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Abstract: Sequential pattern extraction techniques are applied to the evolution styles of an evolving software architecture
in order to plan and predict future evolution paths for the architecture. We present in this paper, a formalism
to express the evolution styles in a more practical way. Then, we analyze these collected styles from the
formalism introduced by the techniques of sequential patterns extraction to discover the sequential patterns of
software architecture evolution. Finaly, from the analysis results, we develop a learning base and prediction
rules to predict future evolution paths.

1 INTRODUCTION

Software systems become more complex day after
day, and integrate many components. Thus, some re-
search has focused on planning and predicting soft-
ware evolution (Bhattacharya et al., 2012), (Goulão
et al., 2012). However, software architectures go
hand in hand with the software products they docu-
ment, they evolve together and constantly. Although
a lot of works have been directed towards the prob-
lem of reusing the evolution of software architectures
( (Cuesta et al., 2013), (Ahmad et al., 2012)), little
work has focused on the problem of planning and pre-
dicting the future evolution of software architectures.
The majority of research efforts focused on the speci-
fication, development, deployment of software archi-
tectures (Smeda et al., 2005) and the analysis, de-
sign and reuse of the software architectures evolution
((Sadou, 2007), (Hassan and Oussalah, 2018)). But
little works, to our knowledge, are devoted to plan-
ning and predicting future evolution in software ar-
chitectures.

From previous evolution data of an evolving ar-
chitecture over time A1 to An, the problem is to deter-
mine the recurrent evolution sequences, the architec-
tural elements most or least affected in order to iden-
tify and propose the possibilities and skills required to
move towards An+1. To achieve this goal, the evolu-
tion style approach introduced in order to make the
software architectures evolution process reusable is
reused. the aim of this paper, is to extract software ar-
chitectures evolution sequential patterns, to plan and

predict future evolution paths. Thus, following pre-
vious software architectures evolutions, libraries of
evolution styles are built, from which software archi-
tectures evolution sequential patterns are extracted.
A meta-model of evolution style is proposed, it will
be endowed with a simple formalism to express the
evolution styles with more convenience. Data min-
ing techniques are applied to the evolution styles ex-
pressed to extract the sequential patterns, then a learn-
ing base is developed to predict the future architecture
evolution paths and evaluate the proposed paths. In-
deed, the principles of sequential patterns extraction
is used on software architectures evolution styles ex-
pressed through the defined formalism in order to de-
termine the recurrent evolutions, the most or least af-
fected architectural elements and the actors participa-
tion rate in operations during these architectural evo-
lutions. By analogy with the approach of Agrawal
et al. in (Agrawal and Srikant, 1995), data (the evo-
lution styles expressed) is reorganized into a seven-
field table where, is associated to an architectural el-
ement the date of evolution operation undergone, the
name, the evolution style header. From this table, an
algorithm to define evolution sequences by architec-
tural element is defined, then the sequential patterns
that define the recurrent evolution sequences are de-
termined. Another algorithm was defined, based on a
database of evolution sequences, it determines the ar-
chitectural elements evolution rate and the actors par-
ticipation rate in evolution operations.

The sequential patterns extraction is a very impor-
tant area of data mining. It has been used in sev-

Djibo, K., Oussalah, M. and Konate, J.
Evolution Style Mining in Software Architecture.
DOI: 10.5220/0009349203130322
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 313-322
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

313



eral studies on specific types of data including the
web (Wu and Chen, 2002), music (Hsu et al., 2001),
software engineering (Amaral et al., 2014), ontology
(Javed et al., 2011), medicine (Wright et al., 2015).
However, the main challenge in extracting sequential
patterns is related to the high costs of processing due
to the large amount of data. Thus different algorithms
have been proposed in previous studies to optimize
data processing costs to determine sequential patterns
(Agrawal and Srikant, 1995), (Srikant and Agrawal,
1996) (Mooney and Roddick, 2013).

