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In this paper, we tackle the problem of detecting anomalous behaviors in a virtualized infrastructure for net-

work function virtualization, proposing to use self-organizing maps for analyzing historical data available
through a data center. We propose a joint analysis of system-level metrics, mostly related to resource con-
sumption patterns of the hosted virtual machines, as available through the virtualized infrastructure monitoring
system, and the application-level metrics published by individual virtualized network functions through their
own monitoring subsystems. Experimental results, obtained by processing real data from one of the NFV data
centers of the Vodafone network operator, show that our technique is able to identify specific points in space
and time of the recent evolution of the monitored infrastructure that are worth to be investigated by a human
operator in order to keep the system running under expected conditions.

1 INTRODUCTION

In the context of network services provisioning,
the novel Network Function Virtualization (NFV)
paradigm (NFV Industry Specif. Group, 2012) has
recently gained more and more traction due to the in-
creasingly demanding requirements and complex sce-
narios faced by network operators.

Such approach has been developed with the pur-
pose of replacing the traditional deployment of spe-
cialized physical appliances, typically sized for the
peak-hour and very costly to maintain, in favor of
cloud computing technologies, enabling on-demand
access to a diverse set of virtualized resources (com-
puting, storage, networking, etc.) that can be dynam-
ically allocated to fit the needs of time-varying work-
loads. The high flexibility of this type of infrastruc-
tures is nowadays crucial for an organization operat-
ing in this area, as it allows for quickly adapting and
effectively coping with the numerous challenges com-
ing from the new connectivity scenarios of the future
Internet.

Virtualized Network Functions (VNFs) are thus
implemented as distributed software applications that
can be deployed on a — private — cloud infrastructure
managed by a network operator, enabling elastic and
resilient services that can be easily reconfigured ac-
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cording to the requirements of highly dynamic work-
loads. For NFV data centers, the choice of private
cloud infrastructures — as opposed to the use of pub-
lic cloud services — is also corroborated by latency-
related concerns. Indeed, since such service-chains
are highly delay-sensitive (e.g. LTE, 4G), it is unprac-
tical to rely on public cloud infrastructures, that are
usually shared among multiple tenants and not nec-
essarily deployed according to the network operator
needs.

In order to guarantee scalability, robustness to fail-
ure, high availability, low latency, such systems are
typically designed as large-scale distributed systems
(Ostberg et al., 2017), often partitioned and/or repli-
cated among many geographically dislocated data
centers. The larger the scale, the more operations
teams have to deal with complex interactions among
the various components, such that diagnosis and trou-
bleshooting of possible issues become incredibly dif-
ficult tasks (Gulenko et al., 2016a). Since many di-
verse kinds of Service Level Agreements (SLAs) —
specifying which are the guaranteed quality of service
(QoS) requirements — are often in place between net-
work operators and their customers, it is crucial to ef-
fectively monitor the status of the data center through
an efficient distributed monitoring infrastructure that
continuously gathers system-level metrics from all the
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different levels of the architecture, e.g., physical hosts
metrics, virtual machines metrics, application-level
key performance indicators (KPIs), event logs, etc..
Such data usually drives the decisions of human op-
erators, for instance, in terms of which actions must
be taken to restore the expected conditions of the sys-
tem after an outage has occurred, or how the available
components should be reconfigured to prevent possi-
ble SLA violations in case of an unexpected increase
in the workload.

One of the major problems of data center opera-
tors is anomaly detection, i.e., pinpointing unexpected
and/or suspect behaviors of the system whenever it
significantly deviates from the normal conditions. In-
deed, system outages are typically preceded by fail-
ures, performance degradation and similar anomalous
behaviors that, if detected on time, can be acted upon
by raising timely alerts and/or autonomously trigger-
ing suitable procedures before other components, or
the end users, experience any actual issue. This is
fundamental to the purpose of establishing — pos-
sibly automated — proactive strategies to minimize
the risk of SLA violations (i.e., such that human ex-
perts can focus their efforts on the most critical ac-
tivities), or at least to alert the staff to prepare the
remediation/mitigation procedures in advance. The
large availability of data produced in data centers like
those dedicated to NFV allows for employing effec-
tive data-driven methods, such as those coming from
the research field of Machine Learning (ML).

