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Abstract: This paper deals with complex abstract state machinery, clearly represented by modal logic with fixed point
operator. The logic is well known as modal mu-calculus, which is extended to the version involving human
computer interaction as well as involving awareness, communication and behavioral predicates of propo-
sitional variables as in autonomy systems. The extended version contains complexity for human machine
interaction, whose meaning is represented by Heyting algebra but not by Boolean algebra. In the sense of
Heyting algebra, human computer interaction of complexity can be described such that related predicates of
communication and behavior may be simplified. Then the extended version can be applied to some process by
means of awareness to an expertise, communication and behavior processes, and repetitions represented with
fixed point operator (that is, mu-operator). This version is also concerned with model theory caused by postfix
modal operator, where composition and alternation of modal operators may be organized into an algebraic
structure.

1 INTRODUCTION

The complex information system may be more intu-
itively expressed if abstract state machinery would be
taken into consideration on the assumption of the state
concept:

(1) In the literatures (Droste et al., 2009; Reps et al.,
2005), algebraic systems of abstract state machin-
ery are compiled, which are related to more ab-
stract structure of streams in the note (Rutten,
2001).

(2) On the state concept, the action causing state tran-
sitions are also significant, whether or not it is ab-
stract or not. In the papers (Giordano et al., 2000;
Hanks and McDermott, 1987), actions are cap-
tured in logical systems, while the action is a key
issue in strategic reasoning.

(3) Relative to functional programs (Bertolissi et al.,
2006; Thompson, 1991), the actions are to be
viewed. In the book (Mosses, 1992), the proce-
dural action is expressed by its denotation.

(4) With composed actions and programs in dynamic
logic, we may see an application system of acting
and sensing failures, and actions to generate and
execute plans (Spalazzi and Traverso, 2000).

If we aim at the human computer interaction
(HCI) of complexity to the programming systems,

(a) Mobile ambients (Cardelli and Gordon, 2000;
Merro and Nardelli, 2005) may be effective in the
sense that communication environments are well
described, and

(b) From views of AI system developments, we need
the bases of logics (Genesereth and Nilsson,
1987) as well as of knowledge (Reiter, 2001).

Based on the classics for beliefs and intentions,
modal operations concerning mental states are cap-
tured (Dragoni et al., 1985), which are applied to form
state sequences. The modal mu-calculus contains a
fixed point notation to reflect some goal where actions
and communications are satisfactory for given condi-
tions. In the papers (Dam and Gurov, 2002; Kozen,
1983; Park, 1970), the proof systems with fixed point
approximations are in details formulated.

In the context of AI programming system formu-
lations, we have in this paper an extension of modal
logic with fixed point operator (Venema, 2006; Ven-
ema, 2008), where modal logic with fixed point oper-
ator is settled with its transition system:

• To reflect abstract state machinery, and

• To condition the states statically containing pro-
grams and their implementations.

Yamasaki, S. and Sasakura, M.
Modal Mu-calculus Extension with Description of Autonomy and Its Algebraic Structure.
DOI: 10.5220/0009322300630071
In Proceedings of the 5th International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2020), pages 63-71
ISBN: 978-989-758-427-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

63



We here have the extended version of multi-modal
mu-calculus (Yamasaki and Sasakura, 2015) for hu-
man computer interaction, with respect to algebraic
meanings. It may contain a model of autonomy as re-
covery process, in terms of the meanings. The mean-
ing of extended logical formulas may realize HCI
such that its algebraic basis is given by Heyting al-
gebra (corresponding to intuitionistic logic).

In this paper, it should be applied to a design of
autonomy with HCI for some process, so that the de-
signed autonomy needs the predicates of awareness
(to expertise) as well as communication and behav-
ior implementing HCI. The autonomy system can be
applied to a practice for recovery from the worse con-
dition of patients. Before making the application in
details, this paper gives an outlook on the construc-
tion of the autonomy system which may provide a
sequence of behavioral and communicative actions.
The constructed system is initiated by awareness to
the expert knowledge, by which the system specifi-
cation is made. Then the system does work, as hu-
man computer interaction, with behavior (displaying
such a sequence) and communication (responded by
the person). The system construction is regarded as
practise of the autonomy described by a formula of
the modal mu-calculus extension of this paper.