This paper is organized as follows: Section 2
presents the state of the art of software architecture
evolution styles and knowledge extraction from data
(data mining). In Section 3, we present the evolu-
tion style meta-model and the new formalism that we
introduced to express evolution styles with more con-
venience. Section 4 presents the data analysis, we ap-
ply the mining sequential patterns techniques to the
data expressed according to the formalism introduced
through a case study. Finally in section 5, we con-
clude and give the perspectives of our work.

2 STATE OF THE ART

Some existing work related to software architecture
evolution styles and data mining are presented below.

2.1 Software Architecture Evolution
Style

An evolution style captures a characteristic way of
evolving all or part of a software architecture. It
serves as a guide for an architect who must conform
to the style (Le Goaer, 2009). Evolution styles aim to
make the evolution activity reusable to prevent archi-
tects from starting from scratch with each evolution
activity. They promote knowledge sharing but also
learning and knowledge extraction. We present some
team approaches. According to (Garlan, 2008), an
evolution style expresses the evolution of software ar-
chitecture as a set of potential evolution paths from
the initial architecture to the target architecture. Each
path defines a sequence of evolution transitions, each
of which is specified by evolution operators. The
team (Cuesta et al., 2013) has defined evolution styles
based on architectural knowledge (AKdES), which
are also based on architecture design decisions each
time an evolution step is made. Each stage of evolu-
tion is preformed because a decision of evolution is
taken following the verification of a decision of evo-
lution. According to (Oussalah et al., 2008), the main

idea of an evolution style is to model software archi-
tecture evolution activity in order to provide reusable
expertise of domain-specific evolution. They consider
an architectural evolution as consisting of modifica-
tions (addition, update, deletion) of architectural ele-
ments (component, connector, interface).

2.2 Extracting Knowledge from Data
(Data Mining)

Extracting knowledge from data (data mining) has
been used in many areas to find patterns to solve
decision-making or future projection problems in
companies. We then present some work done in
this direction. Agrawal et al. (Agrawal and Srikant,
1995), introduced the sequential pattern discovery
problem. From a database of client transactions,
they define a sequence database where each sequence
represents all the items purchased during a transac-
tion. It was a question of discovering all the se-
quential patterns with a specified minimum support.
They defined three algorithms to solve the problem
including the AprioriAll, AprioriSome and Dynamic-
Some algorithms. In 1996, the same team proposed
an improvement of the previous result, they present
the GSP algorithm for the discovery of generalized
sequential patterns. A performance evaluation per-
formed in (Srikant and Agrawal, 1996) indicates that
GSP is performing better than AprioriAll presented
in (Agrawal and Srikant, 1995). (Javed et al., 2011)
study the change of ontology. They analyze ontology
change logs represented as graphs to determine fre-
quent and recurring changes. These frequent and re-
curring changes are identified as patterns of change
that can be reused. For this, they introduced two
algorithms to determine ontology change patterns,
which are the algorithm for searching complete and
ordered change patterns (OCP) and the search algo-
rithm for complete and unordered change patterns (
PCU). They then performed a performance study of
the two algorithms to determine the different limita-
tions.

The new model that we introduce to express and
analyze software architectures evolution styles in or-
der to predict and plan future evolutions of theses is
presented below.
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3 META-MODEL AND
SIMPLIFIED EXPRESSION OF
EVOLUTION STYLE

Our goal is to apply mining sequential patterns tech-
niques to software architectures evolution styles in or-
der to discover sequential patterns of architecture evo-
lution, determine the evolution rate of architectural el-
ements and the actors participation rate in the evolu-
tion operations in order to predict and plan the future
evolution of architectures. For this, we must first have
a database of evolution styles. Previously, we have
defined a meta-model of evolution style. We extend
it to define an evolution style as a process (Fig. 1)
by specifying the role, the architectural element and
the operation. Thus, the extended meta-model (Fig.
1) answers the following questions : what ? (what
is evolving ?) through the ArchitectureElement pack-
age, who ? (who did it ?) through the Actor concept,
when ? (when to evolve ?) from the TimeEvolution
concept and how ? (how to make it evolve ?) through
the concepts Header, Competence, Action ands Im-
pact. All the concepts Header, Competence, Action,
Impact define the operation. Through the class dia-
gram in Figure 1, we highlight the concepts and rela-
tions of our model.

