Performance of Cluster-based High Availability Database in Cloud

Keywords:

Abstract:

Containers

Raju Shrestha
OsloMet - Oslo Metropolitan University, Oslo, Norway

Performance, High Availability, Database, Cloud, Galera Cluster, Virtual Machine, Container, Docker.

Database is an important component in any software application, which enables efficient data management.
High availability of databases is critical for an uninterruptible service offered by the application. Virtualization
has been a dominant technology behind providing highly available solutions in the cloud including
database, where database servers are provisioned and dynamically scaled based on demands. However,
containerization technology has gained popularity in recent years because of light-weight and portability, and
the technology has seen increased number of enterprises embracing containers as an alternative to heavier and
resource-consuming virtual machines for deploying applications and services. A relatively new cluster-based
synchronous multi-master database solution has gained popularity recently and has seen increased adoption
against the traditional master-slave replication for better data consistency and high availability. This article
evaluates the performance of a cluster-based high availability database deployed in containers and compares
it to the one deployed in virtual machines. A popular cloud software platform, OpenStack, is used for virtual
machines. Docker is used for containers as it is the most popular container technology at the moment. Results
show better performance by HA Galera cluster database setup using Docker containers in most of the Sysbench

benchmark tests compared to a similar setup using OpenStack virtual machines.

1 INTRODUCTION

Most of today’s modern cloud-based applications and
services, in general, are dynamic database-driven
web-based applications. In order to provide
always-on and always-connected service, which is
one of the major goals of cloud computing, it is
vital that the database is highly available. In other
words, a high availability (HA) database is critical
for interrupted service. HA database aims for
reduced downtime as well as for reduced response
time and increased throughput (Hvasshovd et al.,
1995). As the HA database cannot be retrofit
into a system, it should be designed in the early
stages of the system architecture design to provide
minimal downtime, optimal throughput and response
time. HA database is realized through redundancy,
where multiple database servers are used and data is
replicated in all the servers.

There are mainly two major replication technolo-
gies that are used for high availability database:
master-slave database replication and cluster-based
database replication. Master-slave (single master,
multiple slaves) database replication (Ladin et al.,
1992; Wiesmann et al., 2000; Earl and Oderov, 2003;

320

Shrestha, R.
Performance of Cluster-based High Availability Database in Cloud Containers.
DOI: 10.5220/0009387103200327

Wiesmann and Schiper, 2005; Curino et al., 2010)
is a solution which is being used traditionally since
long time. A master database server handles data
writes, while multiple slave servers are used to read
data, thus supporting read scalability. Any changes
in the master database are replicated in the slaves
asynchronously (Wiesmann et al., 2000; Elnikety
et al., 2005). Since asynchronous replication doesn’t
guarantee the delay between applying changes on the
master and propagation of changes to the slaves, this
may cause data inconsistencies when something goes
wrong in the master database server in the middle
of a transaction. Thus, master-slave replication
doesn’t guarantee consistency, one among the three
consistency, availability, and partition tolerance in the
Brewer’s CAP theorem (Brewer, 2012).

Multi-master cluster-based database replication
techniques such as MariaDB Galera cluster (MariaDB
Galera, 2019a) and MySQL cluster (MySQL, 2019)
offer effective alternatives to master-slave replication
by addressing its data inconsistency problem through
synchronous replication. A comparative study
between master-slave and cluster-based high avail-
ability database solutions showed that master-slave
replication performs equal or better in terms of

In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 320-327

ISBN: 978-989-758-424-4

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Performance of Cluster-based High Availability Database in Cloud Containers

throughput and response time (Shrestha, 2017).
However, the cluster-based solution is superior when
it comes to high availability, data consistency, and
scalability as it offers instantaneous failover, no loss
of data, and both read and write scalability.

