
Patterns for Checking Incompleteness of Scenarios in Textual
Requirements Specification

David Šenkýř a and Petr Kroha b

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Keywords: Requirements Specification, Text Processing, Scenarios, Grammatical Inspection, Incompleteness, Domain
Model.

Abstract: In this contribution, we investigate the incompleteness problem in textual requirements specifications. Missing
alternative scenarios are one of the incompleteness sources, i.e., descriptions of processing in the cases when
something runs in another way as expected. We check the text of requirements specification using linguistic
patterns, and we try to reveal scenarios and alternative scenarios. After that process is finished, we decide
whether the set of alternative scenarios is complete. As a result, we generate warning messages. We illustrate
our approach with examples.

1 INTRODUCTION

Very often, textual requirements specification does
not contain complete information about the system to
be constructed because it is difficult to obtain all re-
quired information before software design and imple-
mentation starts. Many years of practice have shown
that using incomplete information in requirements
specification leads to incomplete or wrong models.
It can cause customers to reject the specified system
because it does not meet all their expectations. It also
means that costs and schedules have been underesti-
mated. The resulting program has to be laboriously
enhanced and adapted. A study (Standish, 1994) im-
plicated that incomplete requirements caused 12.3 %
of costs overrun and 13.1 % of failed projects.

The problem is getting more complicated by the
fact that requirements specification are engineered in
incremental, iterative, parallel (more teams) manner,
i.e., they are changed and amended during the soft-
ware development process under schedule with mile-
stones and a limited budget. This fact may have an
impact on their incompleteness and inconsistency.

Requirements specification follows the require-
ments analysis, which is typically based on various
requirements models. In (Firesmith, 2005), these
models are listed, starting with context model, data
model, decision model, event model, performance

a https://orcid.org/0000-0002-7522-3722
b https://orcid.org/0000-0002-1658-3736

model, process model, safety and security model,
state model, and use case model. In our approach,
we focus only on scenarios known from functional
requirements based on a process model. Scenarios
and use cases have very much in common. Scenarios
are often used to make use cases more specific. This
means that our view on requirements is a dynamic
view, especially a scenario view, which is based on
sequence diagrams and communication diagrams.

There are more reasons for incomplete require-
ments specification.

First, the software system requirements specifica-
tion describes only a specific part of the real system
to be modelled – a simplified model omitting some
details. We are interested only in a subset of all
existing objects, properties, and relationships of the
real system. For example, when writing information
systems, this subset is given by supposed queries, use
cases, and scenarios.

Second, subject matter experts working with the
analyst on the textual version of requirements often
take certain information for granted and suppose that
some facts are apparent, and they do not mention
them. However, what is evident for a user of a protein
information system is usually not evident for the
software analyst.

Third, some details or some scenarios are
forgotten at the very beginning of the project, or some
queries are appended later without to worry whether
the underlying model contains the necessary objects,
properties, or relationships that are necessary to

Šenkýř, D. and Kroha, P.
Patterns for Checking Incompleteness of Scenarios in Textual Requirements Specification.
DOI: 10.5220/0009344202890296
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 289-296
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

289



produce the information in demand.
In our approach, we distinguish the sort of

incompleteness according to the scope, in which the
incomplete information is spread in the text of re-
quirements specification. The first scope includes
one sentence of the textual requirement specifications.
We investigated this problem in our previous paper
(Šenkýř and Kroha, 2019). The second scope includes
the whole document of the textual requirements
specifications, i.e., all its sentences. This problem is
the topic of our paper, in which we describe how to
reduce this type of incompleteness.

During requirements analysis, we can find some
sorts of scenarios in functional requirements, e.g.,
normal case scenario (also called “sunny day sce-
nario”), exceptional (alternative) case scenario (also
called “rainy day scenario”), start-up scenario, shut-
down scenario, installation scenario, configuration
scenario, etc.

Missing alternative scenarios are one of the in-
completeness sources, i.e., descriptions of processing
in the cases when something runs in another way as
expected. It may easily happen.

One of the cases is the following one. The
analyst supposes a specific user’s reaction in a given
context because the analyst uses his/her knowledge of
the problem. In contrary to the analyst expectation,
the user does something else – it may be done by
mistake or by incompetence. In such a situation,
alternative scenarios should guide the user to the next
correct step.

