
A Set of Empirically Validated Development Guidelines for Improving
Node-RED Flows Comprehension

Diego Clerissi2, Maurizio Leotta1 a and Filippo Ricca1

1Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy
2Dipartimento di Informatica, Sistemistica e Comunicazione (DISCO), Università di Milano, Bicocca, Italy

Keywords: Node-RED, Guidelines, Comprehension, IoT Web Based Systems, Visual Development.

Abstract: Internet of Things (IoT) systems are rapidly gaining importance in the human society, providing a variety of
services to improve the quality of our lives, involving complex and safety-critical tasks; therefore, assuring
their quality is of paramount importance.
Node-RED is a Web-based visual tool inspired by the flow-based programming paradigm, built on Node.js,
and recently emerged to support the users in developing IoT systems in a simple manner. The community
behind Node-RED is quite active and encourages artefacts sharing. Thus, the Node-RED flows developed
and submitted to public usages should be easy to comprehend and integrate within already existing systems,
also in preparation of future maintenance and testing activities. Unfortunately, no consolidated approaches or
guidelines to develop comprehensible Node-RED flows currently exist.
In this paper, we propose a set of guidelines to help the Node-RED developers in producing flows that are easy
to comprehend and use. We have designed and conducted an experiment to evaluate the effect of the guidelines
in Node-RED flows comprehension. Results show that the adoption of the guidelines significantly reduces
the number of errors (p-value = 0.00903) and the time required to comprehend Node-RED flows (p-value =
0.04883).

1 INTRODUCTION

In the context of the Internet of Things (IoT), Node-
RED has become a practical solution to easily develop
and share IoT systems.

Node-RED is a Web-based tool inspired by the
flow-based programming paradigm (Morrison, 2010)
and built on top of the Node.js framework. In Node-
RED, a node represents part of a service logics and is
largely configurable, while a flow describes the way
the nodes collaborate and communicate.

Daily, nodes and flows are developed and uploaded
to the Node-RED library by the developers partici-
pating in the community (over 2000 nodes in 20191),
as solutions to general or specific problems, and any-
one may download part of this content to integrate it
within existing systems. Nodes can execute a variety
of tasks, like reading values from a database, running a
JavaScript function, receiving the feeds from a Twitter

a https://orcid.org/0000-0001-5267-0602
1https://flows.nodered.org/

account, establishing a communication between two
devices using the MQTT protocol, and more.

As the flow-based programming paradigm pre-
scribes (Morrison, 2010), nodes are black-box com-
ponents that hide all the implementation details (i.e.,
basically, JavaScript functions and graphical features).
The developer can select the nodes she desires and
wire them together in order to implement the system
she wants, without having the complete knowledge of
the nodes implementation she is using.

As any other programming tool and language,
Node-RED lets the developer to choose her own pro-
gramming style while implementing new nodes and
flows. Since Node-RED is a visual tool, along with
the programming style, there is also the comprehensi-
bility factor related to the graphical style adopted for
wiring the nodes together to compose the Node-RED
flows, as well as for carefully choosing meaningful
names for the nodes; in general, this is a problem more
frequently found at design stage. The lack of a disci-
plined approach as a guidance for developing Node-
RED flows could result in messy “spaghetti” artefacts,
very hard to comprehend and use, which may produce

108
Clerissi, D., Leotta, M. and Ricca, F.
A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension.
DOI: 10.5220/0009391101080119
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 108-119
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

unexpected outcomes when they are integrated into
further complicated systems, without mentioning the
pain of maintaining and testing them.

Up to now, no consolidated approaches support-
ing Node-RED developers in producing reusable and
comprehensible flows exist, and only few basic and
unofficial attempts proposing best practices and design
patterns have been made so far2.

In this paper, we propose a preliminary set of guide-
lines to produce Node-RED flows that are easy to
comprehend by construction, and more suitable to
reuse, maintenance and test. We have investigated
the benefits of adopting our guidelines by means of
an experiment involving ten master students, where
two selected Node-RED systems, each one developed
with and without our guidelines, are compared in a
comprehension scenario.

In Section 2 the guidelines are described, while
some Node-RED comprehensibility issues pertaining
the two selected Node-RED systems are introduced in
Section 3, showing how the guidelines can be applied
on them. The experiment and the results are discussed
in Sections 4 and 5, respectively. Finally, related work
are presented in Section 6, and the conclusions are
discussed in Section 7.

2 PROPOSED GUIDELINES

The guidelines we propose in this paper address some
common Node-RED comprehensibility issues, which
may emerge while developing flows or trying to un-
derstand and integrate flows provided by an external
source (e.g., the Node-RED community library). Is-
sues may concern confusing nodes names, hidden
loops and loss of messages, lack of conditional state-
ments, unexpected inactive nodes, and more. More
details about issues are provided in Section 3.3. The
guidelines aim at supporting Node-RED developers in
producing flows that are easy to comprehend by con-
struction, and suitable for future reuse, maintenance
and testing activities.

The guidelines have been inspired by several de-
sign works addressing systems quality using UML and
BPMN (Ambler, 2005; Mendling et al., 2010; Un-
helkar, 2005; Reggio et al., 2011; Reggio et al., 2012),
and by our experience in IoT systems design and Node-
RED flows development (Clerissi et al., 2018; Leotta
et al., 2018). UML is one of the most used nota-
tional languages (Reggio et al., 2014), and differs to
Node-RED in many aspects: while UML works at

2https://medium.com/node-red/node-red-design-
patterns-893331422f42

design level and describes the static and dynamic de-
tails of a system, Node-RED is an executable visual
language used to implement, execute and deploy a
working system. The constructs they use are quite
different, as well as their syntax and semantics. Nev-
ertheless, we have experimented in practice that some
design and technology-independent principles can be
inherited from UML even to solve specific Node-RED
issues (Clerissi et al., 2018; Leotta et al., 2018).