Figure 1: Evolution Style Meta-model.

The evolution style meta-model presented in Figure 1
is described below.

3.1 Description of Evolution Style
Meta-model Concepts

The concept EvolutionStyle is the core of our model,
it encapsulates what allows to describe and apply an
operation of evolution to an architectural element. It
consists of two complementary parts: a header and a
competence. The Header class describes the signa-
ture of the operation. The competence class is split
into Action and Impact. Action is a procedure or

function of evolution that focuses on the evolving ar-
chitectural element. It describes an implementation
unit corresponding to the header. The Impact class
specifies the evolution styles that will be impacted
by the execution of the currently defined style. It al-
lows to establish a relationship between the evolution
styles. The Actor concept defines the actor, either
a natural person or a program that triggers the oper-
ation. The ArchitectureElement package including
the evolving element and its category allows to model
and reify any significant element of an evolving ar-
chitecture. If an architectural concept is an instance
of this class (in the object-oriented sense), then it be-
comes possible to associate evolution styles with it.
In addition, the Category concept allow to share ar-
chitectural elements of the same nature in a class. The
TimeEvolution class indicates the date on which the
evolution operation is performed on the evolving ele-
ment.

It is the role (defined through the Actor concept),
the architectural element and the operation (defined
through the Header, Competence, Action and Impact
concepts) that allow our meta-model to define an evo-
lution style as a process (Fig. 1).

In the following, we introduce the formalism to
express the evolution styles according to the extended
meta-model (Fig. 1) in order to easily collect them.

3.2 Simplified Expression of Evolution
Style

While waiting to collect evolution data from software
architectures in order to extract sequential patterns,
we propose a formalism allowing evolution actors to
easily express software architectures evolution styles.
We use the introduced meta-model (Fig. 1) and define
a formalism that specifies the actor, the architectural
element, the operation and the date of evolution. The
header defined through the Header concept, identifies
the signature of the evolution operation. It is unique,
so we replace the operation by the concept Header
and the architectural element by Element and Cate-
gory. Figure 2 below represents the formalism. This

Figure 2: Simplified Expression of Evolution Style.

final expression (Fig. 2) will allow to name and ex-
press one by one all the evolution styles of an evolving
architecture A1 to An. After expressing all the evolu-
tion styles of the evolving architecture with the sim-
plified expression, a large amount of Evolution data is
obtained, it can be use to extract the sequential evo-
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lution patterns of software architectures, discover the
architectural elements change rate and the actors par-
ticipation rate in evolution operations in order to plan
and predict all possible paths towards the An+1 archi-
tecture.

We present below our approach to extract the se-
quential patterns of architectural evolution from the
data of evolution styles expressed by the formalism
introduced above.

4 SEQUENTIAL PATTERNS
EXTRACTION OF SOFTWARE
ARCHITECTURES
EVOLUTION

In artificial intelligence, there are 2 main extrac-
tion techniques, algorithmic and deep learning. We
chose the algorithmic. Referring to the definitions
in (Agrawal and Srikant, 1995), we define some con-
cepts that we use for the sequential patterns extraction
of software architectures evolution.
Evolution Sequence: We call an evolution sequence
an ordered sequence of evolution style headers ap-
plied to a given architectural element or performed
by a given actor. The order is established according
to the dates of evolution.
Support: The support of an evolution sequence is the
percentage of appearance of this sequence in the other
evolution sequences.
Sequential Pattern: We define sequential pattern of
software architectures evolution an ordered sequence
of evolution operations carried out in the same order
on a defined number of architectural elements. This
number defined by the user represents the minimum
support of an evolution sequence to be admitted as a
sequential pattern.
The Sequence Length: is the total number of evolu-
tion style headers contained in the sequence.

