
Understanding Interaction and Communication Challenges Present
in Software Engineering

Sergey Masyagin, Giancarlo Succi a, Sofiia Yermolaieva b and Nadezhda Zagvozkina
Innopolis University, Russia

Keywords: Communication in Software Engineering, Verbal and Nonverbal Communication, Systemic Theory,
Democratic Theory.

Abstract: Researchers have largely identified that interactions and communications pose major challenges in software
development, especially when extracting requirements. However, they have not appreciated the sources and the
depth of them, thus approaching them with mechanisms that have not (fully) achieved the desired objectives.
In this position, we claim that such challenges can be explained using three major theories coming from social
sciences: the theory of verbal and nonverbal communication, systemic theory, and democratic theory. We
also argue that some of the successful practices of agile methods can be explained in terms of these theories.
Finally, we stipulate that a full appreciation of these theories can result in a significant leap forward in the
discipline, identifying new mechanisms that can help to overcome the mentioned challenges, understanding
fully what we are doing and why.

1 INTRODUCTION

Software engineering has been plagued since its early
days by what has been called the “Software Crisis”
that is, the rapid increase of computational power of
hardware machines and complexity of approachable
problems in parallel of no adequate methods to ap-
proach the creation of the solution to such problems
(Science Committee, 1968). Despite more than 50
years of work, the problem still exists and has been
renewed. In the Chaos report conducted in 2015, it
was identified that only 29% of projects are success-
ful by the above-mentioned criteria (Standish Group,
2015). Fitzerald (Fitzgerald, 2012) redefined the cur-
rent problems as “Software Crisis 2.0”. This crisis
is based on the rise in both advanced hardware tech-
nologies and a huge amount of available data, which
opens various opportunities for customers while at the
same time cannot be addressed by the software due
to its limited capabilities. Both crises could be ex-
plained with the Wirth’s law that covers differences in
the evolution of software, that is getting slower much
faster comparing to the increasing evolution’s speed
of hardware (Wirth, 1995).

A core aspect of the software crisis is linked to

a https://orcid.org/0000-0001-8847-0186
b https://orcid.org/0000-0002-3198-6330

user involvement, incomplete and changing require-
ments which have been largely considered one of the
core factors that cause projects to fail both in the var-
ious version of the Standish Report (Standish Group,
2014) and in several other quite authoritative sources,
also in grey literature (360logica, 2019; Mooney,
2018). Rice and Perry state that unclear requirements
lead to the development of low-quality software (Rice
and Perry, 2011).

These kind of problems were among the key mo-
tivation for the development of agile methodologies
a couple of decades ago (Beck et al., 1999; Cock-
burn and Highsmith, 2001). All the different agile
approaches promote the interaction inside teams and
among teams, customers, and (other) key stakehold-
ers.

However, all of the above-mentioned challenges
still exist. Moreover, indeed agile methods have un-
doubtedly contributed to the improvement of the de-
velopment process. However, even if they are now
overwhelmed accepted, root causes of such problems
have not been studied, but just proposed solutions that
have been verified to empirically work in several case
(Ceschi et al., 2005; di Bella et al., 2013).

In this proposal, we want to present a framework
to describe such problem and also, to be provocative,
argue why we think that some of the well-established
approaches to address the software crises simply can-

572
Masyagin, S., Succi, G., Yermolaieva, S. and Zagvozkina, N.
Understanding Interaction and Communication Challenges Present in Software Engineering.
DOI: 10.5220/0009581905720578
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 572-578
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



not work.
We root our position in three theories coming from

social sciences: the theory of verbal and nonverbal
communication, systemic theory, and democratic the-
ory.

We claim that such theories can explain the
challenges faced in interactions and communications
while developing software. Moreover, we evidence
that the progress made by agile methods are clear
consequences of these theories. Finally, we stipulate
that a full appreciation of these theories can result in
a significant leap forward in the discipline, identify-
ing new mechanisms that can help to overcome the
mentioned challenges, understanding fully what we
are doing and why.

This paper is organized as follows. Section 2
present the background theories of our investigation,
and, in particular, Section 2.1 presents the differences
between verbal and nonverbal communication, Sec-
tion 2.2 outlines systemic theory, and Section 2.3
summarised the principles of democratic theory. Sec-
tions 3, 4, and 5 analyze the implication of verbal
and nonverbal communications, systemic theory, and
democratic theory, respectively to software develop-
ment. Section 6 summarizes the results of our posi-
tion, and Section 7 draws some conclusion and out-
lines our future work in this area.