To better comprehend the Node-RED terminology
and the issues that our guidelines try to address, in
Table1 we recap a short list of terms and definitions,
extracted and elaborated from the Node-RED official
documentation3.

The guidelines we propose can be classified into
four types, based on the comprehensibility issues they
address: Naming, Missing Data, Content, and Lay-
out.

2.1 Naming

Node Name Behaviour (NNB). Each Node-RED
node should have a unique (unless a duplicate of an-
other existing node) and meaningful name, suggesting
its high-level behaviour (Lange et al., 2006). The
name of a node should make explicit the action(s) per-
formed by the node and the object(s) receiving such
action(s). An object may refer to a message property
or a global/flow variable, written in upper-case to be
more visible within the flow (Reggio et al., 2012).
Flow Name Behaviour (FNB). Each Node-RED flow
should have a unique and meaningful name, sum-
marizing in a very concise way its high level be-
haviour (Lange et al., 2006).

2.2 Missing Data

Node Effective Contribution (NEC). By adapting to
Node-RED the terms used by Ambler (Ambler, 2005),
there should neither exist black hole nodes nor miracle
nodes. A black hole node is a node with no leaving
wires but output pins > 0, which means that the node
output might be lost or unused by the flow, while a
miracle node is a node with no entering wires but
input pins > 0, which means that the node cannot be
explicitly activated or is missing some data.
Conditions Consistency and Completeness (CCC).
The conditions of every switch node (i.e., a core Node-
RED node basically implementing the switch/if con-
structs of every programming language, and used to
route the messages by evaluating a set of conditional

3https://nodered.org/docs/

A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension

109

Table 1: Node-RED Essential Terms and Definitions.

Term Definition

Node
The basic Node RED component, representing (part of) the logics of a service/functionality.
Each node has a type describing its general behaviour and a set of custom properties.

Flow The logical way the nodes are wired, expressing how they collaborate by exchanging messages.
Sub-Flow Each self-contained logical portion of a flow, contributing to its completion.

Wire The edge used to graphically connect two nodes in a flow.
Pin The input/output port of a node where a wire enters/leaves.

Message A data object exchanged by some nodes, characterized by a sequence of configurable properties.
Global/Flow Variable A variable defined in a node and visible by all the flows or by just the one containing that node.

statements over global/flow variables or message prop-
erties4) should not overlap and be complete (i.e., their
disjunction returns true) (Ambler, 2005; Reggio et al.,
2012), in order to handle separately all the possible
scenarios.

2.3 Content

Sub-Flows Relatedness (SFR). The sub-flows com-
posing a flow should be logically related among each
others (Lange et al., 2006), following the design princi-
ple of high cohesion and low coupling (Martin, 2003).
Two sub-flows F1 and F2 are logically related if, e.g.:

• F1 and F2 describe (part of) the behaviour of the
same device;

• F1 and F2 contribute to the same service/function-
ality;

• F1 and F2 share some variables or other data;

• F1 is activated by F2 or vice versa;

Flow Content (FC). If a flow is overpopulated, its
content should be simplified (Mendling et al., 2010;
Unhelkar, 2005; Ambler, 2005), by identifying some
of its sub-flows, and either: (a) physically split and
connect them together through link nodes (i.e., a core
Node-RED node used to add a virtual wire between
two sub-flows5), or, (b) collapse them into correspond-
ing sub-flow nodes (i.e., a core Node-RED node used
to collect sub-flows to favour reuse and reduce layout
complexity6). Since Node-RED flows design and de-
velopment phases are strongly related due to the visual
nature of the tool, as in the case of more general de-
sign activities, there is a positive correlation between
flows size and complexity. A flow is then classified
as overpopulated if the number of nodes it contains is
equal or above 50 (Mendling et al., 2010).

4https://nodered.org/docs/user-guide/nodes#switch
5https://nodered.org/blog/2016/06/14/version-0-14-

released
6https://nodered.org/docs/user-

guide/editor/workspace/subflows

2.4 Layout

Wiring Style Consistency (WSC). The wires con-
necting the nodes should follow a consistent wiring
style, to differentiate main/correct scenarios from ex-
ceptional/wrong ones (Reggio et al., 2011; Reggio
et al., 2012; Ambler, 2005; Unhelkar, 2005). Since
Node-RED flows may handle several scenarios, as
it happens for classic programming languages con-
cerning conditional statements, different wiring styles
may be adopted within the same flow. For example,
a “straight, from left to right, top-down” style to wire
all the nodes participating in a correct scenario, and a
“cascade” style to wire all the nodes participating in a
wrong scenario.
Wiring Style Tidiness (WST). The wires connect-
ing the nodes should be long enough to clearly show
the starting/ending nodes and avoid any overlapping,
whether possible (Ambler, 2005). Wires should be
drawn in the order they enter/leave a node. The node
joining multiple wires should be placed at the level of
the node where such wires originated.

3 SELECTED NODE-RED
SYSTEMS

To conduct the experiment, later discussed in Section 4,
we selected two existing Node-RED systems that were
developed by former students of the master course
Data Science and Engineering (Genova, Italy), as part
of the last year project.

The systems, named DiaMH and WikiDataQue-
rying, present some common Node-RED comprehen-
sibility issues derived from an undisciplined and basic
Node-RED usage (i.e., the teacher of that course was
not involved in our research and thus students devel-
oped the systems without following any guideline).

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

110

(a)

(b)

(c)

Figure 1: Issues in Node-RED Systems and Guidelines Application.