Missing alternative scenarios can cause users to
be disappointed and frustrated with the system, and it
can cause customers to reject the system.

In our approach, we check the text of require-
ments specification using linguistic patterns to reveal
scenarios and alternative scenarios. However, the
semantic relations in real systems are often so
complex and hidden that they cannot be solved
automatically. Thus, our implemented tool TEMOS
generates a warning message in the case when it finds
a suspicious formulation.

Our paper is structured as follows. In Section 2,
we discuss related work. Our approach is presented
in Section 3. The implementation, used data and
experiments are described in Sections 5 and 6.
Finally, in Section 7, we conclude.

2 RELATED WORK

Completeness of requirements specification is a
complex problem discussed since years in details in
many publications, e.g., in (Firesmith, 2005).

Our approach is based on scenarios. In (Sutcliffe,
1998), scenarios and their usages are described in
detail, but their completeness or incompleteness is not
mentioned.

Two incompleteness metrics of input documents
of the requirements specifications are described in
(Ferrari et al., 2014). This approach takes into
account all the relevant terms and all the relevant
relationships among them, and it defines forward
functional completeness and backward functional
completeness. The forward functional completeness
corresponds with the reference functional model, i.e.,
with the future implementation of the system. The
backwards functional completeness, that the paper
(Ferrari et al., 2014) focuses on, refers to the com-
pleteness of a functional requirements specification
with respect to the input documents. In our approach,
we mix both methods. We use requirements specifi-
cations first to build a model that can be implemented
(as we described in (Šenkýř and Kroha, 2018))
and check in the sense of the forward functional
completeness (Šenkýř and Kroha, 2019). Then in
the next step, we use the input documents, the
existing text of requirements specification, the
fresh model, and some information from external
knowledge databases to search for the backward
functional incompleteness that is represented by
missing alternative scenarios in our approach. In
contrary to the approach in (Ferrari et al., 2014), we
do not measure the incompleteness using metrics and
quantified results, even though it is a good idea. Using
our tool, we generate warning messages only.

In (Li, 2015), a meta-model approach is used to
detect the missing information in a conceptual model.
It is also an approach of the class forward functional
completeness but at the level of a conceptual model.

In (Eckhardt et al., 2016), sentence patterns are
used to uncover incompleteness with performance re-
quirements. According to the unified model, the
performance requirements describe time behaviour,
throughput capacity, and cross-cutting. The sentence
patterns used in the paper are completely different
from our sentence patterns.

In (Dalpiaz et al., 2018), the authors explore
potential ambiguity and incompleteness based
on the terminology used in different viewpoints.
They combine possibilities of NLP technology
with information visualization. Their approach is
completely different from our approach.

The approach based on NLP techniques and
grammatical inspection methods to extract use case
scenarios is proposed in (Tiwari et al., 2019). It
is a similar approach to ours, but the question of
incompleteness is not discussed there.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

290



In (Bäumer and Geierhos, 2018), the authors de-
veloped methods of detecting quality violations in
a requirements specification called linguistic trig-
gers. The authors combine their approach to the
problem of incompleteness with the problem of am-
biguity. To detect incompleteness, the authors use
their approach published in (Bäumer and Geierhos,
2016), in which their linguistic triggers work in two
steps. In the first step, the detection via predicate
argument analysis is used to assign semantic roles,
e.g., agent, theme, beneficiary, to the recognized
predicate. Some verbs have “rich predicates”, e.g.,
the verb “send” is a three-place predicate because it
requires the agent (sender), the theme (send), and
the beneficiary argument (sent-to). The second step
is compensation. Using similarity search component
known from information retrieval (IR) domain, they
try to find the potentially missing part sent-to based on
software descriptions gathered from one software-to-
download portal. In our papers, we discuss the prob-
lems of ambiguity and incompleteness separately.

3 OUR APPROACH TO THE
PROBLEM OF
INCOMPLETENESS USING
SCENARIOS

The goal of our method described in this contribu-
tion is to find such a kind of incompleteness that can
be revealed only in the context of the whole textual
document or in the context of thematically closed and
compact chapters.