2 BACKGROUND

This section outlines the theories that we have used
to develop our position. Specifically, we are going to
cover:

• verbal and nonverbal communication,

• systemic theory,

• democratic theory.

2.1 Verbal and Nonverbal
Communication

The study of how people communicate started with
the work of Darwin (Darwin, 1873) about 150 years
ago and has taken a major vigor first with the research
of Chapple (Chapple, 1939) and more recently with
the investigations of Kendon (Kendon, 1967).

It is now clear that interaction streams occur typi-
cally along two major channels: verbal and nonverbal
(Archer and Akert, 1977; Bugental et al., 1970), and
that there are concepts that cannot be explained by
verbal communication alone (DiMatteo et al., 1980).
Independently from the channel, the interaction con-
sists of two major sub-processes: message production

and message reception (Buck and VanLear, 2002).
Both of the sub-processes are peculiar for communi-
cation, which is a part of interactions, and three major
types of communication can be identified:
1. spontaneous nonverbal communication via ges-

tures and body language, which is involuntary and
biologically-based,

2. symbolic communication, that is intended, is
based on common socially defined behavior and
held via a verbal channel,

3. pseudo-spontaneous communication, that is done
intentionally by the sender but used as a manipula-
tion to show that it is spontaneous for the receiver.

Nonverbal communication uses feelings and emotions
rather than verbal language. Hans and Hans (Hans
and Hans, 2015), in their paper, identified that this
channel consists of kinesics, head movements and
posture, and haptics.

Kinesics covers all human movements, including
all types of gestures, such as:

• emblems (gestures with agreed-on meaning),
• adaptors (biological or unconscious touches di-

rected toward self or other object),
• illustrators (representational accompaniment of a

verbal message) (Hans and Hans, 2015).
Head movement and posture, according to Hans and
Hans, except of obvious parts covered in the name of
this subfield of nonverbal communication, also con-
tain eye contact and facial expression.

Haptics focuses on conscious touches with emo-
tional context, along with their intensity and fre-
quency.

There also exists another arguable component of
this channel - proxemics. While Hans and Hans iden-
tified proxemics as a unit of haptics, other authors
such as Hall et al. (Hall et al., 1968) consider it as a
distinct type of nonverbal communication. Proxemics
focuses on social space and distance as a factor that
influences communication.

When diving into the depth of verbal communi-
cation, we can see that it has a much simpler nature
comparing to nonverbal’s one. According to Salz-
mann (Salzmann, 1998) study of language and cul-
ture, we can conclude that this channel could be di-
vided into:

• vocal - spoken language,
• and nonvocal - verbal communication conducted

using sign languages, written communication, etc.
What combines these two channels of communica-
tion is - semiotics, that is a study of relationships be-
tween all types of verbal and nonverbal communica-
tion (Cobley, 2001).

Understanding Interaction and Communication Challenges Present in Software Engineering

573



2.2 Systemic Theory

Systemic theory aims at representing groups or soci-
eties of individuals or of other entities as a set of in-
terrelations between components, where the emerging
behavior is more than a planned sum of the behaviors
of the individuals, so that we cannot easily decompose
the interested reality into parts.

The theory was originally conceived by von Berta-
lanffy (Von Bertalanffy, 1972), and then evolved in
several directions, including biology, psychology, so-
ciology, engineering, etc.

It is particularly interesting the work that Bateson
has made in this area (Bateson, 1972). He states that
a common knowledge and so understanding does not
exist, because each knowledge requires interpretation
(Patton and McMahon, 2014). Every individual uses
their own interpretation framework, which is based
upon background experience and so hypothesis built
upon the experience. The opposite to the interpreta-
tion process is representation. To transfer any knowl-
edge or information using language, art, or etc. people
tend to use the same framework and settled patterns
the understanding. Representing and understanding
are typical community processes.