1.1 Paper Contributions and
Organization

In this paper, we propose an approach based on Self-
organizing Maps (SOM) to perform a pattern analy-
sis of VM metrics aiming at providing a comprehen-
sive overview of the major behavioral patterns and de-
tecting possible anomalies in a data center for NFV.
The technique can be used to perform a joint analysis
of system-level metrics available from the infrastruc-
ture monitoring system and application-level metrics
available from the individual VNFs. It aims at sup-
porting data center operations and specifically capac-
ity and performance monitoring, by providing insight-
ful information on the behavioral patterns, in terms of
resource consumption and exhibited performance, of
the analyzed VNFs.

This paper is organized as follows. After dis-
cussing the related literature in Section 2, we present
the approach in Section 3, along with its implementa-
tion and the data processing workflow we designed to
apply it to the massive data set available in the Voda-
fone infrastructure. In Section 4, we discuss some of

the obtained experimental results to prove the prac-
tical relevance of the proposed approach. Section 5
concludes the paper with our final remarks and ideas
for future directions of research in the area.

2 RELATED WORK

In this section, we briefly review some of the most re-
lated works that are found in the research literature on
using ML, and SOMs in particular, for classification
and anomaly detection in cloud and NFV data centers.

Anomaly detection can be framed as the prob-
lem of pinpointing unexpected and/or suspect behav-
iors of a system whenever it significantly deviates
from the normal conditions. Similar problems can be
found in other fields and applications such as, for in-
stance: intrusion detection in cyber-security, machin-
ery fault (Samrin and Vasumathi, 2017) and product
quality issues detection (Van den Berg et al., 2018) in
industrial contexts, or fraud detection in finance (Ma-
lini and Pushpa, 2017). It is important to stress that
anomaly detection is, in general, an inherently imbal-
anced problem due to the scarcity of anomalous ob-
servations with respect to the ones related to the nor-
mal conditions of a system. In order to tackle this kind
of challenges, a huge amount of solutions have been
proposed that, depending from the scenario and the
nature of the data to be processed, pose their founda-
tions on well-established techniques coming, for in-
stance, from the research fields of information theory
and statistics.

In the recent years, ML techniques have been
gaining more and more traction in the context
of anomaly detection applications because of their
proven effectiveness in many of the aforementioned
scenarios. This is mainly due to the versatility of
this kind of methods and the increasing availability of
data from which they can learn from, in a continuous
manner (Buczak and Guven, 2015). Most of the ap-
proaches to anomaly detection address the associated
challenges by feeding ML models with counters like
CPU utilization, memory contention and network-
related metrics (Sauvanaud et al., 2018; Wallschldger
et al., 2017; Gulenko et al., 2016a). Others include
also system-level and/or application-level event logs
in the analysis to increase the amount of features and
facilitate the extraction of relevant patterns (Watan-
abe et al., 2012; Farshchi et al., 2018). Embedding
textual information has been in fact made easier by
the advancements in Natural Language Processing
(NLP) research field (Bertero et al., 2017). Few ex-
isting works also consider the need of assisting hu-
man operators in conducting root-cause analysis to be
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a highly desirable feature of anomaly detection sys-
tems (Gupta et al., 2017; Pitakrat et al., 2018).

One of the major roadblocks that can be encoun-
tered when applying ML for solving a task is the
scarcity, or the complete absence, of labelled data,
a very common scenario in many practical applica-
tions. Such issues can be overcome by employing so-
called unsupervised learning techniques that, as the
definition suggests, are designed to operate without a
ground truth (i.e., annotated data). It is worth notic-
ing that this characteristic of such class of learning al-
gorithms has the side-effect of increasing the amount
of data that can be used for training a ML model.
The principal application of unsupervised techniques
is clustering that consists in the formation of groups
(the clusters) of data samples that are similar, where
similarity is defined according to the employed dis-
tance function.

A SOM is a particular kind of neural network that
applies the so-called competitive learning for cluster
formation (Haykin, 2007). In this context when a new
sample is presented to the SOM during the training,
the Best Matching Unit (BMU) — the closest neuron
to the data sample according to the employed distance
function — is selected and BMU and its neighbors are
rewarded through a weight update that make them
more similar to the selected sample. The iteration of
this process leads to the formation of the clusters that
are represented by the associate SOM neurons. SOMs
are designed for mapping high-dimensional data into
a lower-dimensional (typically 2-dimensional) space.
One of the main characteristics of the obtained clus-
tering is that it preserves the fopology and distribution
of training data, at clusters-level. In practice it means
that more clusters will be located in the more dense
regions of the original domain (distribution) and that
similar data samples will be associate to the same
cluster or to neighbor clusters (topology).

