not scale higher than 1M reference
points. The T-BF reached 100M reference points.
The only algorithm that succeeded in 200M reference
points is T-DS. T-BF using one query point, executed
in 10M reference points in 28.96ms and T-DS in just
4.07ms. The T-DS finished in the 200M reference
points experiment in 61.93ms. The 10 points query
group, resulted analogously in 291.93ms for T-BF and
37.08ms for T-DS. All the other experiments resulted
to close linear performance, in respect to query points
groups. The T-DS implementation executed 10 times
faster than the T-BF one, in extremely large volumes
of reference datasets.

In terms of memory scaling the new algorithm T-
DS can compute up to 200M reference points. The
maximum reference points that other methods could
achieve are 1M reference points, thus our methods
can scale up to 200 times more than the other ones.
It worths mentioning that T-DS is much faster than
T-BF, because of the sorting overhead of T-BF.

GISTAM 2020 - 6th International Conference on Geographical Information Systems Theory, Applications and Management

314



Figure 4: Maximum reference points, k = 20. X-axis: reference point cardinality, Y-axis: execution time measured in ms.

4.2 Synthetic Reference Points

We have also used synthetic datasets following dif-
ferent data distributions, and each data set contains
100.000, 250.000, 500.000, 750.000 and 1.000.000
points (Fig. 5). We have created these datasets be-
cause they are not uniformly distributed, like the ran-
dom ones and they resemble real-life data distribu-
tions. The synthetic reference points datasets are cre-
ated according to Zipf’s law. The Zipf distribution is
defined as follows, and the value of z that we have
used is 0.7.

f (i) =
1
iz

∑
n
j=1

1
jz
, i = 1,2, · · · ,n

The random experiment results are confirmed in this
experiment. In the one query point experiment,
in ascending order, T-BF finished in 0.48ms, T-DS
in 0.65ms, BF-Texture in 49,76ms, BF-Global in
62.04ms and BF-Cublas in 74.41ms, for the 100K
reference dataset. The 1M experiment resulted to T-
DS 2.18ms, T-BF 3.56ms and BF-Global 367.57ms.
The maximum speedup gain that T-DS achieved was
270 (times faster) than BF-Global, at 750K reference
points (Table 2).

The 10 query point experiment resulted to a sim-
ilar outcome. The T-DS again was faster and out-
performed BF-Global by 25 times. When the query
points reached up to 100, we noticed that the perfor-
mance of T-BF is similar and slightly better than BF-
Global. On the other hand T-DS is still performing
good, especially for≥ 500K reference points. Finally
in the 250 query points experiment, BF-Global sur-
passes T-BF, but is still slower than T-DS algorithm.

For one more time, T-DS is much faster than T-BF,
because of the sorting advantage reduction, as docu-
mented in the previous section.

Table 2: Speedup gain of new methods T-BF,T-DS versus
BF-Global, using Synthetic dataset.

Algo- Query Synthetic Reference Points
rithm Points 100K 250K 500K 750K 1M
T-BF 1 128,45 89,87 101,04 118,75 103,25
T-DS 1 94,57 134,70 196,90 270,53 168,76
T-BF 10 15,64 9,02 9,52 13,22 10,86
T-DS 10 10,34 11,56 20,48 25,04 24,58
T-BF 100 1,82 1,06 1,02 1,44 1,10
T-DS 100 1,20 1,21 1,94 3,65 2,54
T-BF 250 0,82 0,58 0,64 0,68 0,70
T-DS 250 0,54 0,66 1,25 1,44 1,74

4.3 Real Reference Points Comparison

We conducted 6 experiments using three different real
datasets using groups of query points of 10 and 100
points (Fig. 6). In order to compare all the algorithms
we created two reference datasets of 100K and 1M
points per every real dataset, by reducing them (the
real datasets) uniformly.

The only experiment that all the algorithms com-
pleted, is the one with 100K reference points. The
BF-Texture and BF-Cublas algorithm failed in all
subsequent experiments. The fastest algorithm in the
100K case was T-BF, finishing in 4.53ms (Water),
4.38ms (Parks) and 4.36ms (Buildings), while query-
ing 10 points and 43.78ms (Water), 43.99ms (Parks)
and 41.1ms (Buildings) while querying 100 points. In
the case of 1M reference points the T-DS was slightly
faster than T-BF. When we queried the hole datasets
the T-DS was about 2 times faster than T-BF.

The maximum speedup gain that T-DS achieved
was 391 (times faster) than BF-Global, at 1M water
reference points, using one query point (Table 3). Fur-
thermore, in the real dataset example, we certify once
more that T-DS is much faster than T-BF, because of
the sorting advantage.

In-memory k Nearest Neighbor GPU-based Query Processing

315



Figure 5: Synthetic reference points, k = 20. X-axis: reference point cardinality, Y-axis: execution time measured in ms.

Figure 6: Real reference points, k = 20. X-axis: reference point cardinality, Y-axis: execution time measured in ms.

Table 3: Speedup gain of new methods T-BF,T-DS versus BF-Global, using Real datasets.