Virtualization is a key enabling technology of
cloud computing. Most HA solutions rely on
redundant hardware, and virtualization technology
enables efficient and effective HA in the cloud
through provisioning and deployment of virtual
machines (VMs) and the whole infrastructure
(TaaS). Virtual machines are then scaled based on
demands (Xing and Zhan, 2012). Since each VM
includes an operating system (OS) and a virtual
copy of all the hardware, virtualization requires
significant hardware resources such as CPU, RAM,
and Disk space. Moreover, because of their large size
and resource requirements, moving VMs between
different clouds can be challenging. Container
technology (simply called as a container) addresses
this, whereby an application or service is packaged so
that it can be provisioned and run isolated from other
processes (He et al., 2012; Kang et al., 2016). Unlike
virtual machines, which are separate full-blown
machines with their own OS, containers run on top
of a single OS. As such, there is a lot of overhead
and resource requirement with virtual machines,
whereas containers are more efficient requiring
significantly less overhead and resources (MaryJoy,
2015). Because of the container’s lightweight
nature, many containers can be deployed onto a
single server. Studies showed that containers, in
general, take significantly less boot time, and use
fewer resources (Seo et al., 2014; MaryJoy, 2015;
Felter et al., 2015; Kozhirbayev and Sinnott, 2017;
Zhang et al., 2018). At the same time, generating,
distributing, and deploying container images is fast
and easy. (Mardan and Kono, 2016) did a comparative
study between KVM based virtualization and Linux
LXC container in terms of disk I/O and isolation
in a database management system, and they found
KVM to perform better than LXC in disk I/O without
violating the isolation. However, this may no longer
be true with the recent development of container
technology and with different virtualization and
container technologies. In the meantime, container
technology has gained popularity in recent years and
enterprises are embracing containers as an alternative
to virtual machines for deploying applications and
services. There are several container software and
platform available such as Docker, Linux container
(Ixc), Apache Mesos, and rkt (rocket) (Bernstein,
2014). Among them, Docker is the most popular and
widely used at the time.

Even though some research has been done in
studying performance comparison of the container
with the virtual machine in general, to the
author’s knowledge, not much study being done
regarding the performance of container in the
specific application domain of database, especially
cluster-based HA database. This paper has made
an attempt in this direction, where the performance
of the container-based HA cluster database setup is
evaluated and compared with a similar setup using
virtual machines. Since MariaDB database is not
only free, and open-source, but also has more cutting
edge features and storage engines, compatible with
MySQL, performs better, and easy to migrate (Seravo,
2015; Nayyar, 2018), and Docker is the most popular
container platform, Galera cluster implementation
using the latest MariaDB database server at the time
(v.10.4) and Docker container are used to implement
cluster-based HA database in cloud.

After this introduction section, Section 2 describes
the cluster-based high availability database. Section 3
describes the experimental setup, tests carried out,
and evaluation metrics used to compare performance.
Section 4 presents and discusses the experimental
results. Finally, Section 5 concludes the paper.

2 CLUSTER-BASED HIGH
AVAILABILITY DATABASE

A typical cluster-based HA database is relatively new,
which uses a multi-master architecture consisting of
a cluster (or group) of servers, called nodes. Any
node within a cluster can respond to both read and
write requests. Any change of data in a node is
replicated across all nodes in the cluster instantly,
thus providing system redundancy and minimizing
the possibility of service downtime. Cluster nodes
can be load-balanced using a database proxy such
as MariaDB MaxScale (MariaDB MaxScale, 2019)
to make the database highly available. Figure 1
illustrates a cluster-based architecture.

Data replication in a cluster-based architecture
is performed synchronously, which unlike asyn-
chronous replication, guarantees that if any change
happens on one node of the cluster, the change is
applied in other nodes as well at the same time.
Therefore, even when a node fails, the other nodes
continue working and hence the failure has no major
consequences. The data gets replicated from the
existing nodes when the failed node joins the cluster
again later. It thus guarantees data consistency.

321

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

g ..
Masterl < > Master2
| /
Master 3 =

Figure 1: Cluster-based multi-master architecture for a high
availability database.

The most recent version of the MariaDB database
server and it’s inbuilt Galera cluster is used in
this work for HA database implementation as it
is a community-developed open-source software.
Galera cluster uses a write-set replication (WSREP)
service for synchronous multi-master replication.
Transactions are either applied to every node or not
at all, thus guaranteeing data consistency. Galera is
capable of automatic node provisioning. If one master
fails, the cluster continues so that users can continue
reading and writing on other nodes.