In the context of anomaly detection, such ap-
proaches usually operate by building, starting from
training data, a set of clusters of samples that are rep-
resentative of the expected — normal — conditions of a
system. After training, such model can be exploited
to compare new patterns to known behaviors accord-
ing to a predefined distance metric, in order to infer
whether the observations are anomalous or not. As a
neural approach to clustering, SOMs have achieved
remarkable results at processing industrial data (Diaz
et al., 2008; Canetta et al., 2005) given their ability to
yield a distribution of the clusters in the problem do-
main that faithfully reflects the observed phenomenon
behavior.

For what concerns NFV applications, the existing
literature reports that ML techniques have been effec-

152

VM 1 , Normalization

Missing value
treatment

VMn | —> Filtering

Cluster 1

Cluster k

Figure 1: Overview of the SOM-based Clustering Work-
flow.

tively used to solve different problems. In particular,
in (Gulenko et al., 2016b) a set of ML techniques are
tested for an anomaly detection application. In this
case, though, only supervised methods are considered
and their performance is compared on data sets con-
taining NFV features associated to different types of
faults. Similarly, in (Miyazawa et al., 2015), a super-
vised SOM-based method is proposed for fault detec-
tion. Here, a SOM is used to cluster labelled data, an-
notated by human experts to state which clusters cor-
respond to faulty conditions, related to NFV perfor-
mance indicators. In (Niwa et al., 2015), SOM-based
and other general clustering techniques are used for
the same purpose in a small test-bed in the context of
NFV. Likewise, in (Le et al., 2018), the popular K—
means algorithm is used to cluster cells traffic data in
order group cells with similar through—time behavior
and allow resources optimization.

3 PROPOSED APPROACH

In this paper, we propose the use of self-organizing
maps (SOMs) in order to perform a pattern analysis of
the VMs behavior. Our approach focuses on the joint
analysis of two classes of metrics that are normally
collected and analyzed independently from one an-
other: system-level metrics, mostly related to resource
consumption of the hosted VMs, i.e., those related
to the utilization of the underlying infrastructure,
hereafter also referred to as INFRA metrics, which
are usually available through the NFV infrastructure
manager (e.g., the well-known VMWare vRealize
Operationsl or others); and application-level metrics,
published by individual virtualized services through
their own monitoring subsystems, which will be re-
ferred to as VNF metrics. This allows for gathering a
comprehensive overview of the major behavioral pat-

IMore information at: https://docs.vmware.com/en/
vRealize-Operations/index.html.
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terns that characterize VMs and possibly identifying
suspect (anomalous) behaviors.

Our technique relies on SOMs because of their
beneficial features which make them a useful method
for clustering, such as the ability to preserve the topol-
ogy in the projection, meaning that similar input pat-
terns are captured by nearby neurons. A VM is ob-
served trough its movement among best matching unit
(BMU) during the time horizon under analysis, so that
any changes in “far” BMU could be used to trigger
an alarm.

3.1 Workflow

We realized a SOM-based clustering tool that is capa-
ble of applying clustering using jointly a list of input
metrics. In our experimentation, we have been apply-
ing this technique over individual monthly data avail-
able with a 5-minutes granularity (288 samples per
day per metric per monitored VM or physical host),
amounting to several GBs of data per month, for a
specific region. The overall workflow that we ap-
plied to transform the available input INFRA metrics
is summarized in Figure 1. First, the raw data are pre-
processed to address possible data-quality issues and
to retain only the information related to the metrics
relevant for the analysis. The input samples to the
SOM are then constructed, for each VM, by dividing
the time horizon under analysis according to a pre-
defined period and consolidating the contributions of
the individual metrics in a single vector. Then, such
data are fed to the SOM, that outputs for each of them
the neuron capturing the closest behavior, providing a
clustering of the input samples.