3.1 DiaMH System

DiaMH is a simulated Diabetes Mobile Health IoT
system which monitors a diabetic patient by collecting
glucose values using a wearable sensor, sends notifica-
tions to the patient’s smartphone about the monitored
data, and, based on some logical computations involv-
ing a cloud-based healthcare system and realistic data
patterns, determines the patient’s health state (i.e., Nor-
mal, More Insulin required, or Problematic) and, when
needed, orders insulin injections to a wearable insulin
pump. It consists of 71 nodes and 63 wires.

3.2 WikiDataQuerying System

WikiDataQuerying is a web query service used to se-
lect textual geospatial questions from a predefined list
shown in an HTML page, and query WikiData7 knowl-
edge base, by first restructuring the selected questions
into SPARQL query language and formatting them
using a Prolog grammar. The results of the queries
can be triples adhering to the Resource Description
Framework (RDF) language or boolean answers. It
consists of 25 nodes and 27 wires.

7https://www.wikidata.org

3.3 Applying Guidelines to Node-RED
Systems

For the selected Node-RED systems, only some of the
aforementioned guidelines have to be applied. How-
ever, even such simple systems can hide several com-
prehensibility issues. Despite their simplicity, involv-
ing mainly core Node-RED nodes, DiaMH works in
the thorny context of the healthcare and WikiDataQue-
rying must provide prompted feedback to the user’s
requests. Therefore, producing Node-RED flows that
adhere to our proposed guidelines may improve the
comprehensibility level during flows inspection and
development, and facilitate the subsequent engineering
stages, such as maintainability and testing.

Just few of the issues we found from a high-level
flows analysis of the systems are shown in Figure 1
and discussed in the following.

Most of the nodes names do not clarify their be-
haviours, forcing the developer to inspect the nodes
contents and settings in order to comprehend them.
Therefore, NNB can be applied to clarify the nodes
purposes, by making explicit in their names the per-
formed actions and the used variables in uppercase
(see nodes names in Figure 1, changed from left to
right).

Sub-flow (a, left) of Figure 1 presents the func-
tion node (i.e., a core Node-RED node used to im-
plement customized JavaScript functions8) named Yes

8https://nodered.org/docs/user-guide/nodes#function

A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension

111

=> Count critical values, which performs several ac-
tions and then sends a message to subsequent nodes
(not shown in Figure 1) only when a certain condi-
tion holds (i.e., if count >= 20, see lines 15-17 in
Figure 1 left associated with the node); from an un-
aware Node-RED developer perspective, this may un-
expectedly block the execution of the sub-flow until
the condition is satisfied, even if the nodes are graphi-
cally connected by means of wires. This comprehen-
sibility issue emerged in several topics posted on the
main Node-RED forum9 and can be solved by apply-
ing NNB, as previously mentioned, by renaming the
function node as, e.g., DISCARD == 0 => count
CRITICAL values and returns only if COUNT >= 20,
in order to make explicit the condition it satisfies from
the preceding switch node (i.e., DISCARD == 0), the
core behaviour (i.e., count CRITICAL values), and the
hidden condition for the message to return (i.e., re-
turns only if COUNT >= 20). Sub-flow (a, right) of
Figure 1 is the result.

In sub-flow (b, left) of Figure 1, the switch node
Switch Current State hides a severe issue: it considers
only three possible values for the msg.state variable,
but the check will fail and idle the sub-flow execution
if any unexpected event sets the variable to a differ-
ent value before the switch node. This problem was
solved in the dawn era of Node-RED10 by introduc-
ing an “otherwise” entry to handle all the alternative
conditions, but the average Node-RED developer may
still miss to use it in favour of a more explicit, but
incomplete set of conditions11. By applying CCC, the
“otherwise” condition is added to the switch node (see
the change in the configuration panel from left to right
in Figure 1), while the application of WSC displays in
a cascaded wiring style the newly introduced excep-
tional scenario. Sub-flow (b, right) of Figure 1 is the
result.

Sub-flow (c, left) of Figure 1 presents several is-
sues. First, the wires do not follow any consistent
wiring style (e.g., build the flow by wiring nodes from
top to bottom or from left to right, avoiding crossing
wires), which reduces the overall comprehensibility12.
Second, a loop is generated between Prolog and send
Prolog newline nodes; although in this scenario finding
the loop is rather simple, it may be harder to detect and
produce a weird outcome or overheat the CPU, when

9https://discourse.nodered.org/t/function-node-
stopping/
7017

10https://github.com/node-red/node-red/issues/88
11https://discourse.nodered.org/t/switch-node-not-consis

tent/11908
12https://discourse.nodered.org/t/help-simplifying-flow/

8765

more wires are involved13. Third, the sub-flow shows
three function nodes connected through output pins to
limit 1 msg/s node, but only Build SPARQL queries
actually contributes to the flow, since the other two
nodes have no entering wires, making them inactive;
this case in particular is easy to detect, but could be
hard to understand for a novel Node-RED developer,
in case she forgets to trace a wire between two nodes
to specify the input source or the output destination of
a node, without receiving any explicit warning from
the Node-RED environment. This issue often arises
when there is a need for debugging a flow and some
nodes have to be temporary disconnected from it14. By
applying WSC and WST, a more consistent and tidier
wiring style is generated, to highlight the loop and
avoid further entangles, while NEC is used to remove
the miracle nodes originally named Build SQL queries
and Build SQLGIS queries (i.e., those having input
pins but no entering wires, in fact inactive). Sub-flow
(c, right) of Figure 1 is the result.

4 EXPERIMENTAL EVALUATION

Based on the Goal Question Metric (GQM) tem-
plate (Van Solingen et al., 2002), the main goal of
our experiment can be defined as follows: “Evalu-
ate the effect of the guidelines in Node-RED flows
comprehension”, with the purpose of understanding
if the guidelines are able to improve the comprehen-
sion level of Node-RED flows and the time required
to complete tasks pertaining such flows; therefore,
consequently, the overall efficiency is computed as:
comprehension level÷ time.