3 EXPERIMENTAL SETUP AND
TESTS

OpenStack-based (OpenStack.org, 2019) cloud setup
at Oslo Metropolitan University (OsloMet), which is
presumably one of the largest cloud environments
in Norwegian higher education, is used to conduct
experiments. Two OpenStack projects, one for the
VM-based HA cluster database setup and one for the
Docker container-based HA cluster database setup
are created. In each case, a Galera cluster of three
database servers is set up as a part of a LAMP
stack (IBM Cloud, 2019) using the latest version of
MariaDB (v10.4) and built-in Galera v4 (MariaDB
Galera, 2019a). Galera clusters are setup by
using the same configuration in all the database
servers in both VM-based and container-based
implementations. rsync is used as the WSREP
snapshot transfer method (wsrep_sst_method) in the
Galera cluster configuration. Figure 2 shows the
common configuration added within the [mysqld]
section in the MariaDB configuration file my.cnf.
MariaDB’s MaxScale v2.4, (MariaDB MaxScale,
2019), an intelligent database proxy, is used to load
balance the three database servers on a round-robin
basis. Since all the database servers are the same
specification, equal weight is given to each server.
Figure 3 depicts the Galera cluster setup. Figure 4

322

shows an example listing of running database servers
as obtained with MaxCtrl command in MaxScale in
VM-based HA setup.

([[mysqld]
bind-address = 0.0.0.0
default_storage_engine = innodb
binlog_format = row
query_cache_size = @
query_cache_type = 0
innodb_autoinc_lock_mode = 2
innodb_flush_log_at_trx_commit = @
wsrep_on = ON
wsrep_provider = /usr/lib/galera/libgalera_smm.so
L wsrep_sst_method = rsync

Figure 2: MariaDB configuration used to setup Galera
clusters in both VM-based and container-based HA
database implementations.

= Dataread
MaxScale Data write
Database proxy
A
(V7’4 N\)
|
MariaDB > MariaDB
Server 1 o~ -~ Server 2
A 7
‘ V\\\\\\\\L; MariaDB L/A/////////
| Server 3
\;Galera cluster Y,

Figure 3: Experimental setup of Galera cluster-based high
availability database using three MariaDB database server
nodes and MariaDB MaxScale database proxy.

dre
dbl dbgcl 3306 | Master, Synced, Running
db2 dbgc2 3306 | Slave, Synced, Running
db3 dbgc3 3306 | Slave, Synced, Running

Figure 4: List showing running database servers and their
roles at the time.

The two HA database setups and benchmark tests
carried out, and the metrics used to evaluate their
performance are described below.

Galera Cluster Setup using VMs: All servers
(VMs) including three database servers are created
of small flavor (1VCPU, 2GB RAM, and 20GB
Disk) and deployed in a private network. Necessary
security rules are defined and ports are opened to
allow TCP network communication between them.
Ubuntu 18.04 OS is used in all the servers. MariaDB
database server v10.4 is installed in all three database
servers and they are configured for the HA Galera
cluster database.

Performance of Cluster-based High Availability Database in Cloud Containers

Galera Cluster Setup using Containers: A single
Ubuntu 18.04 VM of extra-large flavor (§VCPU,
16GB RAM and 160GB Disk) is created in
OpenStack and used as a Docker host to provision
all the containerized servers. Galera cluster is
set up with the three database servers using the
standard Docker image mariadb/server:10.4 from
MariaDB. Three separate external storage SSD data
volumes each of 20GB size are attached to the
VM. One data volume is used as a persistent data
storage for a database server, by connecting to
the container using the --volume parameter when
running the container. MariaDB’s MaxScale Docker
image, mariadb/maxscale:latest (v2.4), is used
for setting up the database proxy. Containers are
provisioned in a private network so that they can
communicate with each other.