The input data are filtered, on the k specified met-
rics, and partitioned to have a sample (i.e., a time-
series) for each metric, VM and period (usually a day)
of the time horizon under analysis. Before being fed
to the SOM, samples are subject to a preprocessing
phase, focusing on possible issues such as (i) miss-
ing values and (ii) significant differences in the mag-
nitude of the values of different metrics.

On the one hand, to address (i), a data imputation
strategy, consisting in a simple linear interpolation,
is performed to mitigate the effect of the possible ab-
sence of data points within a sample, to retain as much
data as possible for the analysis. Although, in order to
preserve the quality of the data set, the interpolation
step has been designed not to be aggressive, so that, if
too many consecutive samples are missing for a given
input time series, then the time series is discarded.
Note that each time-series contains the evolution of
one or more metrics throughout a specific day for a
given VM (or host).

On the other hand, it is recommended to ad-
dress (ii) when applying SOM since, due to the sam-
ples distance evaluation mechanism, metrics with sig-
nificantly larger values (e.g. number of transmit-
ted/received packets or bytes) tend to hide the con-
tribution of other metrics which can only take on
smaller values, being bounded by a predefined range
that is much smaller (e.g., CPU utilization percent-
age). We have devised two possible strategies in or-
der to have the SOM dealing with values included in
similar ranges, for each of the metrics under anal-
ysis. The first strategy, referred to as normalized,
consists in scaling each time-series by subtracting its
mean and dividing by its standard deviation each data
point. Notice that using such strategy hides any infor-
mation regarding the magnitude of the original values
and emphasizes the shapes. The second strategy, re-
ferred to as non-normalized, consists in scaling each
time-series to a range of values between 0 and 1 con-
sidering, for each metric, the historical minima and
maxima values observed for that metric only. Note
that such strategy retains information regarding the
magnitude of the original values while keeping the
data bounded in a relatively small interval. However,
this technique results in having different metric pat-
terns with very similar shape but differing merely in
their magnitude, being grouped into different SOM
neurons at a certain distance from each other (in the
SOM grid topology), whereas the normalized strat-
egy would group them together within a single neuron
(or a few very close ones). Depending on the chosen
strategy, we obtain an analysis focusing on the shapes
of the behavioral patterns only, or we can distinguish
also among different absolute values of the average
levels of the metrics. In general, in the latter case
(non-normalized) one should expect more clusters to
exist with respect to the former case (normalized),
due to the fact that the system could have experienced
very diverse levels of load during the time horizon un-
der analysis. Hence, a non-normalized analysis needs
generally an increase of the SOM grid size, in order
to avoid over-population of neurons with too many
(non-normalized) patterns crowding within the same
(BMU) neuron, despite them being significantly dis-
tant from each other.

Each input vector to the SOM is constituted by the
concatenation of k vectors, related to the preprocessed
time-series of the k metrics, for each considered VM
and period. Notice that, since INFRA metrics have
been provided with a 5-minutes collection granular-
ity, if a period of a day is considered, we typically
have 288 data points of each metric for each VM, in
each day. In order to train the SOM, a few hyper-
parameters must be provided:
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e SOM Dimensions: the map is usually defined as
a finite two-dimensional region where neurons are
arranged in a rectangular grid. A higher amount
of neurons typically leads to a lower quantization
error, at the cost of map interpretability.

e Learning Rate: this parameter takes on values
in a range between O and 1 (inclusive) and con-
trols how much each training sample contributes
to updating SOM weight vectors. The higher the
learning rate, the more a neuron is influenced by
the observed training samples and tends to clus-
ter more diverse behaviors. It is possible to adap-
tively decrease this parameters as the number of
epochs increases.

e Neighborhood Radius (6): this parameter takes
on values in a range between 0 and 1 (inclusive)
and refers to the coefficient of the Gaussian neigh-
borhood function. The higher the value of o,
the more neighbor neurons are affected by the
weights update of an individual neuron in each
training step. It is possible to increase this param-
eters as the number of epochs increases.

e Number of Epochs: an epoch consists of com-
puting weights update in a full-batch fashion (i.e.,
the update is computed upon seeing the whole
training data set). A training process usually con-
sists in multiple training epochs.