The perspective is of: a) Node-RED developers,
using it for their own purpose and/or sharing artefacts
with the community, who may be interested to con-
sider a disciplined technique to develop Node-RED
flows using our guidelines; b) teachers and instructors
interested to offer courses and tutorials on Node-RED
and c), researchers interested in focusing their research
activities and study improvements or constraints to the
Node-RED language.
Thus, our research questions are:

RQ1. Does the comprehension level of Node-RED
flows vary when our guidelines are applied?
RQ2. Does the comprehension time of Node-RED
flows vary when our guidelines are applied?

13https://discourse.nodered.org/t/cpu-hogging-to-100/
2944

14https://discourse.nodered.org/t/how-to-comment-out-a-
node/1106

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

112

RQ3. Does the efficiency of completing tasks
pertaining Node-RED flows vary when our guidelines
are applied?

To quantitatively investigate the research questions,
we used ad-hoc questionnaires containing 16 compre-
hension questions for each experimental object. We
measured the comprehension level of Node-RED flows
as the number of correct answers on the total, the time
required to provide such answers, and the efficiency
as the ratio between the comprehension level and the
time required to provide such answers (i.e., the number
of correct answers divided by the time is a proxy for
measuring the efficiency construct).

Table 2 summarizes the main elements of the
experiment, following the guidelines by Wohlin et
al. (Wohlin et al., 2012).

Table 2: Overview of the Experiment.

Goal Evaluate the effect of the guidelines in
Node-RED flows comprehension

Quality
focus

Pertaining Node-RED tasks, we evaluate:
(i) Comprehension
(ii) Time
(iii) Efficiency

Context
Objects: DiaMH and WikiDataQuerying
Node-RED systems
Participants: 10 Computer Science mas-
ter students

Null
Hypotheses

(i) No effect on comprehension
(ii) No effect on time
(iii) No effect on efficiency

Treatments Non-compliant (–) and Compliant (+)
Node-RED flows

Dependent
variables

(i) TotalComprehension to complete
Node-RED tasks
(ii) TotalTime to complete Node-RED
tasks
(iii) TotalEfficiency to complete Node-
RED tasks

In the following, we describe in detail: treatments,
objects, participants, experiment design, hypotheses,
variables, procedure, and other aspects of the experi-
ment.

4.1 Treatments

Our experiment has one independent variable (main
factor) and two treatments: Non-compliant and Com-
pliant Node-RED flows. Non-compliant Node-RED
flows (in the following, characterized by symbol –)
are those produced without following our guidelines,
while compliant Node-RED flows (in the following,
characterized by symbol +) are those produced follow-
ing our guidelines.

4.2 Objects

The objects of the study are DiaMH and WikiData-
Querying systems, presented in Section 3. Both were
developed by former students of another course. We
limited each object to just a comparable (in size and
complexity) flow of the original behaviour, consisting
of 20 nodes and 23 wires for DiaMH and 21 nodes and
21 wires for WikiDataQuerying, employing mostly
Node-RED core nodes.

We carefully inspected and tested both the flows
of the systems; these two flows correspond to the non-
compliant treatment (–), since our guidelines were not
adopted during their implementations. Then, an au-
thor of the paper applied the guidelines discussed in
Section 2 to the initial flows, producing two equiv-
alent compliant versions (+), while another author
double checked the newly produced flows. In total,
we used four Node-RED flows for executing the ex-
periment: DiaMH–, DiaMH+, WikiDataQuerying–,
WikiDataQuerying+.

4.3 Participants

We involved ten Computer Science master students
of the University of Genova (Italy), that were attend-
ing a course on advanced software engineering. The
total number of students enrolled in the course was
15, which is basically the average number of students
enrolled in any Computer Science Master Course in
Genova.

They had average knowledge of Software Engi-
neering, UML and JavaScript (the Node-RED core
programming language), and few experience in Node-
RED and flow-based programming, that was provided
in another course related to Node-RED development.

4.4 Experiment Design

Before the experiment, all the participants were in-
volved in a 4-hours lecture split in two days about
Node-RED theory and practice using the tool. Partici-
pants were provided with material to understand the
main Node-RED core nodes, samples of flows and sub-
flows to reproduce/change, and questions to answers
about comprehensibility issues of the flows similar to
those we asked for the later experiment. Participants
were not informed about the guidelines, and therefore,
about the treatments.

Due to the limited number of participants (only
ten), we adopted a counterbalanced experiment design
ensuring each participant to work in two tasks on the
two different objects, receiving each time a different
treatment. Since participants had the same experience

A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension

113

in Node-RED, acquired by attending another course,
we randomly split them into four groups (see Table 3),
balancing the representatives for each group. Each
participant had to work first on Task 1 on an object
with a treatment, then in Task 2 on the other object
with the other treatment.

4.5 Dependent Variables and
Hypotheses Formulation

Our experiment had three dependent variables, on
which the treatments were compared measuring three
different constructs to answer our three research ques-
tions: (a) Comprehension of the Node-RED flows
(measured by variable TotalComprehension), (b) Time
required to answer the questions pertaining the Node-
RED flows (measured by variable TotalTime), (c) Ef-
ficiency in completing the tasks pertaining the Node-
RED flows (measured by variable TotalEfficiency).
For each treatment:

• TotalComprehension was computed by summing
up the number of correct answers of each partici-
pants;

• TotalTime was computed as the difference between
the stop time of the last question and the start time
of the first question, where timing was tracked
down in the time sheet by each participant;

• TotalEfficiency was derived by the two previously
computed variables, as:

TotalEfficiency =
TotalComprehension

TotalTime

Since we could not find any previous empirical evi-
dence pointing out a clear advantage of one treatment
versus the other, we formulated the following three
null hypotheses as non-directional, with the objective
to reject them in favour of alternative ones:
– H0a: TotalComprehension– = TotalComprehension+

– H0b: TotalTime– = TotalTime+

– H0c: TotalEfficiency– = TotalEfficiency+

4.6 Material, Procedure and Execution

To estimate the comprehensibility of the tasks to pro-
vide to the participants and the time required to com-
plete them, we conducted a pilot experiment with three
participants: two master students in Computer Science
not involved in the experiment and one of the authors
of this paper. On average, the time required to com-
plete both tasks was about 105 minutes, with 5 errors.
Given such results, we tried to remove any ambiguity
from the questions.