In Docker, a container has no resource
constraints by default and can use as much of
a given resource as the host’s kernel scheduler
allows. In order to make a fair comparison with
the VM-based setup, the database containers are
enforced to limit the same number of CPUs,
memory, and Disk size as in the database VMs,
which are 1CPU, 2GB, and 20GB respectively.
CPU and memory constraints are defined by
setting the limits to the --cpus and --memory
parameters when running the docker containers.
For limiting the memory in Docker, control group
(cgroup) is enabled in Docker host by adding
GRUB_CMDLINE_LINUX="cgroup-enable=memory
swapaccount=1" in /etc/default/grub and then
updating the grub. The same configuration is set in
all the VMs in the VM-based setup as well.

Benchmark Tests: A mature and widely used
open-source benchmark suite, Sysbench, developed
by Alexy Kopytov (Kopytov, 2014; Kopytov, 2019),
which provides most of the database benchmark tests,
is used to perform various benchmark tests under
intensive loads with common database operations.
The same tests are run in both VM-based HA database
setup and container-based HA database setup using
the same set of parameters in each test. The
latest version of Sysbench (v1.0.19) is installed and
executed from a separate test VM in case of the
VM-based setup, and from the Docker host in case
of the container-based setup. MaxScale proxy server
is used as the database host when running Sysbench
tests so that all the database requests are made to the
Galera cluster via the database proxy.

Five different types of benchmark tests are
performed, namely Readonly, WriteOnly, ReadWrite,
Bulkinsert, and Deleteonly, using OLTP (Online
Transaction Processing) benchmark that comes with

Sysbench. OLTP is used as it is close to
common real-world dynamic database-driven web
applications. Sysbench’s default option ‘special’ for
data distribution and default values for the related
parameters are used as it is quite common in web
applications. Tests are pre-warmed or warmed up,
allowing to warm up the cache and buffer pools in
order to collect regular statistical results and then
run with a time limit of two minutes. As we
wanted to test regular queries, prepared statements
were disabled in all the tests. With the default
settings, Sysbench data preparation shows that it takes
about 375MB disk space for one million rows. In
order to test in-memory workload, the parameters
--tables (number of database tables or table count)
and --table-size (number of rows in a table) are
set to thirty and one hundred respectively to fit well
into innoDB buffer pool.

Five benchmark tests are briefly described and
corresponding Sysbench run commands used are
given below. tblcount, tblsize, and runtime
variables used in the commands are set to 30, 100000,
and 120 respectively.

e Readonly tests performance of the database when it
comes to reading from the database, which consists
of different types of SELECT queries.

sysbench oltp_read_only --db-driver=mysql \
--mysgl-host=$maxscalehost \
--mysql-user=root --db-ps-mode=disable \
--events=0 --time=S$runtime \
——tables=$tblcount --table-size=$tblsize \
--threads=$thrdcount run

e Writeonly tests performance while doing database
writes, a mix of INSERT, UPDATE, and DELETE
operations.

sysbench oltp_write_only --db-driver=mysqgl \
--mysqgl-host=%maxscalehost \
--mysql-user=root --db-ps-mode=disable \
-—events=0 --time=S$runtime \
-—tables=S$tabl_count \

--threads=$thrdcount run

e ReadWrite tests performance of the database when
doing both reads and writes. By default, Sysbench
OLTP ReadWrite test consists of 70% read and
30% write operations.

sysbench oltp_read_write --db-driver=mysql \
--mysql-host=Smaxscalehost \
--mysql-user=root --db-ps-mode=disable \
--events=0 --time=S$runtime \
——tables=$tblcount —--table-size=$tblsize \
--threads=S$thrdcount run

o Deleteonly test determines the amount of purg-
ing/delete the database setup can handle.

323

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

sysbench oltp_delete --db-driver=mysql \
--mysqgl-host=Smaxscalehost \
--mysgl-user=root --db-ps-mode=disable \
--events=0 --time=S$runtime \
—-tables=$tblcount --table-size=$tblsize \
--threads=$thrdcount run

e Bulkinsert test is used to benchmark the ability
of the HA database setup to perform multi-row
inserts. This test helps finding how fast data can
be inserted given the replication lag kick in.

sysbench bulk_insert --db-driver=mysgl \
--mysqgl-host=Smaxscalehost \
--mysqgl-user=root --db-ps-mode=disable \
--events=0 --time=S$runtime \
--threads=$thrdcount run

Tests are run with a different number of threads (in
multiples of 8) to study the performance patterns with
the increasing number of threads. Thread size of 64
is found to reach the limit to communicate and sync
data and break down in Bulkinsert test, in case of VM
setup, and therefore, we stopped there.

