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Due to the digital transformation and huge amount of publicly available data, decision support systems are
becoming highly useful in helping to defining, managing and improving business strategies and objectives.
Indeed, data is a key asset and a key competitive differentiator for all organizations. This newly available data
has changed traditional data processing and created new challenges related to the velocity, volume and variety
of data. To address these challenges related to the storage of heterogeneous data and to provide the ability of
rapid data processing, we explore the data lake paradigm. In this paper, we present the state-of-the-art of Data
Lake systems and highlight their major advantages and drawbacks. We also will propose a solution to improve

Data Lake System.

1 INTRODUCTION

We live in a society where information and data be-
came the new oil. Data is growing rapidly because of
the over-connected world we live in.

Data becomes more important over time, since it is
a key issue in understanding and analyzing scientific,
economic, political and social problems.The volume
of digital data doubles every year and is expected to
reach 44 billion gigabytes (GB) during 2020 accord-
ing to talend website !.

With the diversity of unstructured and semi-
structured data, we face a dual challenge in finding
efficient solutions to store this huge amounts data and
in having the necessary capacities for their fast pro-
cessing.

In this article, we will focus on the problems of
migrating a company’s traditional information system
to a DL. These problems are related to the implemen-
tation, management and the exploitation. Since it is
not easy to transform all data in a DL at once, be-
cause it is costly. Companies need a service-oriented
architecture. That is why we propose an approach
that creates an interface for each source of informa-
tion to menage access to external data (along with the
company internal databases) without actually perma-
nently storing it. We will concentrate on extracting, if
it is possible, the metadata (schema) of each sources
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to perform a “virtual” data migration (metadata mi-
gration). These schemata will be merged to form one
global schema. The advantage of this approach is
that we don’t need to change the whole systems in-
formation to a single server in one time (which will
be highly expansive).

This paper is organized in three sections. The first
section describes the literature related data storage.
In the second section, we propose a two layers ar-
chitecture (physical and logical) for managing data
lake. We show our contribution related to the problem
of linking the physical layer and the logical layer us-
ing metadata for each type of data (data source). The
third section presents the experimentation we conduct
to assess our proposal.

2 LITERATURE REVIEW

The huge amount of available digital data -Big Data-
, has changed our way of conceiving scalable data
operations from collecting to analysis. Indeed, data
community has been forced to find new solutions to
collect, store and use data. The need for these new so-
lutions mainly stems from the new characteristics of
nowadays data -variety of sources and schemata (open
data, social data, GPS...), volume, velocity (continual
changing), ... Specifically for data storage, traditional
IT solutions, such as data warehouses, that use rela-
tional data are no longer suitable as they do not scale
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to thees new characteristics.

New architecture and approaches has been pro-
posed. Among them is a new storage concept called
Data Lake (DL), which addresses the big challenges
of Big Data that correspond to the question raised by
the authors of (R. Hai and Quix, 2016): ‘how to make
an easy use of highly diverse data and provide knowl-
edge?

Data Lake was first introduced by James Dixon
(Chief Technology Officer (CTO) at Pentaho) in a
blog post (Dixon, 2010), where he said that if we
think that a data marts as a store of bottled water so the
DL is the rich source of water in a more natural state
(raw data). In addition, in his initial article (Dixon,
2014), he describes the DLs as a system that store
data into a single source (Miloslavskaya and Tolstoy,
2016) (Quix and Hai, 2018).

Barry Delvin said that a DL is: “In the simplest
summary, it is the idea that all enterprise data can and
should be stored in HADOOP and accessed and used
equally by all business applications.”

Before moving on to DL it’s necessary to define
what is a digital enterprise. There is undoubtedly a
change in companies’ ecosystem (Information sys-
tems), due to the rapid evolution of technologies -
essentially the rapid explosion of data. Therefore
the mastering this ecosystem data with fast and ef-
ficient tools becomes a necessity for organisations.
Hence the digitalization of internal business processes
for example: customer portfolio management in the
banking sector, production management in the indus-
trial sector..., and external business processes for ex-
ample: customer relations, supplier relations...