Then, we uploaded the material on the Moodle
module of the course from which the participants were
selected, consisting, for each group of Table 3, of:
two Node-RED flows (one per system/treatment), two
questionnaires containing 16 questions each, and a
post-questionnaire to fill after the completion of the
two questionnaires containing seven further questions.

Each questionnaire presented exactly 7 open ques-
tions and 9 multiple choices questions, in order to keep
the perceived complexity of both tasks as equivalent as
possible. Questions ranged from comprehending the
general behaviour of the provided Node-RED flows,
like identifying the names and the number of nodes
involved in certain activities, detecting the presence of
loops and missing conditions in switch nodes, count-
ing the number of intersections among wires, to listing
some simple maintenance tasks to do on the flows.
Concerning multiple choices questions, only one an-
swer among the proposed was correct and counted 1
point each, while for open questions we gave 1 point
to totally correct answers and 0 otherwise. For each
object (i.e., DiaMH and WikiDataQuerying), the ques-
tions asked to the participants were exactly the same,
independently from the treatment that had occurred
(i.e., non-compliant or compliant).

The participants had to complete each task in the
order defined by the group they were assigned to, and
to stop each task only when completed. For each task,
participants had to import the corresponding Node-
RED flow into Node-RED and, for each question, track
start time, answer the question, and track stop time.

Finally, the participants were asked to complete
the post-experiment questionnaire, to collect insights
about their skills and motivations for the obtained re-
sults. Questions were about the perceived complexity
of the two tasks, the exercise usefulness, the feelings
and the preferences between the styles of the two flows,
and the competencies required to complete the tasks.
Answers were provided on a Likert scale ranging from
one (Strongly Agree) to five (Strongly Disagree).

4.7 Analysis

Because of the sample size and mostly non-normality
of the data (measured with the Shapiro–Wilk
test (Shapiro and Wilk, 1965)), we adopted non-
parametric test to check the three null hypotheses.

Since participants answered to the questions on the
two different objects (DiaMH and WikiDataQuerying)
with the two possible treatments (non-compliant and
compliant), we used a paired Wilcoxon test to compare
the effects of the two treatments on each participant.

To measure the magnitude of the effects of the two
treatments, we used the non-parametric Cliff’s delta

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

114

Table 3: Experimental Design (+ for Compliant treatment, – for Non-Compliant treatment).

Group A Group B Group C Group D
Task 1 DiaMH+ DiaMH– WikiDataQuerying+ WikiDataQuerying–

Task 2 WikiDataQuerying– WikiDataQuerying+ DiaMH– DiaMH+

(d) effect size (Grissom and Kim, 2005), which is
considered small (S) for 0.148≤ |d|< 0.33, medium
(M) for 0.33 ≤ |d| < 0.474, and large (L) for |d| ≥
0.474.

We decided to accept the customary probability of
5% of committing Type-I-error (Wohlin et al., 2012),
i.e., rejecting the null hypothesis when it is actually
true.

5 RESULTS

In this section, the effect of the main factor on the
dependent variables (TotalComprehension, TotalTime,
and TotalEfficiency), as resulted from the experiment,
and the post-experiment questionnaires are discussed.

Table 4 summarizes the essential Comprehension,
Time, and Efficiency descriptive statistics (i.e., median,
mean, and standard deviation) per treatment, and the
results of the paired Wilcoxon analysis conducted on
the data from the experiment with respect to the three
dependent variables.

5.1 H0a: Comprehension (RQ1)

Fig. 2 summarizes the distribution of TotalComprehen-
sion by means of boxplots. Observations are grouped
by treatment (non-compliant or compliant). The y-
axis represents the average comprehension measured
as number of correct answers on the 16 questions for
each treatment, where score = 16 represents the maxi-
mum value of comprehension and corresponds to pro-
vide correct answers to all the 16 questions.

The boxplots show that the participants achieved
a better comprehension level when working on the
compliant Node-RED flows (median 13.5) with respect
to those working on non-compliant flows (median 9.5).

By applying a Wilcoxon test (paired analysis), we
found that the difference in terms of comprehension is
statistically significant, as testified by p-value = 0.00903.
Therefore, we can reject the null hypothesis H0a. The
effect size is large (d = – 0.69).

To Answer RQ1: The adoption of the guidelines
significantly improves the level of comprehension
of the Node-RED flows.

Non−Compliant Compliant
0

5
1
0

1
5

Total Comprehension

C
o

rr
e

c
t

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

Figure 2: Boxplots of Comprehension.

5.2 H0b: Time (RQ2)

Fig. 3 summarizes the distribution of TotalTime by
means of boxplots, where the y-axis represents the
total time to answer the 16 questions for each treat-
ment. The boxplots show that the participants needed
slightly more time to answer the questions pertain-
ing the objects with the non-compliant treatment w.r.t.
those answering the questions pertaining the objects
with the compliant treatment (58.5 versus 57.0 minutes
respectively in the median case).

By applying a Wilcoxon test (paired analysis), we
found that the overall difference is marginally signifi-
cant (p-value = 0.04883). Therefore, we can reject the
null hypothesis H0b. The effect size is small (d= 0.17).