Another significant aspect of the systemic theory
that should be considered is a near decomposability of
entities. Simon (Simon, 1969) states that this concept
is used to develop hierarchical systems with indepen-
dent subsystems that will have only aggregate depen-
dencies on the other subsystems. In the society with
high variability of entities (members), near decom-
posability can help to develop an organization, that
won’t be affected in case of problems with any entity
or its change to another one (Wagner and Altenberg,
1996). As an opposite structure, we can conclude that
in non-decomposable systems, all entities have a sig-
nificant impact on each other and the overall system.
Any problem with an entity in such a system will lead
to critical issues.

2.3 Democratic Theory

Democratic Theory is a field of political theory that
aims to consider society, choices they make, and face
along with their consequences (Ansolabehere, 2001).
There are various approaches to democratic theory,
Dahl (Dahl, 1956) identified the following:

• Madisonian,

• Populistic,

• Polyarchal,

• Equality, Diversity and Intensity,

• and American Hybrid.

Besides different approaches to democratic theory
there are different democracy types to analyze. In
the paper, we consider participatory democracy which
bases on social dialog and collaboration (Moote et al.,
1997).

One of the characteristics of a participatory and
democratic community is an involvement of all mem-
bers into a rational public opinion development. All
society members participate and contribute to de-
cision making process (Moote et al., 1997). One
of the methods to achieve such meaningful involve-
ment is equivalent enlightenment. According to Lass-
well (Lasswell, 1948), equivalent enlightenment is the
same level of attention and understanding to the spec-
ified goal between layman, experts, and leaders. He
also states that equivalent commitment in the demo-
cratic society is achieved by setting down a common
goal and its equal wide-spreading by equivalent en-
lightenment among all social groups.

3 VERBAL AND NONVERBAL
COMMUNICATION IN
SOFTWARE ENGINEERING

We have often heard that a key problem in require-
ment is that a human does not express their require-
ments in a non-ambiguous way. Therefore we need to
define ways to be more stringent in such definition, so
to limit such problems.

As an example of this it is enough to check the
works of highly cited software engineering scholars,
like, for instance, Berry, from (Berry and Berry, 1983)
to (Hadar et al., 2019), Finkelstein from (Finkel-
stein, 1991) to (Finkelstein, 2013), Mylopolous from
(Greenspan and Borgida, 1982) to (Guarino et al.,
2019), again just mentioning in alphabetic order
three outstanding researchers in software engineering
throughout their career. Moreover, in a recent work,
it has been evidenced that the vast majority of the re-
search in the field is concentrated in trying to repre-
sent the requirements formally (Ivanov et al., 2017).

This approach has already been partially con-
trasted with the approaches present in agile methods.
There, on one side, it is clearly said that changes in
requirements are welcomed – the first book of Kent
Beck on eXtreme Programming contains as subti-
tle “Embrace Change” (Beck, 1999). On the other
side, it is claimed that more precise requirements are
achieved via more direct interactions between devel-
opers, customers, and managers – in the Agile Man-
ifesto, it is written “Individuals and interactions over
processes and tools” (Beck et al., 1999).

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

574



However, we think that we can go further. We
claim that addressing requirements ambiguity via al-
ways more formal methods ignore the fact that we,
humans, communicate not only verbally but also non-
verbally. And as it has been explained previously in
Section 2.1., not all the nonverbal communication can
be expressed in terms of verbal communication. As
such, the formal approach is intrinsically flawed. On
the contrary, trying to involve in face-to-face meet-
ings, customers, managers, and developers does ad-
dress the problem since it extends to modes of com-
munication, and such an ampler communication spec-
trum may help substantially in reducing ambiguity.

Needless to say that, anyway, since requirements
are elicited and understood in social structures, they
are intrinsically volatile. More on this in Section 4

4 SYSTEMIC THEORY IN
SOFTWARE ENGINEERING

In addition to the problem of verbal and nonverbal
communication, a further explanation of the ambigu-
ous interpretations of requirements can come from
how they are actually elicited, taking advantage of
systemic theory.

For instance, it is not uncommon that the needs
of the same customer are extracted by different ana-
lysts. Systemic theory evidences that understanding
is a social process that relates to how people inter-
act (Bateson, 1972). Indeed, under such perspective,
requirements extracted individually or in pairs (cus-
tomer,analyst) are intrinsic flawed.