Evaluation Metrics: The two most widely used
evaluation metrics, namely throughput, and response
time, are used to evaluate performance of the two HA
database setups.

o Throughput is defined as the number of transac-
tions per second. A database transaction is a unit
of tasks performed within a database, which must
be atomic (all the changes are either committed
or rolled back), consistent, isolated, and durable,
referred to as ACID (Jacobs and Satran, 2018).

e Response time or latency is measured as an average
time (in millisecond) taken to complete a task, an
event in the Sysbench tests.

4 RESULTS AND DISCUSSION

Results from the five benchmark tests on the two
HA database setups are given in terms of the two
evaluation metrics ,throughput and response time, in
Figure 5. The figure shows the average metric values
for the different number of threads from 1 to 64 in
multiples of 8. Tests failed with the VM setup when
the number of threads equals 64, hence no result
available in this case.

Results show that throughput increased in all
the tests except Bulkinsert when the number of
threads (or thread count) is increased from 1 to 8.
However, it remains more or less unchanged when
the thread count increased further. This is true
in both HA database setups. The performance is

324

35000
a
// N
7 N // >~ ~
300004 N e |
® ~N
N
N
25000 e |
-~
20000 i
15000 ‘ : s \ ‘ ‘ !
T T T T T T T
& 3000 |
=]
Q
2
S 2500 i
<]
<
[
2000 | i
w ‘ ‘ ‘ ‘ | ‘
[T e N S T T
500 - o= ° DS
400F |
/
fo—
300 - — -]
200/]
N ks Al St sttt ik sttt i |
1 8 16 24 32 40 48 56 64

Number of threads

(a) Throughput (Transactions per second).

2500 T T

—+— Readonly

|~ Writeonly

‘ —+— ReadWrite
Deleteonly

—+— Bulkinsert

2000 - P -

Response time (ms)
@
o
o
T
L

o
o
o
T
I

1 8 16 24 32 40 48 56 64
Number of threads

(b) Response time or latency.

Figure 5: Performance results of the five benchmark tests
with the two HA database setups [Solid line - Container
setup, Dashed line - VM setup].

Performance of Cluster-based High Availability Database in Cloud Containers

higher in case of container setup compared to VM
setup in Writeonly, ReadWrite, and Deleteonly tests.
However, Readonly and Bulkinsert show the opposite
performance. The difference is small in the Readonly
test but relatively bigger in Bulkinsert test. VMs
ability to work in isolation whereas scheduling of
host’s resources in case of containers could possibly
contribute to this difference. Moreover, Bulkinsert
performance is much higher compared to other tests,
but the performance decreases with the increase in the
number of threads. Higher throughput is explained by
the fact that bulk insertion is more efficient compared
to individual writes when it comes to writing into the
disk. The decrease in throughput with the increase in
thread count is possibly due to internal contention and
rowlocks.

In terms of response time, performance increases
with the increase in the number of threads almost
linearly. This is anticipated as the number of
threads increases, they have to wait for long for
the resources and get hold of them as scheduled
by the OS. Like with throughput, container setup
shows better (lower) response time with Writeonly,
Readewrite, and Deleteonly tests, compared to VM
setup. Likewise, in Readonly and Bulkinsert tests,
performance is reversed, but by a relatively small
margin.