To Answer RQ2: The adoption of the guidelines
marginally reduces the time required to answers the
questions pertaining the Node-RED flows.

5.3 H0c: Efficiency (RQ3)

Fig. 4 summarizes the distribution of TotalEfficiency
by means of boxplots.

The boxplots show that participants working on the
objects with the compliant treatment outperformed in
terms of efficiency those working with the objects with
the non-compliant treatment (medians 0.254 versus
0.180, respectively).

A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension

115

Table 4: Descriptive statistics per treatment and results of paired Wilcoxon test.

Dependent Variable Non-Compliant Treatment (–) Compliant Treatment (+) p-value Cliff’s DeltaMedian Mean St. Dev. Median Mean St. Dev.
TotalComprehension 9.500 9.600 2.319 13.500 12.800 2.044 0.00903 – 0.69 (L)
TotalTime 58.500 71.100 38.484 57.000 59.100 25.291 0.04883 0.17 (S)
TotalEfficiency 0.180 0.179 0.109 0.254 0.253 0.100 0.00586 – 0.36 (M)

Non−Compliant Compliant

0
2

0
4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

Total Time

m
in

u
te

s

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

Figure 3: Boxplots of Time.

By applying a Wilcoxon test (paired analysis), we
found that the overall difference is statistically sig-
nificant, as shown by the p-value (p-value = 0.00586).
Therefore, we can reject the null hypothesis H0c. The
effect size is medium (d = – 0.36).

Non−Compliant Compliant

0
.0

0
.1

0
.2

0
.3

0
.4

Total Efficiency

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4: Boxplots of Efficiency.

To Answer RQ3: The adoption of the guidelines
increases the overall efficiency in the comprehen-
sion of the Node-RED flows.

5.4 Post Experiment

When participants had to fill the post-experiment ques-
tionnaire, they were unaware of the guidelines and,
therefore, of the two treatments. For this reason, the
actual questions were formulated as a comparison be-
tween the flows they had worked on in the two tasks,
keeping track of which treatment occurred on them,
according to the group the participants were assigned
to. Thus, for instance, question PQ1 was originally
formulated as Comprehending the Node-RED flow in
Task 1 was harder than the Node-RED flow in Task 2.
In Table 5 the post-experiment questionnaire has been
adjusted in order to clarify the purpose of our experi-
ment. Table 5 reports also the medians of the answers
given by the participants. The possible choices for
each answer, on a 5-point Likert scale, were: Strongly
Agree, Agree, Unsure, Disagree, Strongly Disagree.

Table 5: Adjusted post-experiment questionnaire.

ID Question Median

PQ1
Comprehending the non-compliant Node-
RED flow was harder than the compliant
one

Unsure

PQ2
In your opinion, developing the non-
compliant Node-RED flow is harder than
the compliant one

Agree

PQ3
In your opinion, maintaining the non-
compliant Node-RED flow is harder than
the compliant one

Agree

PQ4

The names of the nodes and the variables
in the non-compliant Node-RED flow were
less useful for the comprehension than in
the compliant one

Unsure

PQ5

The wiring style to connect nodes in the
non-compliant Node-RED flow was less
useful for the comprehension than in the
compliant one

Agree

PQ6 I found the exercise useful Agree

PQ7
I had enough knowledge to answer the
questions Agree

As the Table 5 shows, participants did not perceive
any difference in the complexity while trying to com-
prehend the Node-RED flows using each treatment
(PQ1), but believed that developing and maintaining
such flows may result more complex with the non-
compliant treatment (PQ2-3). The names of the nodes

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

116

and of the used variables in the two treatments had no
significant impact in the overall comprehension (PQ4),
whereas the wiring style was better perceived in the
case of the compliant treatment (PQ5). In general,
participants found the exercise useful (PQ6) to the
course of their studies, and fitting their knowledge in
Node-RED (PQ7), in part acquired by attending the
4-hours lecture preceding the experiment.

5.5 Discussion

Given the results of the experiment, all null hypotheses
can be rejected. The guidelines are generally benefi-
cial to the comprehension level and reduce the time
required to complete Node-RED tasks. Consequently,
the overall efficiency is also positively affected.

One of the main reasons of success of the guide-
lines was producing flows that follow a consistent and
tidy wiring style, by means of WSC and WST, which
improved the capability of detecting loops and reduced
entangles among wires. This is corroborated by PQ5
of Table 5. In fact, the questions pertaining compre-
hensibility issues about wires and loops presented gen-
erally better outcomes for the flows compliant with our
guidelines. For example, a question in both question-
naires requires identifying the number of intersections
between wires. While we had only 1 error for the flows
compliant with our guidelines, for the non-compliant
flows the errors amounted to 8.

On the other hand, by the feeling of the partici-
pants (PQ4), giving proper names to nodes was not so
relevant for the comprehension. This is contradicted
by the results of the experiment, since the importance
of names, given by NNB guideline, resulted to be help-
ful in indirectly answering several questions on both
systems. For instance, we had two open questions
specifically asking the names of the nodes responsi-
ble for a certain behaviour (e.g., Which node (provide
name) displays on a web page the WikiData answer to
the user’s question?), which resulted in a total of 4 er-
rors for the flows compliant with our guidelines against
10 for the non-compliant ones. We had also two ques-
tions in both questionnaires asking about which data
was changed/returned after the completion of a cer-
tain activity (e.g., Which data are saved just after the
HTTP request to URL?): while we had just 1 error in
the flows compliant with our guidelines, 5 errors were
counted for the non-compliant cases. One question
asked about the effective contributions of the nodes in
a selected portion of the flows (i.e., if they were able
to transform the message they had received); by using
NEC guideline, the inactive nodes (e.g., those added
for debugging purposes) were removed from the flows
compliant with the guidelines, but not from the non-

compliant flows. In this case, while participants easily
identified the contributions of the remaining nodes,
they failed (4 errors) in identifying the inactive ones in
the non-compliant flows. Finally, there was a question
asking to list all the files in the file system used by the
flows, which resulted in 1 error for the flows compliant
with our guidelines against 4 for the non-compliant
ones. Indeed, by following our guidelines, the nodes
names were formulated to make their behaviours more
explicit, as well as the main used variables, hence
reducing the overall errors in the comprehension, as
summarized by the statistics data of Table 4.