If we compare our approach to art, then when
making their masterpieces artists typically use their
own way of representation and the spectators of such
works dive into the mind of the artists to understand
it – this is often not an easy process and requires “in-
terpreters,” and actually there could be lengthy dis-
cussions what should be the authentic interpretation.
Therefore, a person who reads the requirement uses
his/her way to understand (interpret) it.

The process could be compared to the encoding
and decoding of the information by two systems us-
ing different algorithms. Altogether, ambiguity in
requirements may also happen because of what sys-
temic theorists call “cognitively inconsistent behavior
and thoughts” of the people involved in the process
of their development and interpretation since they
belong to disjoint communities of meaning(Bateson,
1972).

Systemic theory is also very important to under-
stand the composition of development teams. Let’s
consider a software organization as a system with en-

tities and relations among them, which follows a soft-
ware development life-cycle (Ruparelia, 2010), which
may differ locally in the different components (a.k.a.
subsystems) of the organization but share the same
paramount goal (Pressman and Maxim, 2014). Such
a goal is commonly documented as requirements and
specification documents, which further will be used
for development and verification.

According to the systemic theory, such a system
could be decomposable if its different subsystems can
handle every phase of the software life-cycle. How-
ever, if some subsystems are unable to do so, the
system becomes not decomposable or only partly de-
composable. Indeed, most systems made of knowl-
edge workers tend to be at most only partially de-
composable. The only partial decomposability has a
huge implication in the division of work, which is,
indeed, based on communication and interactions be-
tween key stakeholders. Such implications also ex-
tend to the individual artifacts of the process devel-
oped at every phase (Gasevic et al., 2009).

Indeed, the adoption of agile methods implies a
higher level of decomposability, since there is a higher
level of sharing and of communication, as we have
previously discussed.

5 DEMOCRATIC THEORY IN
SOFTWARE ENGINEERING

In a software organization as a democratic society,
people are involved in a decision-making process. In
organizations that follow agile-based approaches to
software development team itself performs decision
making, discussion, and accomplishing itself (Basa-
hel, 2014) (Wan and R., 2010).

An interesting question is why we should involve
people in the decision-making process? To answer
this question, we should dive into the process itself.
In a discussion, all members suggest their opinions,
which are further argued, and as a result, they make
the optimal or the best-suited decision. The critical
point of the whole decision-making is not only an
identification of a solution to some problem but an
involvement of every member in its development, so
that shared responsibility will be achieved.

Besides, collective responsibility, that guarantee
commitment to the project, decision making can also
be considered a technique for equivalent enlighten-
ment as all members will be in the same context and
will have a compatible level of attention.

So, if to go back to the problem of “unclear re-
quirements” we can conclude that the same level of
immersion into the context through the development

Understanding Interaction and Communication Challenges Present in Software Engineering

575



Table 1: Theory and problems it explains.

Theory Problem
Verbal and nonverbal com-
munication

• Written document (verbal) cannot fully express the meaning of re-
quirements, since there is a need of a nonverbal communication chan-
nels.

Systemic Theory • Software organization are only quasi decomposable, therefore, re-
quirements are intrinsically volatile.
• “Cognitively inconsistent behaviour and thoughts” of all the stake-
holders and developers involved in the definition of requirements may
cause them not to be properly understood.

Democratic Theory • Different level of enlightenment among people who operate with re-
quirements can make such requirements ambiguous.

of equivalent enlightenment among people who oper-
ate in any way with requirements could solve it.

6 SUMMARY OF THE POSITION

A software crisis exists, and we can not argue with
a set of existing challenges that slower evolution of
the whole software engineering sphere, but we can try
to go deep into every particular issue to understand
its roots. An understanding is the first and the hard-
est step towards the development of a solution, that is
why we are trying to look at the challenges described
in Section 1 from the various angles. We considered
the issues from the perspective of the social sciences.
The results of our analysis on problems and theories
that explain them are presented in Table 1.

7 CONCLUSIONS AND FURTHER
WORK

In this paper, we have outlined three theories of so-
cial sciences that can explain the problem in interac-
tions and communication present in software devel-
opment, and we have seen how such theories can ex-
plain some of the advantages of agile methods. To
move this work from a position to a full research we
need now to validate systematically (some of) our
findings. We plan, therefore, to launch a session of
focus groups and of interviews with software devel-
opers, managers, and customers on this topic. To this
end, we plan to take advantage of the strategic loca-
tion of Innopolis University, which is surrounded by a
large and rich variety of software companies located
inside the city of Innopolis.