So what is digital enterprise?, according to Mar-
garet Rouse? , It is an organization that uses technol-
ogy as a competitive advantage on these operations.
In addition, the rapid technological change is forcing
business leaders and heads of institutions to regularly
review their strategy to adapt it to the needs and the
environment in which they operate.

2.1 Data Lake Context

DL can be defined as a massively scalable stor-
age repository that contains a very large amount of
raw data in its native (original) format from vari-
ous sources for an indefinite period of time (till it is
no longer neededd) (Wang, 2017). Among the ben-
efits of this storage method, is the ease of coexis-
tence between different schema and structural forms
of data, usually blobs of objects or files (R. Hai
and Quix, 2016),(Miloslavskaya and Tolstoy, 2016),

Zhttps://searchcio.techtarget.com/definition/Digital-enter
prise
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(Llave, 2018), (Kachaoui and Belangour, 2019). Most
researcher take the DL as just a methodology but it
is an actual new data architecture that includes both
hardware, software and conceptual design (Madera
and Laurent, 2016).

Different users can access to the DL at any time
because the data are stored in its raw form (Zagan
and Danubianu, 2019), so they can analyze, structure
and process it. Moreover, a DL can store all types
of data such structured, semi-structured and unstruc-
tured data. Also, we can say that the advantage of a
DL is its ability to trace each piece of data back to
any time in the past (because the data are stored as
it is directly from its original source of storage), and
any organization can perform any analysis on any old
stored data.

DL use Schema on Read technique as it is the case
for ELT process. This technique offers more flexibil-
ity in using a huge amount and different types of data
(Zagan and Danubianu, 2019).

According to a survey conducted by TDWI 3, 82%
of users deal with rapidly changing data in terms of
structures, types, sources and volumes. In addition,
85% of the people surveyed consider the DL as an
opportunity, because of analytical applications that re-
quire all types of data (old and new data) to be widely
consolidated. On another hand, the DL is exploited
for several benefits and use cases (Advanced Analysis
49% and Data Discovery 49%). Also the TDWI sur-
vey states that “only a quarter of surveyed organiza-
tions have at least one DL in production, but another
quarter plan to enter production within a year”.

2.2 Data Lake Solutions

Most researchers in DL offer solutions (system, ser-
vice, product ...) that handle some specific problems.
For example, (A. Beheshti and Zhao, 2017) propose
two DL services CoreDB and CoreKG. CoreDB was
created in 2017 as is an open source service that pro-
vide relational and NoSQL databases-as-a-service to
develop web data application, and it use the power
of Elasticsearch as a seaurch engine. It helps ana-
lysts to create a DL. This solution offers tools to eas-
ily organize, index and query data and metadata and
provides an integrated design for security and track-
ing. CoreKG was created in 2018 to complete the
CoreDB services. CoreKG offers a contextualized DL
service that provides researchers and developers with
the possibility of managing multiple database tech-
nologies from relational to NoSQL. It offers a built-
in design for data curation, security and provenance

3https://tdwi.org/articles/2017/03/29/tdwi-research-report-
examines-emerging-best-practices-for-data-lakes.aspx



(A. Beheshti and Tabebordbar, 2018).

In (M. Wibowo and Shamsuddin, 2017), the au-
thors propose a machine learning technique to opti-
mize data management processes in a DL by com-
bining data silos. This solution intended to improve
data quality is divided into two phases. The first phase
bridges the gap between the data sources, i.e. the data
silos, and the DL that will manage the data source. In
this phase, data discovery will describe the data, gov-
ernance will capture the data using evolving metadata,
and data mining will new data models to combine it
with other ML processes. The second phase, is for
verifying the result. It uses several tools related to
Reporting, BI, Visualization...