From PQ1, participants did not have a clear opin-
ion on which treatment was easier to comprehend,
while they agreed that flows produced without fol-
lowing our guidelines would be harder to develop
and maintain (PQ2-3). Concerning comprehensibility
complexity, we speculate that the uncertainty of the
participants is due to the domain of the two systems:
while DiaMH presents the MQTT node (i.e., a core
Node-RED node used to establish a communication
from/to entities and flows using the MQTT protocol15)
as the most complex node, WikiDataQuerying refers
to WikiData repository and to Prolog and SPARQL
languages, which could deviate from their average
academic background. Finally, the participants rec-
ognized that the tasks they completed did not require
excessive knowledge of Node-RED and were helpful
for their current/next academic studies (PQ6-7).

To conclude, the proposed guidelines resulted use-
ful in terms of comprehension level, time, and overall
efficiency. This may suggest Node-RED developers
to apply them to reduce the comprehensibility issues
of the flows they will produce, deploy and share. At
the same time, the guidelines may turn useful to the
designers of the Node-RED language, who may want
to fix some of the issues exposed in the paper, by
introducing additional features in future Node-RED
releases. Just to mention few possible additions: (i)
nodes resizing in height and width, to highlight the
most important nodes and make long names more read-
able, (ii) general warnings, to notify the presence of
unused variables, incomplete conditions within switch
nodes, and loops, and (iii) jumps between wires, to
graphically handle colliding wires.

5.6 Threats to Validity

The threats to validity that could affect our experimen-
tation are: internal, construct, conclusion and exter-
nal (Wohlin et al., 2012).

Internal validity threats: these threats concern fac-
tors which may affect the dependent variables. The

15https://cookbook.nodered.org/mqtt/

A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension

117

participants had to complete two tasks; therefore, a
fatigue/learning effect may have intervened. How-
ever, since they had a break between the two tasks
and they previously completed some exercises about
Node-RED comprehensibility issues, we expect this
effect to be limited. Another threat is the subjectivity
in the objects selection. The objects were flows cho-
sen from a list of systems developed by former master
students of another course related to Node-RED, and
were comparable in size and complexity and composed
of mostly Node-RED core nodes.

Construct validity threats: these threats concern
how comprehension and time were measured. The
correctness of the answers was checked by one of the
authors, who also measured the execution time, based
on the time sheets filled by the participants. The statis-
tics data (i.e., median, mean, and standard deviation)
and the results of the paired Wilcoxon analysis were
computed using Excel and R16.

Conclusion validity threats: these threats concern
the limited sample size of the experiment (ten master
students), which may have affected the statistical tests.
Unfortunately, this is the average number of students
of any Computer Science Master Course in Genova, so
it is difficult for us to conduct experiments with more
participants.

External validity threats: these threats can limit the
generalization of the results and, in our case, concern
the use of students as experimental participants. Our
participants had few knowledge of Node-RED, there-
fore more expert Node-RED developers may produce
a different outcome. We intend to replicate our exper-
iment with more complex systems and more expert
developers.

6 RELATED WORK

As already mentioned in Section 2, our guidelines
have been inspired by several works on UML and
BPMN concerning the quality of the produced models,
while none specifically treat guidelines for developing
comprehensible Node-RED flows.

The guidance provided to Node-RED developers
in implementing nodes is limited to a simple set of
principles17, like nodes should be “simple to use” and
“consistent” in their behaviour, and few unofficial de-
sign patterns18 to make flows easier to understand and
reuse.

16https://www.r-project.org/
17https://nodered.org/docs/creating-nodes
18https://medium.com/node-red/node-red-design-

patterns-893331422f42

In a recent industrial work (Bröring et al., 2019),
Bröring et al. propose an approach to automatically
collect metadata from Node-RED flows and nodes,
and feed a knowledge base for future analyses, such
as nodes quality ratings, downloads data, and nodes
dependencies. Although that work considers several
quality aspects of Node-RED, like selecting the most
suitable solutions to integrate within a system, it does
not provide to users any development guideline.

Prehofer and Chiarabini (Prehofer and Chiarabini,
2015) identify the differences between mash-up tools
for IoT systems, like Node-RED, and model-based
approaches for the IoT, and propose an approach to
exploit both their benefits: the simplicity of mash-up
tools in systems development and the strengths of mod-
els to formalize a behaviour and have it checked by
a model checker. However, in that paper, the quality
checks of IoT systems are not oriented to the com-
prehensibility issues that may emerge during flows
development using mash-up tools.

Mendling et al. (Mendling et al., 2010) provide 7
guidelines, built on empirical insights, as a response
to the lack of practical solutions to improve the quality
of business process models. Some of these guidelines
have been adapted for our work. For example, “Use
verb-object activity label” (G6), to reduce the ambi-
guity of the constructs in a model, particularly useful
for the large number of nodes collaborating within
Node-RED flows, as well as “Use as few elements in
the model as possible” (G1) and “Decompose a model
with more than 50 elements” (G7), to reduce flows
complexity.