In this paper, we present some simple
examples that concern user interface. As the norms
ISO/IEC/IEEE 29148/2018 and IEEE Std 1012:2016
explain, specification of a user interface is part of
requirements specification.

3.1 Alternative Scenarios

More or less, we are trying to reveal the non-existence
of some alternative scenarios. As an alternative sce-
nario, we denote here a scenario that depends on a
specific value of a class attribute.

Scenarios are used for requirements specification
elicitation. We use three types of scenarios in our
approach:
• description of the system context (input events,

system output, i.e., system’s communication with
the actors out of the system),

• description of system usage including user’s goals
(including use cases) and system function,

• description of constraints that concern attributes
or application of methods.

We assume that some alternative scenarios have to
be present in the textual description of requirements
specification.

First, we state which alternative scenarios should
be present, i.e., we construct a set of alternative sce-
narios to each normal case scenario.

Second, we find the alternative scenarios present
in the textual requirements, and we compare the
corresponding sets.

(Example 1). Assume, we have textual requirements
specification of a text editor. One of use cases is de-
scribed as a functional requirement.
Normal case scenario: To edit a text file, the user has
to click the button OPEN, to choose the file he/she
wants to edit. After the user see the file content,
he/she provides the changes of its textual content. To
save the changes, the user uses button SAVE.
Alternative (exceptional) scenarios:

Scenario 1: . . . If the user has got the message
“The file cannot be found” the user has to do the
following . . .

Scenario 2: . . . If the user has got the message
“The file you want open is not a text file” the user
has to do the following . . .

(End of Example 1)

To have the possibility of testing the existence of these
alternative scenarios, we need a class File containing
attributes File-Status (values: Exists, Does not exist,
Opened, Closed) and File-Type (values: docx, doc,
rft, txt, tex, etc.) in the model. Some text editors can
open files of types PDF or PNG but the user can be
confused by the result he/she can see on the screen.

In some cases, the implementation will be written
as an exception handling procedure that delivers
a message the user can understand instead of the
message of the operating system.

In Photoshop CC, you will get the message
“Could not complete your request because Photoshop
does not recognize this type of file” if you try opening
a file of type DOCX.

In WORD, you can try opening a PDF file but you
will get the message “To open and export to certain
types of files, Word needs to convert the file using a
Microsoft online service” in the first step.

If our model (constructed via extracting classes
and attributes) has the property described above,
we can check whether the corresponding alterna-
tive scenarios are part of the textual requirements
specification.

Patterns for Checking Incompleteness of Scenarios in Textual Requirements Specification

291



3.2 The Algorithm

The algorithm implemented in our tool has to follow
these steps:

1. To identify enumerations, paragraphs, and chap-
ters by using white and special characters.

2. To construct a static UML model by using
grammatical inspection, i.e., to find classes, rela-
tionships, and attributes. Section 3.2.1 discusses
the model construction in more detail.

3. To find sets of values of each attribute as described
in Section 3.2.2.

4. To find alternative scenarios in all components
(chapters) of the specification, i.e., such sentences
that use different values of the same attribute.
A component of a specification is the basic
part of the structured text of the specification.
Usually, components are numbered, as we show
in Example 3. This core step of the whole algo-
rithm is described separately in Section 4.

5. To find groups of attribute values, because some
attribute values can be grouped together, and they
can use a common alternative scenario. Such a
group of attribute values has to be identified.

6. To test whether there are alternative scenarios for
all attribute values described in all components.

7. To generate warning messages if some alternative
scenarios are missing.

3.2.1 Static UML Model Construction

Using grammatical inspection, our tool TEMOS finds
classes, their attributes and constraints involved, as
we described in our paper (Šenkýř and Kroha, 2018).
After we have classes and their attributes, our tool is
looking for their values, and it builds a correspond-
ing set of values to each attribute of each class that
participates in the normal case scenario.

These sets need not to be built only from the
text of requirement specifications. Using some pre-
defined knowledge databases, we can generate warn-
ing messages, e.g., we find in a knowledge database
that a file (from Example 1) can have a File-status
value “locked” or “encoded”. Such a value is not
mentioned in the requirements specification. We
suppose that the alternative scenario concerning the
case of a locked or encoded file is missing, and we
indicate incompleteness.