ACKNOWLEDGMENTS

We thank Innopolis University for generously funding
this research.

REFERENCES

360logica (2019). What are 5 common problems in the soft-
ware development process?

Ansolabehere, S. (2001). Political Advertising. Interna-
tional Encyclopedia of the Social & Behavioral Sci-
ences , pages 11624–11628.

Archer, D. and Akert, R. (1977). Words and everything
else: Verbal and nonverbal cues in social interpreta-
tion. Journal of Personality and Social Psychology,
35:443–449.

Basahel, A. (2014). Adopting scrum agile project man-
agement for managing academic institutions. BIJIT -
BVICAM’s International Journal of Information Tech-
nology, 7:795–798.

Bateson, G. (1972). Steps to an Ecology of Mind: Col-
lected Essays in Anthropology, Psychiatry, Evolution,
and Epistemology. University of Chicago Press.

Beck, K. (1999). Extreme Programming Explained: Em-
brace Change. Addison-Wesley Longman Publishing
Co., Inc., USA.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R. C., Mellor, S., Schwaber, K., Sutherland,
J., and Thomas, D. (1999). Manifesto for Agile Soft-
ware Development.

Berry, D. M. and Berry, O. (1983). The programmer-
client interaction in arriving at program specifications:
guidelines and linguistic requirements. In Proceed-
ings of IFIP TC2 Working Conference on System De-
scription Methodologies.

Buck, R. and VanLear, C. A. (2002). Verbal and nonver-
bal communication: Distinguishing symbolic, spon-
taneous, and pseudo-spontaneous nonverbal behavior.
Journal of Communication, 52:522–541.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

576



Bugental, D. E., Kaswan, J. W., and Love, L. R. (1970). Per-
ception of contradictory meanings conveyed by verbal
and nonverbal channels. Journal of Personality and
Social Psychology, 16:647–655.

Ceschi, M., Sillitti, A., Succi, G., and De Panfilis, S. (2005).
Project management in plan-based and agile compa-
nies. IEEE software, 22(3):21–27.

Chapple, E. D. (1939). Quantitative analysis of the inter-
action of individuals. Proceedings of the National
Academy of Sciences of the United States of America,
25(2):58.

Cobley, P. (2001). The Routledge companion to semiotics
and linguists. (1st ed.) . London: Routledge.

Cockburn, A. and Highsmith, J. (2001). Agile software de-
velopment, the people factor. Computer, 34(11):131–
133.

Dahl, R. A. (1956). A Preface to Democratic Theory . Uni-
versity of Chicago Press.

Darwin, C. (1873). The expression of the emotions in man
and animals . London: John Murray publisher.

di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi,
G., and Vlasenko, J. (2013). Pair programming and
software defects–a large, industrial case study. IEEE
Transactions on Software Engineering, 39(7):930–
953.

DiMatteo, M. R., Taranta, A., Friedman, H., and Prince,
L. (1980). Predicting patient satisfaction from physi-
cians’ nonverbal communication skills. Med Care,
18(4):376–387.

Finkelstein, A. (1991). A (neat) alphabet of require-
ments engineering issues. In van Lamsweerde, A.
and Fuggetta, A., editors, ESEC ’91, 3rd European
Software Engineering Conference, Milan, Italy, Octo-
ber 21-24, 1991, Proceedings, volume 550 of Lecture
Notes in Computer Science, pages 489–491. Springer.

Finkelstein, A. (2013). The next 10 years: the shape of
software to come and what if means for software en-
gineering. In Castro, J., Alencar, F. M. R., Lucena,
M., and Filho, G. A. C., editors, Proceedings of Re-
quirements Engineering@Brazil 2013, Rio de Janeiro,
Brazil, July 16, 2013, volume 1005 of CEUR Work-
shop Proceedings. CEUR-WS.org.

Fitzgerald, B. (2012). Software crisis 2.0. Computer,
45:89–91.

Gasevic, D., Kaviani, N., and Milanovic, M. (2009). On-
tologies and software engineering. In Handbook on
Ontologies.