After the training phase, the SOM can be used to
infer the BMU for each input sample, i.e., the neuron
that exhibits the least quantization error when com-
pared with the considered input sample. At this stage,
the output of the analysis can be used by, e.g., a data
center operator to visually inspect the behaviors cap-
tured by the trained SOM neurons, in order to spot
possible suspect/anomalous ones and check which
VMs are associated with them. Furthermore, since the
individual input samples are related to the behavior of
a specific VM at specific point in time, it is also pos-
sible to analyze the evolution of the VMs throughout
the time horizon, to possibly detect patterns in their
behavioral changes. In this way, an operator is able to
focus the analysis on a restrained set of VMs (an their
hosts) and to possibly trigger further, more specific,
analysis that could be too time-consuming, or even
unfeasible, to conduct on the whole infrastructure.

Additionally, we provide a mechanism to auto-
matically detect possible suspect behaviors without
the need for a human operator to inspect the status
of the SOM at the end of the training. It consists in
a rather simple threshold-based alert that is triggered
whenever, during the inference phase, an input sam-
ple is associated to a neuron with a quantization error
that is greater than the specified threshold. Because
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of the considerable distance from the BMU (i.e., the
closest neuron), such samples are likely to depict an
uncommon behavior and, thus, are marked as mis-
classified. Besides the aforementioned support that
such a tool can give to data center operators in their
manual activity, this feature in particular enables the
possibility to deploy a fully automated anomaly de-
tection system. Indeed, assuming for instance that
a SOM is trained on carefully selected input sam-
ples that only depict the behaviors that considered as
expected from the NFV infrastructure, the resulting
model can be used just for inference on an unforeseen
data set, whose misclassified samples can be regarded
as suspect/anomalous patterns and should be further
inspected. Another interesting use of the misclassifi-
cation mechanism is its capability to notify immedi-
ately operators of possible misconfigurations where a
too little SOM grid size has been chosen for the data
set under analysis, leading to an excessive number of
misclassified time series.

3.2 Grouping SOM Neurons

An interesting aspect that came out during the use
of the above mentioned SOM-based classification, is
that, whenever using relatively big SOM networks,
the training phase ended up with many closeby SOM
neurons catching behaviors that were very similar to
each other.

This is in line with the topology-preservation
property of the SOMs, i.e., closeby input vectors in
the input space are mapped to closeby neurons in
the SOM grid. This phenomenon can be controlled
to some extent using various neighborhood radiuses.
However, from the viewpoint of data center operators,
a set of closeby neurons with relatively similar weight
vectors needs to be considered as a single behavioral
cluster/group.

This has been achieved adding, after the SOM
processing stage, a simple clustering strategy based
on aggregating (transitively) neurons having weight-
vectors at a distance lower than a given threshold,
into the same group. Therefore, our technique offers
the possibility to collapse, according to the distances
among the representative vectors of the SOM neu-
rons, similar clusters in order to decrease the possibil-
ity to raise an alarm when it is not needed (e.g., con-
sider very frequent movements, of a VM over time,
between two similar neurons) and to facilitate the hu-
man operators in interpreting the results.

Indeed, as we will show in Section 4.4, this led to
the overall technique outputting a reduced and more
comprehensible number of behavioral clusters.



Behavioral Analysis for Virtualized Network Functions: A SOM-based Approach

L

0

02 % 14 P
0 B 1 20

sl

P

= =

02 B 1 P
02 % 1 0

Figure 2: Example of INFRA Resource Consumption Clusters Identified with the Multi-Metric SOM Analysis. The
Red, Green and Blue Curves in Each Plot Correspond to the usage_average Metrics for the cpu|usage_average,
net |usage_average and cpu|capacity_contentionPct Metrics, Respectively.

3.3 SOM Implementation

To implement our anomaly detection tool we lever-
aged a very efficient open-source SOM implementa-
tion, namely somoclu?, which has been designed to
employ multi-core acceleration, as well as GPGPU
hardware acceleration, to perform massively parallel
computations (Wittek et al., 2017). Such accelera-
tions have been proved to be necessary in order to
reach a satisfactory performance when tackling the
massive data set provided by Vodafone.