Water Ref. Points Parks Ref. Points Buildings Ref. Points
Algorithm Query Points 100K 1M 100K 1M 100K 1M

T-BF 1 120,98 135,49 128,43 131,26 119,25 136,10
T-DS 1 38,31 391,19 74,74 102,16 78,85 352,03
T-BF 10 16,71 14,55 22,33 14,54 23,81 15,64
T-DS 10 5,55 15,73 11,07 16,95 10,97 32,28
T-BF 100 2,72 1,84 2,52 1,71 4,00 1,98
T-DS 100 1,14 1,81 1,53 2,31 2,19 3,22
T-BF 250 1,51 1,02 1,37 0,76 1,50 0,89
T-DS 250 0,61 1,08 0,79 1,04 0,80 1,47

GISTAM 2020 - 6th International Conference on Geographical Information Systems Theory, Applications and Management

316



5 CONCLUSIONS AND FUTURE
PLANS

In this paper, we presented new algorithms for k-NN
query processing in GPUs. These algorithms maxi-
mize the utilization of device memory, handling more
reference points in the computation. Through an ex-
perimental evaluation on synthetic and real datasets,
we concluded that these algorithms, not only work
faster than existing methods for small groups of query
points, but also scale-up to much larger reference
datasets. Moreover we validated that T-DS algorithm
is faster than T-BS, because of the extra refinement
step minimizing the sorting overhead.

Future work plans include:

• Comparison of our algorithms to other algorithms
in the literature, regarding execution time and
scaling-up within the available device memory,

• Combination of GPU-based algorithms to data
stored in SSDs, using smart transferring of
data between the SSD, RAM and device mem-
ory (Roumelis et al., 2016) (without indexes),
(Roumelis et al., 2019) (using indexes),

• Testing the effectiveness of our algorithms on data
from other application domains, e.g. financial
data (Cheng et al., 2019),

• Implementation of queries (like K-closest pairs),
based techniques utilized in this paper.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Regional Development Fund of the European Union
and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and In-
novation, under the call RESEARCH – CREATE –
INNOVATE (project code:T1EDK-02161).

REFERENCES

Arefin, A. S., Riveros, C., Berretta, R., and Moscato, P.
(2012). Gpu-fs-knn: A software tool for fast and scal-
able knn computation using gpus. PloS ONE, 7(8):1–
13.

Barlas, G. (2014). Multicore and GPU Programming: An
Integrated Approach. Morgan Kaufmann, 1 edition.

Barrientos, R. J., Gómez, J. I., Tenllado, C., Prieto-Matı́as,
M., and Marı́n, M. (2011). knn query processing in
metric spaces using gpus. In Euro-Par Conf., pages
380–392.

Barrientos, R. J., Millaguir, F., Sánchez, J. L., and Arias,
E. (2017). Gpu-based exhaustive algorithms process-
ing knn queries. The Journal of Supercomputing,
73(10):4611–4634.

Chen, H., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S.,
and Liu, D. (2011). A novel bankruptcy prediction
model based on an adaptive fuzzy k-nearest neighbor
method. Knowl. Based Syst., 24(8):1348–1359.

Cheng, C., Chan, C., and Sheu, Y. (2019). A novel purity-
based k nearest neighbors imputation method and its
application in financial distress prediction. Eng. Appl.
Artif. Intell., 81:283–299.

Eldawy, A. and Mokbel, M. F. (2015). Spatialhadoop: A
mapreduce framework for spatial data. In ICDE Conf.,
pages 1352–1363.

Garcia, V., Debreuve, E., Nielsen, F., and Barlaud, M.
(2010). K-nearest neighbor search: Fast gpu-based
implementations and application to high-dimensional
feature matching. In ICIP Conf., pages 3757–3760.

Garcia, V., Éric Debreuve, and Barlaud, M. (2018). Fast k
nearest neighbor search using gpu.

Gutiérrez, P. D., Lastra, M., Bacardit, J., Benı́tez, J. M.,
and Herrera, F. (2016). Gpu-sme-knn: Scalable and
memory efficient knn and lazy learning using gpus.
Inf. Sci., 373:165–182.

Kato, K. and Hosino, T. (2012). Multi-gpu algorithm for
k-nearest neighbor problem. Concurrency and Com-
putation: Practice and Experience, 24(1):45–53.

Komarov, I., Dashti, A., and D’Souza, R. M. (2014). Fast
k-nng construction with gpu-based quick multi-select.
PloS ONE, 9(5):1–9.

Kuang, Q. and Zhao, L. (2009). A practical gpu based knn
algorithm. In SCSCT Conf., pages 151–155.

Li, S. and Amenta, N. (2015). Brute-force k-nearest neigh-
bors search on the GPU. In SISAP Conf., pages 259–
270.

Liang, S., Wang, C., Liu, Y., and Jian, L. (2009). Cuknn:
A parallel implementation of k-nearest neighbor on
cuda-enabled gpu. In YC-ICT Conf., pages 415–418.

Masek, J., Burget, R., Karasek, J., Uher, V., and Dutta,
M. K. (2015). Multi-gpu implementation of k-nearest
neighbor algorithm. In TSP Conf., pages 764–767.

NVIDIA (2020). Nvidia cuda runtime api.
Roumelis, G., Corral, A., Vassilakopoulos, M., and

Manolopoulos, Y. (2016). New plane-sweep al-
gorithms for distance-based join queries in spatial
databases. GeoInformatica, 20(4):571–628.

Roumelis, G., Velentzas, P., Vassilakopoulos, M., Corral,
A., Fevgas, A., and Manolopoulos, Y. (2019). Parallel
processing of spatial batch-queries using xbr+-trees in
solid-state drives. Cluster Computing.

Singh, A., Deep, K., and Grover, P. (2017). A novel ap-
proach to accelerate calibration process of a k-nearest
neighbours classifier using GPU. J. Parallel Distrib.
Comput., 104:114–129.

Sismanis, N., Pitsianis, N., and Sun, X. (2012). Parallel
search of k-nearest neighbors with synchronous oper-
ations. In HPEC Conf., pages 1–6.

In-memory k Nearest Neighbor GPU-based Query Processing

317