3.2.2 Sets of Values

In common, we can describe our approach as follows.
We denote sets of attribute values that are built from

the textual requirement specification as R-sets having
cardinalities Card(R-sets) and sets of attribute values
that are built from scenarios as S-sets having cardi-
nalities Card(S-sets).

In result, each attribute Attr of each class C has
a corresponding set of its values taken from require-
ment specifications denoted as RC,Attr, and each of
these sets has its cardinality CardR,C,Attr. Similarly,
each attribute Attr of each class C has a correspond-
ing set of its values taken from scenarios denoted as
DBC,Attr, and each of these sets has its cardinality
CardS,C,Attr.

In the first step, we can call it calibration, cardi-
nalities of sets constructed from requirements will
be compared with cardinalities of sets from scena-
rios. Probably, it will be found that CardR,C,Attr >
CardS,C,Attr. If more values are mentioned in the
specification than in the scenarios, it means that
scenarios do not cover all possible situations or some
values need not be taken into account. Our tool will
generate a message to check this situation.

The case in which CardR,C,Attr < CardS,C,Attr
means that the information obtained from re-
quirements contains fewer attribute values
than the information obtained from scenarios.
It happened in cases when requirements do
not count with all values, maybe because all
values were accumulated at the time of writing the
scenarios. Our tool will generate a message, too.

The case in which CardR,C,Attr = CardS,C,Attr
means that we can start the incompleteness checking
in the scope of the whole document.

In the second step, we suppose that the reason why
a set of attribute values is mentioned in the description
is that each of these values indicates a different path
of data processing.

Theoretically, we could expect alternative
scenarios for different attribute values, as shown in
the following example.

(Example 2). In the traffic simulation, the class
representing Traffic Light has the corresponding set of
attributes such as {Type, Year of Production, Light,
etc.}. From the specification, we know possible
values of attribute Light. It’s this set: {Red, Orange,
Green}.

Scenario for Light equals Red:
Stop procedure is applied. . .

Scenario for Light equals Green:
Run procedure is applied. . .

The enumeration of attribute Light was ended and
not all possible values were mentioned. Our tool
generates a warning message: “What is to do if the
Light is Orange, i.e., the alternative for Light equals
Orange is missing?”

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

292



(End of Example 2)

In practice, some attribute values can be grouped,
and the alternative scenario is defined for the whole
group. It means that multiple values are mentioned
together separated by commas, or the multiple values
are hidden behind the noun “others”.

4 PATTERNS TO FIND
SCENARIOS

To implement the method and the algorithm (Section
3.2) described above, we replace the problem
of finding scenarios by the problem of finding
typical textual patterns that indicate the presence
of scenarios in a text of requirements specification.
We reuse the already presented (Šenkýř and Kroha,
2018) idea of a grammatical inspection and sentence
patterns following (Rolland and Proix, 1992). So, we
construct the corresponding patterns, we apply them
on the whole text, and we find all sentences, in which
such a situation can be found.

We can categorize the patterns into two groups.
The patterns from the first group cover situation
where the class name and names of its attributes
have to be mentioned. The patterns from the second
group cover situation where the values of some
attribute are used but the attribute name is not
explicitly mentioned.

4.1 Patterns Covering Class/Attribute
Name

Usually, the class name and its attributes are
embedded in a description of a process started by call-
ing a method. Often, there is the same verb in a nega-
tive clause in the alternative scenario.

The example context situation is:
Class File has methods Open (means Open existing
file), Enter data (or Import file from an external de-
vice), Save (without changing Name, Directory and
Type), and Save As (Changes possible).

Normal Case Scenario:
To process an existing file (CLASS NAME) that
can be seen in the window of the file manager, the
user uses Open item in the File menu.

Alternative Scenario:
To process an existing file (CLASS NAME) that
cannot be seen in the window of the file manager, the
user uses Import item in the File menu.

Normal Case Scenario:

After the action ”Enter data” is completed, and if the
data is ok, the system shall store the data.

Alternative Scenario:
After the action ”Enter data” is completed, and the
data is not ok, the system shall issue an error message.