In the same context, (A. Farrugia and Thomp-
son, 2016) proposes a DL management (DLM) by
extracting the metadata from the database using So-
cial Network Analysis. (Z. Shang and Feng, 2016)
proposes the iFuse (data fusion platform) that bases
on Bayesian Graphical Model to manage and query
a DL. (I. D. Nogueira and Ea, 2018) uses a group
of modeling to handle schema evolution in a DL
and proposes a data vault. (Sawadogo and Darmont,
2019) presents a methodological approach to manage
and build a metadata system for textual document in
a DL. Also, (L. Chen and Zhuang, 2015) propose
a data model for unstructured data and the RAISE
method to process it using a SQL-like query lan-
guage. Hai and colleagues present an intelligent sys-
tem under the name Constance. This system (R. Hai
and Quix, 2016) have been proposed as a solution to
non-integrated data management system with hetero-
geneous schema, and to avoid the problem of “data
swamp”. Constance was built to discover, extract and
summarize the structural metadata of data sources and
to annotate data and metadata with semantic informa-
tion to avoid ambiguities. Another system proposed
in (M. Farid and Chu, 2016) introduces the CLAMS
system that discovers the raw data and metadata in-
tegrity constraint using the RDF model. To validate
the result, this system requires human intervention.

From these previous work, we state that most re-
searchers use specific data type as while addressing
the data heterogeneity problem. In another words,
contributors start defining the two main axes of a DL,
which are the data extraction and data management
phase. they start choosing, beforehand, the targeted
data type. Since we acknowledged the variety as-
pect of nowdays data -there are various of structured,
semi-structured and unstructured data-, the proposed
DL architectures and models are limited to the only
type of data they explicitly target. also, what is miss-
ing in the existing work is the projection of the ap-
proaches in a real case (some of them have a large
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project which, based on a real case as (R. Hai and
Quix, 2016)).

To summarize, most research focuses on the man-
agement system and exploration of DL using popular
knowledge and tools such as machine learning, data
quality, social networks focus on textual data. This
only concerns a part of the variety of data types.

3 DATA LAKE MANAGEMENT

As stated previously, a Data Lake is a sustainable so-
lution for companies which want to take advantage of
publicly available data. However, DL solutions hard
to implement, manage and operate especially if tar-
geted data sources are heterogeneous. It is therefore
necessary to have an architecture that can adapt to any
type of data structure or format and ensure the stor-
age, ingestion and preparation policy.

According to the literature, the company needs a
service-oriented architecture but it isn’t easy to trans-
form the entire information system into a single DL.
To deal with this problem we propose the creation of
interfaces for each source of data. In addition, we
believe that we need to create a virtual DL with two
layers (physical layer and logical layer) in order to
conserve resources adequately.

The question that arises now is how to link the
two layers? To do so, we propose a DL architec-
ture, covering the business perimeter, then we focus
on managing a DL by grouping metadata, managing
the schema, managing database access and indicating
how to extract metadata from any possible source.

3.1 Architecture

The figure 1 bellow shows the architecture of our DL.
It is divided into two layers:

e Physical Layer: This layer, makes the physical
and real link between the DL and the external
(API, web page, etc.) and internal (databases, flat
file, etc.) sources of an organization. In other
words, it is responsible for establishing the con-
nection of each source through a dedicated in-
terface that take into account the nature of each
source.

e Logical Layer: this layer illustrates the core of
our architecture. It Contains several functionali-
ties. For example, as soon as the connection is es-
tablished with a source, we retrieve the metadata
of this source and store it in our database. After
that, the integration of all metadatas is performed
by storing them in the same database. From this
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moment, it is possible to update the data dictio-
nary that represents the mapping of the sources in
the DL.

Moreover, the purpose of a DL is to prepare the data
for the user. In order to achieve this purpose, we
use the following technique: Data preparation, data
pre-processing and data wrangling. In addition, we
have to implement the necessary treatments such as
machine learning which helps us to prepare the data
and then create interfaces to disseminate the data re-
quested by the user.

Physical Layer

Logical Layer

Meta-Data

Figure 1: Proposed architecture of the Virtual Data Lake.

3.2 Conception Model

We have built a conceptual model of our DL as a set
of stores. Each store created by a user contains two
types of sources: input sources and output sources.
The source is an interface between the physical source
of data and the logical layer of DL.