An architectural evolution consists of creation (C),
suppression (S) and modification (M) of architectural
elements. An architecture can be created (C), sup-
pressed (S), modified (M) or migrated (Mg). The lat-
ter results in the creation of a new architecture (ad-
vanced version of the previous one). An architec-
ture change (M) consists of adding components (Ac),
adding connectors (Acon), removing components (Sc),
removing connectors (Scon) and changing architec-
tural elements. A modification of architectural ele-
ments consists of adding ports (Cpc and Cpcon), delet-
ing ports (SPc and SPcon) and changing ports (MPC)
for components and (MPCon) for connectors. An ar-
chitectural evolution is an ordered set of evolution

operations carried out on the architectural elements
(modification of architectural elements) in order to
reach a targeted result. An evolution style is a pro-
cess that describes an evolution operation carried out
on a given architectural element during an architec-
tural evolution. Thus, an architectural evolution can
be represented by an ordered set of evolution styles.
Based on this principle, we use the formalism intro-
duced to extract the sequential evolution patterns of
architectures in order to define evolution sequences
by architectural element in a category. To do this, we
reorganize the styles expressed by defining a table in
which we define in column each element of the for-
malism.

To better explain our approach we refer, pedagog-
ically to the following case study of the evolution of
an initial architecture (defined using components and
connectors) A1 to an architecture A3 where we apply
sequential pattern extraction techniques to predict the
possibles A4 (A41 , A42 , ..., A4n ).

4.1 Case Study

In this case study, we collect existing data on the evo-
lution of the initial architecture A1 to A3, we express
them using the meta-model and the simplified expres-
sion and then we analyze them to predict the architec-
ture A4. Thus, this study is carried out in three phases,
including the expression phase of evolution styles, the
analysis phase of expressed styles and finally the pre-
diction phase.

4.1.1 The Expression Phase of Evolution Styles

We use the simplified evolution style expression in-
troduced to express all evolving architecture evolution
styles from the creation of the initial architectural ele-
ments until the last modification operation carried on
the last version of this one in order to predict and plan
future developments. We refer to the following Figure
4 of evolution of the architecture A1 to A3.

Figure 3: Evolution of the Architecture A1 to A3.

The architecture A1 at the beginning has three com-
ponents C1, C2 and C3. Components are connected
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by connectors Con12 and Con23. The software architect
decides to migrate A1 to A2 by creating the compo-
nent C4 and the connector Con14. In this case study
we start with two categories of architectural elements
(connector and component). We express the evolution
styles for the creation of the initial components and
connectors of the initial architecture A1 and those for
the migration of A1 to A3. For reasons of paper size,
we just give some expressions, the whole is given in
table 1.
e1 : < Act1, (C1, Component), Ac, 01-05-2017 >. Cre-
ation of the component C1.
e2 : < Act1, (C2, Component), Ac, 02-05-2017 >. Cre-
ation of the component C2.
e3 : < Act1, (Con12, Connector), Acon, 03-05-2017 >.
Creation of the connector Con12.
e4 : < Act2, (C1, Component), Cpc, 03-05-2017 >.
Creating a port on the component C1.
e5 : < Act2, (Con12, Connector), Cpcon, 03-05-2017 >.
Creating a port on the connector Con12.
e6 : < Act3, (C1, Component), Mpc, 03-05-2017 >.
Modification of the port on the component C1 to con-
nect Con12.
We get A3 after the evolution operations e1 to e41. We
analyze below these expressed evolution styles, in or-
der to determine the recurrent style sequences.

4.1.2 Analysis Phase of Expressed Styles

Inspired by (Agrawal and Srikant, 1995), we apply
the techniques of sequential patterns extraction to the
expressed evolution styles in order to determine the
recurrent evolution sequences by category of architec-
tural elements, the rate of change of architectural ele-
ments and the actors participation rate in the evolution
operations. First, we reorganize the data expressed in
a table (Table 1).