Vadim Tkachenko (Tkachenko, 2012) stated that
using throughput only may not reflect the true
performance and highlighted the importance of
response time. He suggested a benchmark test model
where a transaction rate is assumed and given the
rate, 95% or 99% response times are measured. The
benchmark tests done here is based on a stress test
where the rate is not limited as the aim is to push the
database as much as possible. Based on throughput
and response time, choosing the thread count of 16
as an optimal value (see Figure 5), the stability of
response times can be studied from a plot of 95%
response time measured at a regular interval. Figure 6
shows a plot based on a measurement at an interval of
five milliseconds. The plot shows that response time
in VM setup is pretty unstable, with Writeonly and
ReadWrite tests. In the meantime, the container setup
has reasonably good stability in all the tests. Results
are found to be similar with thread count values of
eight and sixteen as well. Quantitative results of
the performance of the two HA database setups on
different benchmark tests with sixteen thread count is
given in Table 1.

It is to be noted here that the performance
comparison is made based on the OLTP benchmark
tests, which is designed to make it close to common

1500

95% Response time (ms)

Ti*i; IR A &

$0-0-9-0 0 0 © 0909900000 0000-0-0-0-0 0 & —i
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time interval [in ms]

Figure 6: 95% response time as measured at every 5-second
interval in the tests with thread counts set to an optimal
value of 16. Response time higher than 1500ms is clipped
in the plot for better visibility in the lower region.

Table 1: Comparative performance results (in terms of
throughput and response time) between the VM-based and
the container-based HA database setups on five different
benchmark tests when the number of threads is set to 16.
Numbers shown in indicate better performance over
the corresponding ones shown in red.

VM-based HA datab C -based HA
Tesh Throughput Response time Throughput Response time
(tps) (ms) (tps) (ms)
Readonly 504 15.85 325 24.62
Writeonly 24 336.06 325 24.64
ReadWrite 28 288.65 117 68.27
Deleteonly 391 20.46 2843 2.81
Bulkinsert 33648 0.21 22610 0.35

web applications. However, it may not truly represent
all kinds of real-world applications. Secondly,
experiments are carried out using small VMs, which
is not necessarily the case in many large applications.
However, we can anticipate a similar pattern (relative
results) irrespective of the VM size.

It has been found that the Galera -cluster

325

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

provides a highly available database with guaranteed
consistency. However, it’s response time is not as
low as in master-slave replication (Shrestha, 2017).
Therefore, it is possibly not the right solution if one
needs very low latency or even real-time behavior. A
list of other limitations of Galera cluster can be found
in (MariaDB Galera, 2019b).

S CONCLUSIONS

The paper presented a comparative study of the
performance of highly available Galera cluster-based
database setup in Docker containers and OpenStack
virtual machines. The results from benchmark tests
show that container-based setup performs better in
most of the tests such as ReadWrite, Writeonly
and Deleteonly tests that correspond to real-world
applications that require both reading, writing, and
deleting data in the database. VM setup performs
better in Readonly and Bulkinsert tests. The results,
therefore, support the wider belief that container, in
general, outperforms virtual machines.

REFERENCES

Bernstein, D. (2014). Containers and Cloud: From LXC
to Docker to Kubernetes. IEEE Cloud Computing,
1(3):81-84.

Brewer, E. (2012). Pushing the CAP: Strategies for
Consistency and Availability. Computer, 45(2):23-29.

Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010).
Schism: A workload-driven approach to database
replication and partitioning. Proc. VLDB Endow.,
3(1-2):48-57.

Earl, L. and Oderov, S. (2003). Database replication system.
US Patent App. 10/426,467.

Elnikety, S., Pedone, F., and Zwaenepoel, W. (2005).
Database replication using generalized snapshot
isolation. In 24th IEEE Symposium on Reliable
Distributed Systems (SRDS’05), pages 73-84.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J.
(2015). An updated performance comparison of
virtual machines and linux containers. In 2015 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 171-172.

He, S., Guo, L., Guo, Y., Wu, C., Ghanem, M., and
Han, R. (2012). Elastic application container: A
lightweight approach for cloud resource provisioning.
In 2012 IEEE 26th International Conference on
Advanced Information Networking and Applications,
pages 15-22.

326

Hvasshovd, S. O., Torbjgrnsen, O., Bratsberg, S. E., and
Holager, P. (1995). The clustra telecom database:
High availability, high throughput, and real-time
response. In Proceedings of the 21th International
Conference on Very Large Data Bases, VLDB 95,
pages 469-477, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

IBM Cloud (2019). LAMP stack. https://www.ibm.com/
cloud/learn/lamp-stack-explained. Last access: Feb.
2020.