The paper is organized as follows. Section 2 gives
the full syntax of the modal mu-calculus extension
the primary part of which we originally present. The
meanings of logical formulas are defined in Section
3, where HCI may be allowable. In Section 4, the au-
tonomy is considered from theoretical views with a
practise. In Section 5, the whole logic is viewed from
algebraic structures. Section 5 also deals with model
theories for the logical or algebraic expression (re-
garded as a program), represented for (a term) form-
ing a postfix modal operator. Section 6 concludes this
paper and refers to advanced theories.

2 MODAL MU-CALCULUS
EXTENSION

Not only for human computer interaction but also for
the autonomy system components of predicates as re-
gards awareness, communication and behavior, we
have more forms extended from modal mu-calculus
than our former version. That is, some predicates are
newly made use of:

(i) Aw(ϕ) as awareness to condition (the logical for-
mula) ϕ,

(ii) Be(ψ,ϕ, t) as behavior with a term t, for a rela-
tion between conditions ψ and ϕ to hold, and

(iii) Cm(ψ,ϕ,c) as communication with a communi-
cation c, for a relation between conditions ψ and
ϕ to hold.

The set Φ of (logical) formulas is defined induc-
tively as follows.

ϕ ::= tt | p | ¬ϕ | ∼ϕ | ϕ∨ϕ | µx.ϕ | 〈c〉ϕ | ϕ〉t〉
| Aw(ϕ) | Be(ϕ,ϕ, t) |Cm(ϕ,ϕ,c)

Note that the intuitive meanings of symbols are
described as below, where the formal meanings are
given, in the next section, with the transition system
as below.

(i) tt is the truth, and p denotes propositions.

(ii) ∨ stands for the disjunction, and¬ is the logical
negation.

(iii) ∼ is another negation as interactive incapabil-
ity.

(iv) µ is a least fixed point operator.

(v) 〈c〉 is a prefix modality with communication c.

(vi) 〉t〉 is a postfix modality with term t.

(vii) Aw is an awareness operator.

(viii) Be is a behavior operator with respect to term
t.

(ix) Cm is a communicative operator with respect to
communication c.

A Transition System S :

For the set Φ of formulas, a transition system S is
defined to be:

(S,C,U,Re,Rel,Vpos,Vneg,Vinter,VAw,rBe,rCm)

where:

(i) S is a set of states.

(ii) C is a set of labels for communications.

(iii) U is a set of labels for terms.

(iv) Re maps to each c ∈C a relation Re(c) on S.

(v) Rel maps to each t ∈U a relation Rel(t) on S.

(vi) Vpos,Vneg,Vinter : Prop→ 2S map to each propo-
sition (variable) a set of states, respectively.

(vii) VAw is a mapping of S to 2Φ.

(viii) rBe is a subset of Φ×Φ.

(ix) rCm is a subset of Φ×Φ.
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3 MEANING OF FORMULAS
FITTING HUMAN COMPUTER
INTERACTION

The meaning of a formula may be a subset of the state
set (in the transition system), as in Hennessy-Milner
Logic (HM-Logic). However, to represent the states
where human interaction may be made in computer
working process, we have classified the state set into
3 subsets (parts): The first is to express the states
positive to computing, the second is to designate the
states for possible interaction with human, and the
third is to contain the states negative to computing.
In such a way, complexity is more than in HM-Logic,

Given a transition system S , the functions

[[ ]]pos, [[ ]]neg, [[ ]]inter: Φ→ 2S

are defined as meanings of formulas such that:

(i) [[ϕ]]pos ∪ [[ϕ]]neg ∪ [[ϕ]]inter = S, and

(ii) [[ϕ]]pos, [[ϕ]]neg and [[ϕ]]inter are mutually disjoint,

for ϕ ∈Φ.
Note that Vpos(p) ∪ Vinter(p) ∪ Vneg(p) = S for

each proposition (variable) p.

(1) [[tt]]pos = S, [[tt]]neg = /0, and [[tt]]inter = /0.

(2) [[p]]pos = Vpos(p), [[p]]neg = Vneg(p),
and [[p]]inter = S\ ([[p]]pos ∪ [[p]]neg)
(p ∈ Prop).

(3) [[¬ϕ]]pos = [[ϕ]]neg, [[¬ϕ]]neg = [[ϕ]]pos,
and [[¬ϕ]]inter = [[ϕ]]inter.