Indeed, we are interested in the evolution opera-
tions carried out on the architectural elements of the
same category during an architectural evolution and
the actors associated to these operations. The evo-
lution date allows us to define the operations in se-
quence by architectural element. After reorganizing
the data, we define a second table (Table 2) in which,
from the first table defined (Table 1), in a given cate-
gory we associate with each architectural element the
evolution sequence corresponding as in Table 2. The
empty sequence () is associated with the element that
has not undergone any evolution operation.

An interpretation of a line from Table 2 would
be: The architectural element C1 after its creation has
undergone four evolution operations of header creat-
ing component port Cpc, component port modifica-
tion Mpc, creating component port Cpc and compo-
nent port modification Mpc respectively. From Table

2 we can determine the architectural elements most
or least affected by the length of their evolution se-
quence. The length of the evolution sequence associ-
ated with C3 is four, while the length of the sequence
associated with C5 is two, we conclude that among
the components C3, C2, C1 have undergone more evo-
lution operations. Thus, rules can be developed to
make decisions or draw conclusions. To do this, we
define an algorithm to compute and associate to each
architectural element its rate of evolution. The archi-
tectural element evolution rate is computed from the
length of its evolution sequence and the total number
of lines in Table 1, i.e. the total number of evolu-
tion styles collected. In the same way in the Table
3 we associate with each architecture its sequence of
evolution, we note that the architecture A1 has under-
gone after its creation (C) ten modifications includ-
ing a component addition Ac, connector addition Acon,
etc. before migrating (Mg). From the tables Table
2 and Table 3, we determine the support of each se-
quence by category in the following Table 4 in order
to discover the sequential patterns.

We retain as a sequential pattern all evolution se-
quences with a support value greater than twenty-five
percent (25 %). This value is arbitrary and can be de-
fined by the user. Table 5 represents the sequential
patterns by category of architectural elements.

More than twenty-five percent (25 % ) of compo-
nents have undergone evolution sequences (Cpc Mpc
Cpc Mpc) and (Cpc Mpc). More than twenty-five per-
cent (25 % ) of connectors have undergone the se-
quence (Cpcon Mpcon Cpcon Mpcon). More than twenty-
five percent (25 % ) of architectures have undergone
the sequence (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon
Mpc Mpcon Mg).

The sequential evolution patterns of software ar-
chitectures correspond, in our case, to the sequences
or subsequences of evolution appearing in the evolu-
tion sequences of a number of architectural elements
greater than the minimum support specified by the
user (k). Thus, to extract them from the Table 2, each
sequence must be compared to all the other evolu-
tion sequences of the table. If a match is detected
its support is incremented. At the end of the table’s
path its support is calculated. All the evolution se-
quences in Table 2 are candidate sequences, i.e. the
associated support must be computed in order to ex-
tract the sequential evolution patterns of software ar-
chitectures. However, during the table run if an evo-
lution sub-sequence is read in another sequence, this
sub-sequence will also be added to the candidate se-
quences. Its support will also be computed. Finally,
all the sequences or subsequences having a calculated
support greater than k are retained as sequential pat-
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terns of software architectures evolution. Given the
amount of evolution data and processing complexity,
it is not easy to extract sequential patterns manually.
Thus, we propose an algorithm allowing to extract the
sequential patterns from any organized table like the
Table 2 whatever the quantity of data. But the main
challenge in defining sequential pattern extraction al-
gorithms is the high cost of processing due to the high
amount of data (Chiu et al., 2004). Many studies have
been carried out in this context, proposing efficient
and effective algorithms for the sequential patterns
extraction (Agrawal and Srikant, 1995), (Srikant and
Agrawal, 1996) (Chiu et al., 2004) (Mahajan et al.,
2014). Thus, our objective is centered on the sequen-
tial patterns extraction of software architectures evo-
lution. Inspired by this work already done to opti-
mize algorithms for extracting sequential patterns, we
try to propose computer algorithms to extract our se-
quential patterns of software architectures evolution
from our data formats defined (Ex Table 2), compute
the evolution rate of an architectural element and the
participation rate of an actor in evolution operations.