4 EXPERIMENTAL RESULTS

In this section, we provide an overview of the results
that can be obtained using the approach proposed in
Section 3. For the analysis, we have relied on the ex-
perience of domain experts and focused our attention
over a limited set of metrics that are considered the
most relevant in this context, i.e., the ones related to
the computational, networking and storage activity of
VMs and VNFs of interest. Specifically, in the fol-
lowing, we highlight results obtained analyzing the
following metrics: cpu|capacity_contentionPct,
cpulusage_average, net |usage_average.

4.1 Multi-metric Analysis Results

The set of clusters highlighted in Figure 2 is a clear
example of the results that can be obtained through
the multi-metric SOM-based analysis presented in

Zhttps://github.com/peterwittek/somoclu

Section 3, applied over few months worth of system-
level (INFRA) metrics, using the normalized strat-
egy. The trained SOM network is visually repre-
sented in terms of the weights of its neurons. Indeed,
each subplot reports the VMs daily behavior that the
specific neuron specialized into. In order to sim-
plify the representation, the weight vectors — jointly
computed over the three metrics cpu|usage_average,
net |usage_average and cpu|capacity_contentionPct
— are overlapped but in different colors.

For instance, one of the most recurrent patterns,
occurring in 35.6% of the observations and depicted
in Figure 3, is the one identified by the top-left
neuron. Because of the standard data normaliza-
tion — performed during the preprocessing phase to
discard the magnitude information in favor of en-
hancing the behavioral information of the input sam-
ples — the values on the Y axis can be negative.
This means that VMs have been clustered based on
the joint shape of their daily resource consumption
patterns, not their absolute values. Notice that in
this example we can observe a quite suspect output,
since the cpu|capacity_contentionPct figure fol-
lows closely the daily traffic pattern on the involved
VMs. In a normal condition of a healthy system, i.e.,
when VMs are provided with appropriate computa-
tional resources, we would have expected this metric
to stay close to zero, or at least experience a slight
increase only during the peak hours.

A significantly different pattern is the one reported
in Figure 4, corresponding to the top-right neuron in
Figure 2. Such behavior represents the 7.84% of the
observed daily patterns in the time period under anal-
ysis. As evident from the picture, there is a higher
CPU contention during night, when the VM has lower
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Figure 3: Most Recurrent VM Cluster Identified by the Multi-Metric SOM-based Analysis.
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Figure 4: A Singular VM Pattern Captured by the Top-Right Neuron in the Multi-Metric SOM-based Analysis.

Table 1: The Hyper-Parameters Values Used for Grid
Search.

| Hyper-parameter | Space \
8x8,12x 12,

16 x 16, 24 x 24,
32 x 32,48 x 48
0.1,02,....09,.1.0
0.1,02,...,0.9,1.0

5,10,20

SOM dimensions

learning rate
neighborhood radius (G)
epochs

traffic, than during the day.

An additional remark regarding the possible pres-
ence of anomalies can be done considering the fact
that the VMs included in the analysis are guaranteed
to have the same role in the corresponding VNFs,
i.e., they manage traffic in load sharing-mode. While
it was expected to obtain an identical output for all
them, instead, the SOM-based analysis has pointed
out that a subset of such VMs exhibits daily patterns
very different to the expected ones. This could be con-
sidered as a warning by human operators, that shall
be monitor and further analyze the involved compo-
nents of the infrastructure. In addition, it is worth
noticing that asynchronous changes among the met-
rics included in such analysis could be indications of
anomalous behavior of the NFV environment, and not
necessarily of the VNF itself.

4.2 Grid Search on Hyper-parameters
As mentioned in Section 3.1, different hyper-

parameters lead to very different clusters after train-
ing. An extensive grid search has been conducted
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over the search space summarized in Table 1. A to-
tal of 1600 different configurations has been tested
monitoring quantization error and readability of re-
sults. Figure 5 shows the effect of using a low ¢ value
(0.1) in different map sizes. Using a low ¢ with a
low learning rate gives the worst results with very few
BMUs that capture more than 95% of data, resulting
in higher quantization errors.

SOM maps greater than 12 x 12 require very high
¢ (> 0.8) and very low learning rate (< 0.3) in order
to have low quantization errors, but in these cases the
results tend to become unreadable due to the fact that
too many neurons specialize on similar patterns. In
Figure 6, the SOM maps reported in Figures 6a and 6b
are trained using high ¢ and low learning rate, while
the ones reported in Figures 6¢ and 6d are trained us-
ing high ¢ and high learning rate. Therefore, for our
analysis the best combination of hyper-parameters are
high values of ¢ (;0.6) and low values of learning
rate (j0.6) with results that are better both in terms
of quantization error and readability.