4.1.1 Values Conditional Pattern

This category covers a situation where the require-
ments enumerate behaviour based on all mapped
values of a concrete attribute. If there is a scenario
for at least one concrete value of a specific attribute,
it should be checked if all already mapped values are
concerned.

‘IF’ ATTRIBUTE NAME ‘BE’/‘EQUAL’/‘=’ ATTRIBUTE VALUE

mark nsubj attr

Figure 1: Values Conditional Pattern #1.

‘WHEN’ ATTRIBUTE NAME ‘BE’/‘EQUAL’/‘=’ ATTRIBUTE VALUE

advmod nsubj attr

Figure 2: Values Conditional Pattern #2.

4.1.2 Incomplete Conditional Pattern

Typically, the requirement describes the prospective
situation in a conditional way (e.g., if something
is (successfully) loaded/processed/OK), but there are
missing alternatives. Based on this observation, we
can create two sets. The first one contains prospective
nouns (Fig. 3) and verbs (in the “-ed” form, Fig.
4) and the second one contains their opposites.
When the scenario mapping prospective situation
appears, it’s time to check if the opposite exists.

CLASS/ATTRIBUTE NAME ‘BE’ PROSPECTIVE SET
AUX

acompnsubj

Figure 3: Incomplete Conditional Pattern #1.

CLASS/ATTRIBUTE NAME ‘BE’ PROSPECTIVE SET
AUX

auxpassnsubjpass

Figure 4: Incomplete Conditional Pattern #2.

4.2 Patterns Covering Values of
Attribute

Other situations not handled by the previous category
are presented here. Let’s focus on sentences where
the name of the attribute is not mentioned. And let’s
focus on properties of attributes such as uniqueness.

4.2.1 Values in Enumeration Pattern

This pattern considers enumerations, and it’s based on
the text structure. Different from Values Conditional

Patterns for Checking Incompleteness of Scenarios in Textual Requirements Specification

293



Pattern, we do not require a conditional form in this
case.

As shown in Example 31, all (three) points of
enumeration listed in the part of Installation together
cover all values of one specific attribute (Operating
system). But only two of them are discussed in the
part of Configuration.

(Example 3).
Non-functional requirement specification 5.13: The
system OpenVPN will work under Windows, macOS,
and Linux.

Design specification 5.13:
5.13.1 Installation of OpenVPN
We need an OpenVPN client from the community edi-
tion at least of version 2.4.
• Users of MS Windows should download

from https://openvpn.net/index.php/open-
source/downloads.html

• Users of Linux will very probably use a package
from their Linux distribution. It can be useful to
install Network Manager, too.

• Users of macOS have available the applica-
tion from https://tunnelblick.net that contains both
Open VPN and the graphical interface.

5.13.2 Configuration of OpenVPN
• Users of MS Windows are recommended to

store configuration files into their personal profile,
e.g. in folder C:\Users\Name\OpenVPN\config
where Name is the user’s name in MS Windows.

• Users of Linux place the configuration file into
the folder that is used by their specific distribution
of Linux, probably \etc\openvpn.

To configure OpenVPN we need the following files. . .

(End of Example 3)

You can see that the name of the attribute is not ex-
plicitly mentioned there. Therefore, the first step
of mapping this pattern is to check each item of
enumeration against the values of all attributes. By
this step, we find the attributes that are possibly enu-
merated, and we can check the missing values. See
illustrating Fig. 5.

This kind of incompleteness has to be found and
indicated by our tool, i.e., a message like “In the

1This example is taken from a grey-zone between
non-functional requirement specifications and design
specification. However, the border between require-
ment specifications and design specification is not exactly
defined, and usually, they overlay each other in some
aspects and properties.

TEXT

…

enumerating
symbol

or
itemizing
symbol

value 1 of attribute

value 2 of attribute

value n of attribute

?

existing
scenarios

missing scenarios?

whitespace

Figure 5: Values in Enumeration Approach.

5.13.2 Configuration part of the specification, the
alternative concerning macOS is missing.” has to be
generated.

4.2.2 Unique Attribute Pattern

In the requirements, some attributes may be marked
as unique. When such a unique attribute is used
within the extracted positive use case scenario, there
should surely be the alternative one. We can find it via
pattern in Fig. 6 where the unique set should consists
of words such as taken, occupied, used, etc. Attribute
representing “username” is a typical example.