4.1.3 Prediction Phase

To propose the possibles An+1 (the possibles A4 for
this case study) to the architect, we develop a learn-
ing base (Figure 3 and Figure 5 below). We load the
Table 2, Table 3 and Table 5 tables resulting from the
analysis carried out in the previous phase. Figure 5
below provides an overview of the learning base.

Figure 4: Learning and Prediction.

We define some rules for prediction. The rules are
dynamic, they can be modified by the architect. We
distinguish four categories of rules: the structural evo-
lution rules, the behavioral evolution rules, the invari-
ant evolution rules and the business evolution rules.
Structural evolution rules refer to the evolution of the
structure of architectural elements. Behavioural evo-
lution rules refer to the way in which the behaviour of
architectural elements has evolved. The invariant evo-
lution rules guarantee properties on architecture and
its architectural elements. Business evolution rules
affect the costs (price, quality) and time (lifetime) of

element evolution. We give some examples of rules
by category.

Structural Evolution Rules

Rule 1
We define the notion of connectability of a compo-
nent. A component is said to be connectable if it is
possible to connect it to another component via a con-
nector. Indeed, the components contain the property
of number of ports (variable and definable by the ar-
chitect), if the number of existing connections reaches
the number of port of the component, it becomes not
connectable. Thus its status can switch to connectable
as soon as one of its ports is released following a dele-
tion or a modification. The number of ports is spec-
ified in the component properties. An unconnectable
component will not be affected during the prediction.

Behavioural Evolution Rules

Rule 1
The architect can define an architectural element that
is not sensitive to evolution (Properties, structure and
behaviour that make the element non-sensitive). In
this case, it will not be affected by future evolution
operations.
Rule 2
Architectural elements that have undergone an evolu-
tion rate greater than X % (X definable by the archi-
tect) are no longer sensitive to evolution.

Invariant Evolution Rules

Rule 1
The architecture must be for example a connected
graph.

Business Evolution Rules

Rule 1
The expensive elements, whose evolution is expen-
sive are less privileged.
Rule 2
Evolutions involving the architectural elements least
affected by previous evolution operations are given
priority to evolution.

For this case study, let’s apply:
Structural evolution rules, all components have three
ports defined, you can not go beyond three connec-
tions on a component.
Behavioural evolution rules, the components C1, C3
and C4 are defined as not sensitive to change and X
(minimum rate of change per architectural element)
is set at eighty-five percent (85 %).
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Thus three paths of evolution open:

• Creating a connector between components C5 and
C2, this associates with architecture A3 the se-
quence (Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc
Mpcon Mg) with the following architecture A41
(Figure 6);

• Creating a component C6 and a connector Con62,
this associates with architecture A3 the sequence
(Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc
Mpcon Mg) with the following architecture A42
(Figure 6);

• Creating a component C6 and a connector Con65,
this associates with architecture A3 the sequence
(Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc
Mpcon Mg) with the following architecture A43
(Figure 6);

Figure 5: Possibilities.

4.1.4 Evaluation of Proposals

This evaluation is based on Table 5, the sequence as-
sociated with the architecture being migrated is com-
pared to the sequential patterns associated with the
architecture discovered (Table 5), if the sequence is
identical to one of the sequential patterns discovered
the weight one (1) is associated with the possibility
otherwise the zero weight (0) as represented in Table
6.