(4) [[∼ϕ]]pos = [[ϕ]]neg, [[∼ϕ]]neg = [[ϕ]]pos ∪ [[ϕ]]inter,
and [[∼ϕ]]inter = /0.

(5) [[ϕ1∨ϕ2]]pos = [[ϕ1]]pos ∪ [[ϕ2]]pos,
[[ϕ1∨ϕ2]]neg = [[ϕ1]]neg ∩ [[ϕ2]]neg, and
[[ϕ1∨ϕ2]]inter
= S \ ([[ϕ1∨ϕ2]]pos ∪ [[ϕ1∨ϕ2]]neg).

(6) [[〈c〉ϕ]]pos
= {s ∈ S | ∃s′. s Re(c) s′ and s′ ∈ [[ϕ]]pos},
[[〈c〉ϕ]]neg
= {s ∈ S | ∀s′. s Re(c) s′ entails s′ ∈ [[ϕ]]neg}, and
[[〈c〉ϕ]]inter = S \ ([[〈c〉ϕ]]pos∪ [[〈c〉ϕ]]neg).

(7) ([[µx.ϕ]]pos, [[µx.ϕ]]neg)

=
⋂
{(Tpos,Tneg)⊆ S×S |

([[ϕ]]pos [x:=Tpos]
, [[ϕ]]neg [x:=Tneg]

)⊆ (Tpos,Tneg)},
and [[µx.ϕ]]inter = S \ ([[µx.ϕ]]pos ∪ [[µx.ϕ]]neg),
where every free occurrence of x in ϕ is positive
such that the occurence x is replaced by Tpos and

Tneg, respectively, and the operations
⋂

and ⊆ are
componentwise.

(8) [[ϕ〉t〉]]pos
= {s′ ∈ S | ∀s. s Rel(t) s′ entails s ∈ [[ϕ]]pos},
[[ϕ〉t〉]]neg
= {s′ ∈ S | ∀s. s Rel(t) s′ entails s ∈ [[ϕ]]neg},
and [[ϕ〉t〉]]inter = S\ ([[ϕ〉t〉]]pos∪ [[ϕ〉t〉]]neg).

(9) [[Aw(ϕ)]]pos = {s ∈ S | ϕ ∈VAw(s)},
[[Aw(ϕ)]]neg = S\ [[Aw(ϕ)]]pos, and
[[Aw(ϕ)]]inter = /0.

(10) [[Be(ψ,ϕ, t)]]pos = [[ϕ〉t〉]]pos if (ψ,ϕ) ∈ rBe, and
[[ϕ]]pos otherwise. [[Be(ψ,ϕ, t)]]neg = [[ϕ〉t〉)]]neg
if (ψ,ϕ) ∈ rBe, and [[ϕ]]neg otherwise.
[[Be(ψ,ϕ, t)]]inter
= S\ ([[Be(ψ,ϕ, t]]pos∪ [[(ψ,ϕ, t)]]neg).

(11) [[Cm(ψ,ϕ,c)]]pos = [[〈c〉ϕ]]pos if (ψ,ϕ) ∈ rCm,
and [[ϕ]]pos otherwise. [[Cm(ψ,ϕ, t)]]neg =

[[ϕ〉t〉)]]neg if (ψ,ϕ) ∈ rCm, and [[ϕ]]neg other-
seise.
[[Cm(ψ,ϕ, t)]]inter
= S\ ([[Cm(ψ,ϕ, t]]pos∪ [[Cm(ψ,ϕ, t)]]neg).

Although the definitions are clear later in terms of
Heyting algebra (in Section 5), the conjunction ∧ and
the (Heyting algebra) implication −→ are intuitively
given as follows.

(i) ϕ1∧ϕ2 is defined by ¬(¬ϕ1∨¬ϕ2),

(ii) ϕ1 −→ ϕ2 is regarded as “ϕ1 implies ϕ2”.

We have seen term use for admissible interaction
by the definition for [[-]]inter, in terms of:

[[ϕ〉t〉]]inter = {s′ ∈ S|∃s. sRel(t)s′ and s ∈ [[ϕ]]inter}.

Note the usage of mu-operator for description of
term use meaning, | 〉t〉 |inter, with the fixed point op-
erator. That is, we might have got:

| 〉t〉 |inter = [[µp. p〉t〉]]inter.