‘IF’/‘WHEN’ UNIQUE ATTRIBUTE NAME ‘BE’ UNIQUE SET

attrnsubjmark/advmod

Figure 6: Unique Attribute Pattern.

5 IMPLEMENTATION

The current version of our tool TEMOS is written in
Python, and it is powered by spaCy2 NLP framework
in version 2.2 (we use the features such as tokeniza-
tion, sentence segmentation, part-of-speech tagging,
lemmatization, dependency recognition, co-reference
recognition). We use texts written in English,
and for this purpose, we use the pre-trained model
called en core web lg (available together with spaCy
installation).

The workflow of our implemented tool extends the
original one presented in (Šenkýř and Kroha, 2018).
After base text classification (provided by spaCy) and
before we start to generate the output model, it makes
sense to check the text against inaccuracies. So far,
we tackle the ambiguity and incompleteness issues.
This check is optional but recommended. Based on
the methods presented in this paper, we extended
the module denoted to incompleteness revealing. In
Fig. 7, there is a screenshot of TEMOS application.

2https://spacy.io

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

294



Figure 7: TEMOS Application.

6 DATA AND EXPERIMENTS

The method we described is not perfect. We are not
able to find all the forgotten alternative scenarios. It
can happen that there are more alternative scenarios
concerning a class attribute and its values, as we can
show in the following example.

(Example 4). From textual requirements specifica-
tion of a library information system, we find that its
model contains a class Reader having attribute Date-
of-Birth. There is a functional requirement describing
how readers borrow books.

Functional requirement: A reader lays the book
on the screen of the indicating machine, insert his/her
membership card in the slot of the machine, and
pushes the button READY.

Normal case scenario: After a green light starts
to blink, the process is finished, and the following
message occurs: “The process of borrowing a book
has been finished successfully.”

Alternative scenario: After a red light starts to
blink, the process is finished by an error, and the
following message occurs: “Readers younger than 18
years cannot borrow books for adults.”

We have our alternative scenario concerning the
Reader-Age and its value. Of course, there may exist
a set of other alternative scenarios concerning the
Reader-Age and its value, e.g., “Reader older than 70
years can borrow books of the library free of charge.”

It should be mentioned in the functional require-
ment: Every reader will be charged by 50 Euro at the
January, 1st.

Both Age-restrictions are described in Library

rules that had to be elicited before requirements speci-
fication has been formulated.

The only action we could do is to generate
a question whether there are some additional
possibilities depending on the reader’s age.

(End of Example 4)

We continue with an example from published soft-
ware system requirements where our methods could
help. In Fig. 7, there is a screenshot of processing the
next example by our tool.

(Example 5). In (Geagea et al., 2010), there is Func-
tional Requirement 1.6 stating “The search options
are Price, Destination, Restaurant type and Specific
dish”. Our tool map these four options as values of
the attribute search option.

Functional Requirement 1.8 contains the
following rule “When searching by a search
option, other than price, the restaurants should be
sorted according to the following order: 1. distance,
2. average price, 3. restaurant type, 4. specific dish”.
The order represents a list where 3 of 4 values of the
attribute search option are mentioned. The pattern
5.2.1 Values in Enumeration Pattern was applied.
Therefore, our tool generates a warning regarding
the missing value destination. The analyst based on
this warning can decide whether the distance is an
expression of destination in this context, and if the
meaning is clear.

(End of Example 5)

Patterns for Checking Incompleteness of Scenarios in Textual Requirements Specification

295



7 CONCLUSIONS

The identification of incompleteness in requirements
specifications is still an open issue in requirements
engineering.

We presented our method that reveals scenarios
and alternative scenarios in textual requirements
specification using patterns. In the first phase, we
construct a UML model as we described in our pre-
vious paper (Šenkýř and Kroha, 2018). Using the
model, we find values of attributes of classes that take
parts in scenarios and alternative scenarios. Then we
compare sets of attributes mentioned in alternative
scenarios with sets of attributes from the model and
decide about this kind of requirements specification
completeness.