Jacobs, M. and Satran, M. (2018). What is transaction?
https://docs.microsoft.com/en-us/windows/win32/
ktm/what-is-a-transaction?redirectedfrom=MSDN.
Last access: Feb. 2020.

Kang, H., Le, M., and Tao, S. (2016). Container and
microservice driven design for cloud infrastructure
devops. In 2016 IEEE International Conference on
Cloud Engineering (IC2E), pages 202-211.

Kopytov, A. (2014). Sysbench manual. https://imysql.com/
wp-content/uploads/2014/10/sysbench-manual.pdf.
Last access: Feb. 2020.

Kopytov, A. (2019). Sysbench. https://github.com/
akopytov/sysbench/. Last access: Feb. 2020.

Kozhirbayev, Z. and Sinnott, R. O. (2017). A performance
comparison of container-based technologies for the
cloud. Future Generation Computer Systems, 68:175
- 182.

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. (1992).
Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10(4):360-391.

Mardan, A. A. A. and Kono, K. (2016). Containers
or hypervisors: Which is better for database
consolidation? In 2016 IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom), pages 564-571.

MariaDB Galera (2019a). MariaDB Galera Cluster.
https://mariadb.com/kb/en/library/what-is-mariadb-
galera-cluster/, http://galeracluster.com/. Last access:
Feb. 2020.

MariaDB Galera (2019b). MariaDB Galera Cluster
- Known limitations. https://mariadb.com/kb/en/
mariadb- galera-cluster-known-limitations/. Last
access: Feb. 2020.

MariaDB MaxScale (2019). MariaDB MaxScale. https:
//mariadb.com/kb/en/maxscale/. Last access: Feb.
2020.

MaryJoy, A. (2015). Performance comparison between
linux containers and virtual machines. In 2015
International Conference on Advances in Computer
Engineering and Applications, pages 342-346.

MySQL (2019). MySQL Cluster CGE. https://www.mysql.
com/products/cluster/. Last access: Feb. 2020.
Nayyar, A. (2018). Why mariadb scores over mysql.

https://opensourceforu.com/2018/04/why-mariadb-
scores-over-mysql/. Last access: Feb. 2020.

OpenStack.org (2019). OpenStack. openstack.org. Last
access: Feb. 2020.

Performance of Cluster-based High Availability Database in Cloud Containers

Seo, K.-T., Hwang, H.-S., Moon, L.-Y., Kwon, O.-Y.,
and Kim, B.-J. (2014). Performance comparison
analysis of linux container and virtual machine for
building cloud. Networking and Communication,
66(25):105-111.

Seravo (2015). 10 reasons to migrate to Mari-
aDB. https://seravo.fi/2015/10-reasons-to-migrate-
to-mariadb-if-still-using-mysql. Blog, Last access:
Feb. 202.

Shrestha, R. (2017). High availability and performance
of database in the cloud: Traditional Master-slave
replication versus modern Cluster-based solutions. In
Proceedings of the 7th International Conference on
Cloud Computing and Services Science, CLOSER
2017, pages 413-420, Portugal. SCITEPRESS -
Science and Technology Publications, Lda.

Tkachenko, V. (2012). Introducing new type of
benchmark. https://www.percona.com/blog/2012/
02/25/introducing-new-type-of-benchmark/. Last
access: Feb. 2020.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and
Alonso, G. (2000). Database replication techniques: a
three parameter classification. In Reliable Distributed
Systems, 2000. SRDS-2000. Proceedings of The 19th
IEEE Symposium on, pages 206-215.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast. IEEE Transactions on Knowledge and
Data Engineering, 17(4):551-566.

Xing, Y. and Zhan, Y. (2012). Virtualization and cloud
computing. In Zhang, Y., editor, Future Wireless
Networks and Information Systems, pages 305-312,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L., and Zhou, W.
(2018). A comparative study of containers and virtual
machines in big data environment. In 2018 IEEE
11th International Conference on Cloud Computing
(CLOUD), pages 178-185.

327