4 AUTONOMY AND
APPLICATION TO RECOVERY

With the modal mu-calculus extension, we can have
a representation of an autonomy to be aware of ex-
pertise for behavior and communication with human,
as well as to implement human computer interaction
scheme designated by logical formulas.
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4.1 Description of Autonomy

With awareness to an expertized condition for behav-
iors and communications with human (for HCI), the
logical conditions might be given by means of the fol-
lowing formula (with paraentheses and with a propo-
sitional variable q to the mu-operator).

µq.(((q−→ Aw(ψ))−→ (Be(ψ,q, t)∧Cm(ψ,q,c)))
∧(∨i(〈ci〉q∧q〉ti〉)))

where

(1) “−→” is Heyting algebra implication, whose def-
inition is given in the next section but intuitively
considered as an implication, and

(2) the terms and communications are to be imple-
mented:

(a) ti and ci are terms and communications within
postfix and prefix modal operators, respec-
tively, virtually in human computer interaction.

(b) t and c are term (with respect to Be-formula)
and communication (with respect to Cm-
formula), respectively, with reference to an ex-
pertized condition by the formula ψ.

The mu-operator can be regarded as inductively
extending the states to which conditions are kept to
be satisfied, where the conditions (within the operator
scope) are specified to describe awareness to exper-
tise and repetitions of communication and behavior
implementations.

4.2 Application to Recovery Process

As an example of recovery process which autonomy
is applied to, the recovery of an aphasic patient is ex-
amined. It may be regarded as the one led by speech
therapist (ST), where ST presents a picture to a pa-
tient and encourages him or her to explain the content
of picture orally. Most of patients cannot explain the
picture because they do hardly find proper words. We
may design such a system with views of autonomy as
follows, to cope with such difficulty: (i) (Expertise in-
put) ST speaks a sound sentence at first with display
of a picture, and then a patient is encouraged to re-
peat the sentence. (ii) (Interaction model) While they
repeat ST’s machinery messages and responses of the
patient, the patient might possibly speak a satisfactory
sentence.

With respect to the formula of the previous sub-
section as seen for autonomy, and the implementation
need of the design by T. Kojima (2019), we may think
of ST’s speech as awareness of the autonomy system

to ST’s expertise, followed by (or implicating) behav-
ior predicate (by interaction of ST with machinery
message) and receipt of the patient with communica-
tive predicate (including no need of receipt response),
in terms of:
((q−→ Aw(ψ))−→ (Be(ψ,q, t)∧Cm(ψ,q,c))).

The repeated process of messages and responses
is represented, in accordance to the (sub)formula of
the whole formula:

∨i(〈ci〉q∧q〉ti〉).
The mu-operator can be seen as denoting some

stable state set, with which the recovery process may
supposedly continue.

Specification of Autonomy System:

The system (which we have implemented) pro-
vides a recovery process: The system shows pictures
according to ST’s interaction, with machinery mes-
sages. For instance, we can present a sentence as an
exercise: “a girl eats pasta with a fork”. The sentence
has three nouns and one verb. Since it may be diffi-
cult for a patient to speak the whole sentence at once,
we divide the sentence into three phrases of “a girl”,
“eats pasta”, “with a fork”. They are associated with
pictures, as well.

The autonomy system contains three parts: “pic-
ture part”, “sentence part” and “instruction part”.
• In the picture part, a picture is displayed.
• In the sentence part, the sentence phrase which

corresponds to a picture sequence is displayed.
• In the instruction part, the interactive instruction

of ST is displayed.
As below, there is a situation in which ST interac-

tive with a patient to speak the sentence “a girl eats
pasta”. The specification (which is above given) may
be implemented as an autonomy system for ST by
the object-oriented programming. Each part is un-
der control of an object in a programming language,
where each object has a state, such that ST may tap
the screen for each object to transfer to the next state.

Picture Part Sentence Part
A picture of the girl (1) “A girl”

(2) “eats pasta”
Instruction Part
Please look at the picture. Make a sentence.

5 ALGEBRAIC STRUCTURE

We here have an algebraic structure of the domain
which can be composed with respect to the meanings
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in the set of formulas. As a part of autonomy descrip-
tion, we examine the model theory of algebraic or log-
ical expressions as a “program”, which is described
for the term in postfix modality.

5.1 Meaning and Algebra

Complexity is caused by double negation, one
of which is classical and another of which is for
interaction incapability. With respect to interaction
capability, Heyting algebra (a bounded lattice with
a specified implication: See the book (Crole, 1993)
for it and category theories to semantics) is made use
of, for the whole set of formulas to be represented in
terms of algebraic structure.