Unfortunately, it is difficult to get large textual
requirements specifications from software compa-
nies. Usually, these documents are classified as confi-
dential. Software developers do not agree with the
publishing. This is the reason why we cannot present
statistical data supporting our patterns.

In the future, we will test the possible existence of
some more complicated textual formulations of sce-
narios and their correspondence with a domain model.

ACKNOWLEDGEMENT

This research was supported by the grant
of Czech Technical University in Prague
No. SGS17/211/OHK3/3T/18.

REFERENCES

Bäumer, F. S. and Geierhos, M. (2016). Running Out
of Words: How Similar User Stories Can Help to
Elaborate Individual Natural Language Requirement
Descriptions. In Dregvaite, G. and Damasevicius,
R., editors, Information and Software Technologies,
volume 639, pages 549–558. Springer International
Publishing, Cham.

Bäumer, F. S. and Geierhos, M. (2018). Flexible Ambiguity
Resolution and Incompleteness Detection in Require-
ments Descriptions via an Indicator-Based Configura-
tion of Text Analysis Pipelines. In Proceedings of the
51st Hawaii International Conference on System Sci-
ences, pages 5746–5755.

Dalpiaz, F., van der Schalk, I., and Lucassen, G. (2018).
Pinpointing Ambiguity and Incompleteness in Re-
quirements Engineering via Information Visualization
and NLP. In Kamsties, E., Horkoff, J., and Dalpiaz,
F., editors, Requirements Engineering: Foundation for
Software Quality, pages 119–135, Cham. Springer In-
ternational Publishing.

Eckhardt, J., Vogelsang, A., Femmer, H., and Mager, P.
(2016). Challenging Incompleteness of Performance
Requirements by Sentence Patterns. In 2016 IEEE
24th International Requirements Engineering Confer-
ence (RE), pages 46–55, Beijing, China. IEEE Com-
puter Society Press.

Ferrari, A., dell’Orletta, F., Spagnolo, G. O., and Gnesi,
S. (2014). Measuring and Improving the Complete-
ness of Natural Language Requirements. In Sali-
nesi, C. and van de Weerd, I., editors, Requirements
Engineering: Foundation for Software Quality, pages
23–38, Cham. Springer International Publishing.

Firesmith, D. (2005). Are Your Requirements Complete?
Journal of Object Technology, 4(1):27–43.

Geagea, S., Zhang, S., Sahlin, N., Hasibi, F.,
Hameed, F., Rafiyan, E., and Ekberg, M.
(2010). Software Requirements Specification:
Amazing Lunch Indicator. Available from:
http://www.cse.chalmers.se/∼feldt/courses/reqeng/
examples/srs example 2010 group2.pdf.

Li, A. (2015). Analysis of Requirements Incompleteness
Using Metamodel Specification. Master’s thesis, Uni-
versity of Tampere.

Rolland, C. and Proix, C. (1992). A Natural Language
Approach for Requirements Engineering. In Ad-
vanced Information Systems Engineering, pages 257–
277, Berlin, Heidelberg. Springer.

Šenkýř, D. and Kroha, P. (2018). Patterns in Textual Re-
quirements Specification. In Proceedings of the 13th
International Conference on Software Technologies,
pages 197–204, Porto, Portugal. SCITEPRESS – Sci-
ence and Technology Publications.

Šenkýř, D. and Kroha, P. (2019). Problem of Incom-
pleteness in Textual Requirements Specification. In
Proceedings of the 14th International Conference on
Software Technologies, volume 1, pages 323–330,
Porto, Portugal. INSTICC, SCITEPRESS – Science
and Technology Publications.

Standish (1994). The CHAOS Report (1994). Technical
report, The Standish Group.

Sutcliffe, A. (1998). Scenario-based Requirements Analy-
sis. Requirements Engineering, 3(1):48–65.

Tiwari, S., Ameta, D., and Banerjee, A. (2019). An
Approach to Identify Use Case Scenarios from Tex-
tual Requirements Specification. In Proceedings of
the 12th Innovations on Software Engineering Confer-
ence, ISEC’19, pages 5:1–5:11, New York, NY, USA.
ACM.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

296