If we apply the business evolution rules, the evo-
lutions carried out on the components C4 and C5 will
be preferred, so the proposal A41 and A42 will be ex-
cluded, A43 would be the only proposal. This (only
one proposal) results from the case study chosen, de-
pending on the case, more can be achieved. The evo-
lution sequences by actor and the calculation of the
actors participation rate in the evolution operation al-
low to plan the proposed future evolution operation.
Indeed, for each path, we are able to propose the com-
petences (actors) that can be involved. Through Table
7 we give an overview of the other results obtained
from this case study in addition to the other tables de-
fined.

In the following section, the principles adapted to
respectively define the algorithms for extracting se-
quential patterns of software architecture evolution
and calculating the architectural elements evolution
rate and the actors participation rate in evolution op-
erations are explained.

4.2 Principle to Extract Sequential
Patterns of Software Architectures
Evolution and Calculating the
Architectural Elements Change
Rate

(For reasons of paper size, we could not give an
overview of the defined functions, but we explain the
principles.)

We define a first function which, starting from
the Table 1, associates with each architectural ele-
ment, the corresponding evolution sequence. The
function named Sequence, retrieves the table (Table
1) sorted on the Category, TimeEvolution and Ele-
ment columns and associates with each architectural
element the corresponding evolution sequence. It pro-
vides as an output an equivalent of Table 2. The sec-
ond function named SequenceSupport allows to com-
pute and associate to each candidate sequence its sup-
port, it takes as input the candidate sequences defined
from Table 2 (output of the previous function), then
computes and associates to each sequence its total
number of appearance among all the other candidate
sequences. It provides as an output a table that as-
sociates each candidate sequence with its total num-
ber of appearances. The SequentialPattern function
returns sequential patterns by category of architec-
tural elements with k support provided as a param-
eter. For example, if we take a k equal to twenty-five
percent, the sequential patterns will correspond to all
the evolution sequences or sub-sequences appearing
in the evolution sequences of more than twenty-five
percent of architectural elements in the same category.
It takes as input the output of the previous function,
computes and associates to each candidate sequence
its support in percentage and compares it to the mini-
mum support k provided in parameter. If a superiority
is read, the current sequence is stored in the sequen-
tial pattern table. At the end of the process, it pro-
vides this sequential pattern table which contains all
the sequences with a support higher than the k pro-
vided. The PercentageEvolution function takes as in-
put any table similar to Table 2 associated with Table
1 that contains all the evolution operations performed.
It associates to each architectural element, its rate of
evolution by multiplying the size of the evolution se-
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quence associated with the element by hundred then
dividing the result by n (the size of Table 1 or the total
number of evolution styles involved in the search for
sequential patterns). As an output, the algorithm pro-
vides a two-column table where, to each architectural
element is associated its rate of evolution or to each
actor its rate of participation in evolution operations.

5 CONCLUSION

In this paper, we have presented a technique based on
sequential pattern extraction to plan and predict fu-
ture evolution paths of an evolving software architec-
ture. In addition, we evaluated the proposed evolu-
tion paths and defined some algorithms to define se-
quences, determine sequential patterns and compute
the architectural elements evolution rate and the ac-
tors participation rate in evolution operations.
In the next step, we propose to apply our approach
to a evolving software system in production , then to
an urban architecture evolutions in order to propose
a model that is easily usable, prospective and predic-
tive, allowing us to analyze, estimate and predict fu-
ture evolutions of urban architecture.
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APPENDIX

Table 1: The Evolution Styles of Architecture A1 to A3 Reorganised.

Architecture evolution Style Name Actor Element Category Header TimeEvolution
e1 Act1 C1 Component Ac 01-05-2017
e2 Act1 C2 Component Ac 02-05-2017
e3 Act1 Con12 Connector Acon 03-05-2017
e4 Act2 C1 Component Cpc 03-05-2017
e5 Act2 Con12 Connector Cpcon 03-05-2017
e6 Act3 C1 Component Mpc 03-05-2017
e7 Act3 Con12 Connector Mpcon 03-05-2017
e8 Act2 C2 Component Cpc 03-05-2017