The first constraint to solve is how to integrate
all possible sources such as relational databases, flat
files or other data sources in the DL. To overcome
these constraints, we use different design patterns
(E. Gamma and Vlissides, 1994). The first design pat-
tern we use is the Bridge pattern.

So, our Source class will become an abstract class
containing the methods: connect (), disconnect (),
state (), getShemaFromSource (), TransformToMata-
Data () and other methods that we will added subse-
quently.

Therefore, we take the first case of a DBMS
Source (MySQL, PostgreSQL, etc.) . We use Sgbd-
Source class to connect to a relational database. This
requires three important elements to communicate
with the database:

1. The database link with the port,
2. The login,

3. Password.
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For any other type of source, we add the necessary
elements to establish the links with our DL as shown
the figure 2.

Source
Store.

SourceIN |- 1D_Source: int
- CreationDate: Date = |- name: sting
- 1D_Store: int +ID_Source
- name:Sting + connect(y int

0 Source_OUT | +  gisconnet(: int

+ getShemaFromSource(: Sting

+ date() int
+ TrangormToMetabata() LigM etaData

FtpSource:
sgbdsource Hafs Source

U sting
- login: sting - ut: Sting
- o St + add

Do + addlishletacataligMetaata)int | |+ connect int

+ comnect() int + disconnect int

+ addLish etadata(is(h etaData)} int + disconnect() int + getshemaFromSource(): Sting
~ connect(: int + getShemaFromSource(: Sting + date() int

~ disconnect(: int + date() int + TransomToMetabata() Li<( etaData

+ getShemaFromSource(: String + TrangormiT oMetaData(: LidM etaData)| '———
+ date() int —_—
+ TransformT ol etaData(: Lisi(Metali odel)

ist(MetaData)): int

Figure 2: Conception the Source class with the patron
bridge.

3.3 Meta-Model

The goal of a DL is to enable the user to see and un-
derstand all the data in his information system. This
information system consists of a large variety of data.
So, we must first analyze and manage the metadata
of each source and use it through the metadata set.
Metadata management is a vital step in understand-
ing the business of a company. With the previous de-
sign, we identified the source and the next step is to
extract the metadata from them. When talking about
metadata, we are implicitly talking about the types of
data we can solicit, so we are talking about a classic
Big Data problem: the variety of data. To unify and
make all metadata uniform, we have created a general
meta-model that groups all metadata together (figure
3). Therefore, each entity of metadata is a set of vari-
ables. We note:

M ={vy,....,vu}, suchv; €V whereV a set of variables

ey

3.4 Transformation of Relational
Metadata

For a relational schema, we transform all relation-
ships into a metadata entity. Afterwards, we take
all the names of the properties out of foreign keys
and we transform them on a variable typed as String.
The third step aims to transform the foreign keys into
variables. For each foreign key, we should know
its source relationships because we use the metadata
name of this source relationships to assign the type of
variable. The algorithm 1 summarize all this step.



Figure 3: Global Conception.

Algorithm 1: Transformation of relational
metadata.

1 R, «+ ReLationExtract(q) ; q: set of
relation with attribute

2 forR in R,do

Mypey <— newMetadata(R) ;

Py < labelExtractPopriety(R) ;

forP in P,do

L Vnew < newvaraibles(P,”String”) ;

N S N B W

Mypey-getListVariable Add (vpey);

As an example, we take the following relational

schema: Film(NameFilm(Int), ReleaseYear(date),
#FilmMaker(int))
FilmMaker(IdFilmMaker(int), LastName(string),
FirstName(String))

After the transformation our example gives the
following schema:
MFilm(NameFilm(string),
FilmMaker(MFilmMaker));
MFilmMaker(IdFilmMaker(string), Last-
Name(String), FirstName(String))

ReleaseYear(string),

3.5 Flat File Transformation

If we took the example of CSV files. For each one,
we create a meta-data entity and all columns becomes
variables in the new entity as shown the algorithm 2.