4.3 Per-VNF SOM-based Analysis

Another interesting characterization we could per-
form applying the SOM-based analysis, is a study of
how different VNFs behave in terms of their daily re-
source consumption patterns.

In this case, we produced hitmaps highlighting
how many daily patterns of VMs of each given VNF
map onto each SOM neuron. The result can be visu-
alized as in Figure 7, using the same data set used in
Figure 2.
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Figure 6: SOMs with high ¢ values: (a) 8 x 8, 6: 0.6, Ir: 0.2; (b) 12 x 12, 6: 0.6, Ir: 0.2; (c) 8 X 8, 6: 0.6, [r: 0.9; (d) 12 x 12,
c: 0.6, Ir: 0.9 For confidentiality reasons, the scale has been omitted.

DRA

0

1

2

3{ 0.86 1.0 ‘
4 1 2 3

(a) (b) (©

(d) (e) (®

Figure 7: SOM Clusters and Corresponding per-VNF Hitmaps Identified by the Multi-Metric SOM-based Analysis. For
Confidentiality Reasons, the Total Number of Hits in the Hitmap Cells Has Been Rescaled to 1, to Avoid Disclosing the
Actual Figures.
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Figure 8: Distance-based Grouping of Similar Neurons Us-
ing a 0.007 Threshold.

For example, the plot highlights that both the
SBC and the TAS VNFs have mostly the usual
“nightly/daily” pattern characterized by a low work-
load over nightly hours and a high workload over
daily hours, with peaks around noon and 6pm.
These are caught by the top-left neuron with co-
ordinates (0,0). On the other hand, the DRA
VNF captured by neurons (3,0) and (3,1) ex-
hibit the classical nightly/daily pattern for the
cpulcapacity_contentionPct metric, and periodic
peaks every 30 minutes for the other two metrics.
Moreover, a consistent number of VTAP VMs are
captured by neuron (2,3) that is characterized by
hourly periodic peaks.

4.4 Grouping of SOM Neurons

In this section, we report the output of the group-
ing/clustering technique described in Section 3.2,
starting from another month of data, with respect to
the experiments shown above. We obtained the SOM
neurons whose weights are highlighted in Figure 8a.
After applying the distance-based grouping, with a
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group-distance threshold of 0.007, we obtained a re-
duced number of groups, as visualized in Figure 8b,
where each cell corresponding to a neuron has been
labelled with the associated group identifier. These
reflect better the different behaviors we have in the
resource consumption patterns.

S CONCLUSIONS AND FUTURE
WORK

In this paper, we focused on the problem of analy-
sis and classification of the behavioral patterns of VM
metrics in a NFV data center. We described the tech-
nique we realized, based on self-organizing maps, that
is being used across the data centers of the Vodafone
network operator. We described some of the initial
results we obtained from its application, highlighting
the capability of our technique to identify interesting
points in space and time (i.e., precise VMs and hosts
within the infrastructure, and precise days within the
analyzed time range) with potentially anomalous be-
haviors, thus deserving further attention and investi-
gations by data center operators.

In our experimentation, we identified a number
of open questions that still need additional investiga-
tions. First, the proposed technique has a number of
hyper-parameters (SOM grid size and parameters, and
various thresholds as described in Section 3) that have
to be decided. A grid search can be used for such pur-
pose, but it requires a non-negligible processing time
as configurations to try can easily grow in the range
of tens or hundreds. In order to avoid manual and
tedious evaluations by operators, the various analysis
runs should be compared with one another using an
automated and quantitative assessment method. This
cannot be simply done based on the SOM quantiza-
tion error, as it would decrease increasing the SOM
size, driving the choice towards excessively large net-
works. For example, we plan to use the average sil-
houette width to such purpose (Rousseeuw, 1987).

Another interesting path we plan to explore is the
one to combine our approach with the use of Deep
Learning (DL) for time series classification (Malho-
tra et al., 2017; Cui et al., 2016; Ismail Fawaz et al.,
2019; Kashiparekh et al., 2019), in order to build
more effective anomaly detection models.
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