Unhelkar, in his book (Unhelkar, 2005), focuses
on syntax, semantics and aesthetic checks of UML
2.0 diagrams. Although UML is quite different from
Node-RED in many aspects, since it operates at a de-
sign stage and involves constructs that are hardly com-
parable to Node-RED nodes and wires, in the book
there are some aesthetic checks concerning activity
diagrams that we have embodied in our work. In par-
ticular, it is important to adopt a consistent style to
differentiate regular from exceptional scenarios and to
balance overpopulated diagrams by redistributing the
included constructs.

Reggio et al. (Reggio et al., 2012; Reggio et al.,
2011) face the problem of quality in business process
modelling. They propose an empirical method for
helping the modeller in choosing among five business
process modelling styles, that differ in terms of abstrac-
tion and precision. For instance, a more precise style
requires each construct to declare all the participants,
the objects and the used data in capital letters, like we
did in our work, to make explicit the data used by each
node.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

118

Ambler proposes (Ambler, 2005) several guide-
lines addressing both general and UML-specific mod-
elling issues, with the aim of improving the effective-
ness of the produced models. Some of these guidelines
can be applied even in Node-RED, since they use very
general terms and descriptions. For what concerns
UML, we focused on activity diagrams since they rep-
resent sequences of actions similarly to Node-RED
flows. The guidelines suggest, for instance, to avoid
black-hole and miracle nodes (i.e., nodes without a
leaving/entering line), that may indicate a missing in-
teraction, and to check that the guards within decision
points are always complete.

7 CONCLUSION AND FUTURE
WORK

In this paper, we have proposed a preliminary set of
guidelines, addressing some common Node-RED com-
prehensibility issues, which may help the Node-RED
developers in producing flows that are easier to com-
prehend and suitable for future maintenance and test-
ing activities. To evaluate the guidelines, we have con-
ducted an experiment involving ten master students.

The results have shown that the adoption of the
guidelines increased the overall efficiency in Node-
RED flows comprehension, by reducing the number
of errors and the time required to complete compre-
hension tasks over some provided Node-RED flows.
In addition to supporting the Node-RED developers in
flows development, the proposed guidelines pinpoint
some Node-RED comprehensibility issues that might
be solved in future releases of the tool, by adding fea-
tures like: (i) nodes resizing in height and width, to
highlight the most important nodes and make long
names more readable, (ii) general warnings, to no-
tify e.g., the presence of unused variables, incomplete
conditions within switch nodes, and loops, and (iii)
graphical jumps between wires, to handle colliding
wires.

The proposed guidelines are just a preliminary set
of those that we are planning to address further Node-
RED comprehensibility issues that did not emerge
from the Node-RED systems we chose; for instance,
how to avoid loops by transforming graph-based flows
into tree-based ones. As future work, we intend to
involve a larger participants pool in the experimen-
tal evaluation of the guidelines, including Node-RED
designers, and to implement a checker tool to auto-
matically detect the comprehensibility issues from the
Node-RED flows failing our guidelines, and fix them
accordingly.

REFERENCES

Ambler, S. W. (2005). The elements of UML (TM) 2.0 style.
Cambridge University Press.

Bröring, A., Charpenay, V., Anicic, D., and Püech, S. (2019).
Nova: A knowledge base for the Node-RED IoT
ecosystem. In Proceedings of ESWC 2019, pages 257–
261. Springer.

Clerissi, D., Leotta, M., Reggio, G., and Ricca, F. (2018).
Towards an approach for developing and testing
node-red iot systems. In Proceedings of EnSEm-
ble@ESEC/SIGSOFT 2018, pages 1–8.

Grissom, R. J. and Kim, J. J. (2005). Effect sizes for research:
A broad practical approach. Lawrence Erlbaum Asso-
ciates Publishers.

Lange, C. F., DuBois, B., Chaudron, M. R., and Demeyer, S.
(2006). An experimental investigation of UML mod-
eling conventions. In Proceedings of MODELS 2006,
pages 27–41. Springer.

Leotta, M., Clerissi, D., Olianas, D., Ricca, F., Ancona,
D., Delzanno, G., Franceschini, L., and Ribaudo, M.
(2018). An acceptance testing approach for internet of
things systems. IET Software, 12(5):430–436.

Martin, R. C. (2003). Agile Software Development: Princi-
ples, Patterns, and Practices. Prentice Hall PTR.

Mendling, J., Reijers, H. A., and van der Aalst, W. M. (2010).
Seven process modeling guidelines (7PMG). Informa-
tion and Software Technology, 52(2):127–136.

Morrison, J. P. (2010). Flow-Based Programming: A new
approach to application development. CreateSpace.

Prehofer, C. and Chiarabini, L. (2015). From Internet of
Things mashups to model-based development. In Pro-
ceedings of COMPSAC 2015, volume 3, pages 499–
504. IEEE.

Reggio, G., Leotta, M., and Ricca, F. (2011). "Precise is
better than light" A document analysis study about
quality of business process models. In Proceedings of
EmpiRE 2011, pages 61–68. IEEE.

Reggio, G., Leotta, M., and Ricca, F. (2014). Who
knows/uses what of the UML: A personal opinion sur-
vey. In Proceedings of MODELS 2014, volume 8767
of LNCS, pages 149–165. Springer.

Reggio, G., Leotta, M., Ricca, F., and Astesiano, E. (2012).
Business process modelling: Five styles and a method
to choose the most suitable one. In Proceedings of
EESSMod@MoDELS 2012, pages 8:1–8:6. ACM.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of vari-
ance test for normality (complete samples). Biometrika,
52(3/4):591–611.

Unhelkar, B. (2005). Verification and Validation for Quality
of UML 2.0 Models, volume 42. John Wiley & Sons.

Van Solingen, R., Basili, V., Caldiera, G., and Rombach,
H. D. (2002). Goal Question Metric (GQM) approach.
Encyclopedia of software engineering.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

A Set of Empirically Validated Development Guidelines for Improving Node-RED Flows Comprehension

119