For example, a following transaction CSV file:
(Transaction_date, Product, Price, Payment_Type,
Name, City, State, Country, Account_Created,
Last_Login, Latitude, Longitude)

Turns into:
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MTransaction(Transaction_date(String), Prod-
uct(String), Price(String),Payment_Type(String),
Name(String), City(String), State(String),
Country(String), Account_Created(String),
Last_Login(String), Latitude(String), Longi-
tude(String))

Algorithm 2: Flat file transformation.

1 Myeyw  newMetadata(”ID”) ; ID: Auto
Increment

2 P, < labelExtractPoprietyFromFile() ;

3 forP in P,do

4 Vnew — newvaraibles(P,”String”) ;

5 Mpew-getListVariable Add (vyey);

The management of the store is carried out by the Ser-
viceManageStore class. This class contains different
methods like creating stores and creating sources, as
well as getting the source list and metadata list.

ServiceManageStore

createSource(String): int
createStore(string ). int
getaliMetaData() ListMetaData)
getallSources) List(Soumce)

* o+ o+ o+

Figure 4: ServiceManageStore.

The createSource() function takes as parameter the
user request in a json format file.  This latter
contains, as shown below, the type of source and
the information needed to establish the connec-
tion:  “Type”: “mysql”, “Parameter”: [ url™:
“mysql://localhost:3306/todo”, ”login”: “admin”,
“password”: admin” ]

The previous method will establish a connec-
tion and then it will call the getShemaFromSource()
method. This latter is specific for each type of source.
The output result of the previous function is passed
as a parameter to the TransformToMetaData() func-
tion. It is dedicated for each type of source, like
the transformation algorithms seen in section (3.4 and
3.5), and then we will add the output result as a list
of meta-data in the source object. Finally, we invoke
the SaveSource () method in the SourceRepository to
store the source class in the database. The sequence
diagram (figure 5) shows the process of creating the
source. It represents the most critical function of our
model.

To conclude, we propose two examples of trans-
formations. So, for each source type, we create a
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Figure 5: Sequence Diagram.

dedicated transformation model, using for each type
a specific algorithm.

4 EXPERIMENTATION

To experiment our approach we used a docker which
is a software that will allow us to launch different ap-
plications in different containers. The objective is to
simulate the real environment of a company with its
different databases. For this we will take three con-
tainers that represent our sources:

e Container number 1: Relational database server;

o Container number 2: Hdfs server contains csv
files;

o Container number 3: Cassandra server;

e Fourth container contains our DL layer.

e

Data Lake

&

Figure 6: Experimentation Schema.

We used for the implementation of our application,
the Framework Spring, with its variant Spring Boot
that allows us to launch a Rest API to deploy our ap-
plication.

For the creation of a store we send the following
request using curl:
curl -d *’name”: "storel”’ -H ’Content-Type: appli-
cation/json’
http://localhost:8082/spring-rest/store/add

Also, for the creation of sgdb type sources we send
the following request:
curl -d ""Type”: “mysql”, ”Parameter”:[ url”:
“mysql://localhost:3306/testSource”, "login”: “ad-
min”, "password”: “admin”] -H ’Content-Type:
application/json’
http://localhost:8082/spring-rest/Srource/add



In this experiment, we check the good functioning of
our application, which aims to collect and manage the
metadata of the chosen sources. We also provide other
interfaces to help the user manipulating, visualizing
and managing the store and the sources being created.

S CONCLUSION AND FUTURE
WORK

In this article, we presented a DL literature review,
a DL architecture proposal called Virtual DL, and a
conceptual model that defines a DL as a set of stores.
We also define an experimentation framework to ac-
cess our model. To integrate data sources, we used
bridge patterns and create metadata that describe each
targeted data source. The goal of this proposal is to
avoid the migration of the whole digital and IT in-
frastructure of the company to a single server as a
single operation. This a single-operation relocation
of resources would be too expensive. Our solution
offers companies the opportunity to gradually trans-
form their information system without supporting an
exorbitant cost while still benefiting from the entire
available data. The entire cost will be gradually ab-
sorbed as the relocation of resources goes on. As a
future work, we believe that it is necessary to man-
age a global schema that comprehends organization’s
data, and create a dictionary of relationships between
internal and external data that handles the problem of
heterogeneous data.
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