Initial e9 Act2 Con12 connector Cpcon 03-05-2017
architecture e10 Act3 C2 Component Mpc 03-05-2017

creation e11 Act3 Con12 connector Mpcon 03-05-2017
e12 Act1 C3 Component Ac 04-05-2017
e13 Act1 Con23 connector Acon 05-05-2017
e14 Act2 C2 Component Cpc 05-05-2017
e15 Act2 Con23 Connector Cpcon 05-05-2017
e16 Act3 C2 Component Mpc 05-05-2017
e17 Act3 Con23 Connector Mpcon 05-05-2017
e18 Act2 C3 Component Cpc 05-05-2017
e19 Act2 Con23 Connector Cpcon 05-05-2017
e20 Act3 C3 Component Mpc 05-05-2017
e21 Act3 Con23 Connector Mpcon 05-05-2017
e22 Act1 C4 Component Ac 06-05-2018
e23 Act1 Con14 Connector Acon 07-05-2018
e24 Act2 C4 Component Cpc 07-05-2018
e25 Act2 Con14 Connector Cpcon 07-05-2018

A1 e26 Act3 C4 Component Mpc 07-05-2018
e27 Act3 Con14 Connector Mpcon 07-05-2018
e28 Act2 C1 Component Cpc 07-05-2018
e29 Act2 Con14 Connector Cpcon 07-05-2018
e30 Act3 C1 Component Mpc 07-05-2018
e31 Act3 Con14 Connector Mpcon 07-05-2018
e32 Act1 C5 Component Ac 10-05-2019
e33 Act1 Con35 Connector Acon 11-05-2019
e34 Act2 C5 Component Cpc 11-05-2019
e35 Act2 Con35 Connector Cpcon 11-05-2019

A2 e36 Act3 C5 Component Mpc 11-05-2019
e37 Act3 Con35 Connector Mpcon 11-05-2019
e38 Act2 C3 Component Cpc 11-05-2019
e39 Act2 Con35 Connector Cpcon 11-05-2019
e40 Act3 C3 Component Mpc 11-05-2019
e41 Act3 Con35 Connector Mpcon 11-05-2019
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Table 2: Evolution Sequence by Architectural Element and Category.

Category Element Evolution sequence
C1 (Cpc Mpc Cpc Mpc)
C2 (Cpc Mpc Cpc Mpc)

Component C3 (Cpc Mpc Cpc Mpc)
C4 (Cpc Mpc)
C5 (Cpc Mpc)

Con12 (Cpcon Mpcon Cpcon Mpcon)
Connector Con23 (Cpcon Mpcon Cpcon Mpcon)

Con14 (Cpcon Mpcon Cpcon Mpcon)
Con35 (Cpcon Mpcon Cpcon Mpcon)

Table 3: Evolution Sequence by Architecture.

Architecture Evolution sequence
A1 (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg)
A2 (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg)
A3 ()

Table 4: Support by Architectural Element and Category.

Category Evolution sequence support
Architecture (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg) 66,6 %
Component (Cpc Mpc Cpc Mpc) 60 %

(Cpc Mpc) 100 %
Connector (Cpcon Mpcon Cpcon Mpcon) 100 %

Table 5: Sequential Pattern by Category of Architectural Elements.

Category Sequential pattern >25 %
Architecture (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg)
Component (Cpc Mpc Cpc Mpc)

(Cpc Mpc)
Connector (Cpcon Mpcon Cpcon Mpcon)

Table 6: Evaluation.

Possibilities Evolution sequence Weight
A41 (Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg) 0
A42 (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg) 1
A43 (Ac Acon Cpc Cpcon Mpc Mpcon Cpc Cpcon Mpc Mpcon Mg) 1

Table 7: Other Results.

Category Result
Architectural elements most affected C3, C2, C1, Con12, Con23, Con14, Con35
Architectural elements less affected C4 and C5

The selected architecture A43
The most active actors Act2 and Act3
The least active actors Act1
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