Greenspan, Sol J.and Mylopoulos, J. and Borgida, A.
(1982). Capturing more world knowledge in the re-
quirements specification. In Ohno, Y., Basili, V. R.,
Enomoto, H., Kobayashi, K., and Yeh, R. T., editors,
Proceedings, 6th International Conference on Soft-
ware Engineering, Tokyo, Japan, September 13-16,
1982, pages 225–235. IEEE Computer Society.

Guarino, N., Guizzardi, G., and Mylopoulos, J. (2019). On
the philosophical foundations of conceptual models.
In Dahanayake, A., Huiskonen, J., Kiyoki, Y., Thal-
heim, B., Jaakkola, H., and Yoshida, N., editors, In-
formation Modelling and Knowledge Bases XXXI -
Proceedings of the 29th International Conference on
Information Modelling and Knowledge Bases, EJC

2019, Lappeenranta, Finland, June 3-7 2019, volume
321 of Frontiers in Artificial Intelligence and Applica-
tions, pages 1–15. IOS Press.

Hadar, I., Zamansky, A., and Berry, D. M. (2019). The in-
consistency between theory and practice in managing
inconsistency in requirements engineering. Empirical
Software Engineering, 24(6):3972–4005.

Hall, E. T., Birdwhistell, R. L., Bock, B., Bohannan, P.,
Diebold, A. R., Durbin, M., Edmonson, M. S., Fis-
cher, J. L., Hymes, D., Kimball, S. T., La Barre, W.,
Lynch, F., S., J., McClellan, J. E., Marshall, D. S.,
Milner, G. B., Sarles, H. B., Trager, G. L., and Vayda,
A. P. (1968). Proxemics [and Comments and Replies].
Current Anthropology, 9:83–108.

Hans, A. and Hans, E. (2015). Kinesics, Haptics and Prox-
emics: Aspects of Non -Verbal Communication. IOSR
Journal Of Humanities And Social Science (IOSR-
JHSS), 20:47–52.

Ivanov, V., Rogers, A., Succi, G., Yi, J., and Zorin, V.
(2017). What Do Software Engineers Care About?
Gaps Between Research And Practice. In Proceedings
of the 2017 ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2017),
pages 890–895, Paderborn, Germany. ACM.

Kendon, A. (1967). Some functions of gaze-direction in
social interaction. Acta Psychologica, 26:22–63.

Lasswell, H. D. (1948). The structure and function of com-
munication in society. In L. Bryson (Ed.), The com-
munication of ideas, pages 37–51.

Mooney, A. (2018). 6 problems that delay software projects.
Moote, M. A., Mcclaran, M. P., and Chickering, D. K.

(1997). RESEARCH: Theory in Practice: Applying
Participatory Democracy Theory to Public Land Plan-
ning. Environmental Management, 21:877–889.

Patton, W. and McMahon, M. (2014). Career Development
and Systems Theory: Connecting Theory and Prac-
tice. Sense Publishers, 3 edition edition.

Pressman, R. S. and Maxim, B. R. (2014). Software Engi-
neering 8th ed. McGraw-Hill Education.

Rice, R. W. and Perry, W. E. (2011). Testing Dirty Systems.
CreateSpace Independent Publishing Platform.

Ruparelia, N. B. (2010). Software development lifecycle
models. ACM SIGSOFT Software Engineering Notes,
35:8–13.

Salzmann, Z. (1998). Language, culture and society: An
introduction to linguistic anthropology (2nd ed.) .
Nashville TN: Westview.

Science Committee, N. (1968). Report on a conference
sponsored by the nato science committee garmisch,
germany, 7th to 11th october 1968.

Simon, H. A. (1969). The Sciences of the Artificial. London:
MIT Press.

Standish Group (2014). CHAOS – The Standish Group Re-
port.

Standish Group (2015). Chaos report 2015 by standish
group.

Von Bertalanffy, L. (1972). Zu einer allgemeinen Sys-
temlehre. In Organisation als System, pages 31–45.
Springer.

Understanding Interaction and Communication Challenges Present in Software Engineering

577



Wagner, G. and Altenberg, L. (1996). Complex adaptations
and the evolution of evolvability. Evolution, 50:967–
976.

Wan, J. and R., W. (2010). Empirical research on crit-
ical success factors of agile software process im-
provement. J. Software Engineering & Applications,
3:1131–1140.

Wirth, N. (1995). A plea for lean software. Computer,
28:64–68.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

578