The set Φ of formulas is related to a bounded lat-
tice:

([Φ],
∨
,
∧
, [ff], [tt]),

where:

(i) [Φ] = {[ϕ] | ϕ ∈Φ} for [ϕ] = ([[ϕ]]pos, [[ϕ]]neg).

(ii)
∨

and
∧

denotes a join and a meet, respectively.
for which the partial order ≤ may be defined on
the set [Φ] by means of:

[ϕ1]≤ [ϕ2] iff
[[ϕ1]]pos ⊆ [[ϕ2]]pos and [[ϕ2]]neg ⊆ [[ϕ1]]neg.

(iii) [ff] = [¬ tt] = [∼ tt] = ( /0,S), and [tt] = (S, /0).

The implication ⇒ is equipped with, on the set
[Φ]:

[ϕ]≤ [ϕ1]⇒ [ϕ2] iff [ϕ1]
∧
[ϕ]≤ [ϕ2]

so that a Heyting algebra [Φ] is associated with the
set Φ of formulas.

We then have some properties derived to denote a
relation between the set Φ of formulas and the set [Φ]
as model base.

Proposition 1. (1) [ϕ1∨ϕ2] = [ϕ1]
∨

[ϕ2].
(2) [ϕ1∧ϕ2] = [ϕ1]

∧
[ϕ2], where

ϕ1∧ϕ2 is defined as ¬ (¬ ϕ1∨¬ ϕ2).
(3) [∼ϕ] = [ϕ]⇒ [ff], where

[∼ϕ] = ([[ϕ]]neg,S\ [[ϕ]]neg).

Proof. (1)

[ϕ1∨ϕ2]
= ([[ϕ1∨ϕ2]]pos, [[ϕ1∨ϕ2]]neg)
= ([[ϕ1]]pos∪ [[ϕ2]]pos, [[ϕ1]]neg∩ [[ϕ2]]neg)
= [ϕ1]

∨
[ϕ2].

(2) With respect to the negation ¬, we can see that:

[ϕ1∧ϕ2]
= ([[ϕ1]]∧ [[ϕ2]]pos, [[ϕ1∧ϕ2]]neg)
= ([[ϕ1]]pos∩ [[ϕ2]]pos, [[ϕ1]]neg∪ [[ϕ2]]neg)
= [ϕ1]

∧
[ϕ2].

(3) Since [ϕ]⇒ [ff] is the greatest element [ψ] such
that [ϕ]

∧
[ψ]≤ [ff], and [ff] = ( /0,S) over the state set

S, we have:

[∼ϕ] = ([[ϕ]]neg,S\ [[ϕ]]pos)
= [ϕ]⇒ [ff].

We finally have a Heyting algebra implication on
the set Φ of formulas, with a correspondence to the
implication⇒ on the set [Φ].

Definition 2. A binary operation “−→” (on the set Φ)
may be defined such that:

[ϕ1 −→ ϕ2] = [ϕ1]⇒ [ϕ2].

5.2 Model of Term in Postfix Modality

To the term t in the postfix modality 〉t〉 of such a
formula ϕ〉t〉, the relation Rel(t) is assigned. In this
subsection, we have a case that the term t might be
described by the propositional expression F over a
set AF (A, for short) of proposition letters, as below,
with a correspondence to the relation Rel(t) in the
transition system S :

Syntax Semantics
term t relation on state sets: Rel(t)

expression F model of expression

With reference to logical and algebraic expres-
sions as programs, we pay attention to the proposi-
tional expression F (over the set A of proposition let-
ters) is of the form:

∧ j∈ω (l j
1 ∧ . . .∧ l j

n j → l j)

where l j
i denote literals, that is, propositions or their

negations with not, and both the implication “→” and
the conjunction∧ are interpreted with respect to Heyt-
ing algebra. Its 3-valued models are to be examined.
Note that the expression “1/2→ 1/2” is evaluated as
1. The expression F as a program is descriptive, con-
taining logical and algebraic properties.
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5.2.1 Logic Program

The logic program with its Herbrand base is associ-
ated with the expression F as above, containining the
predicate pr (with or without “not” as a procedure)
followed by

pr1, . . . , prm (as a procedural body)

for pr, pr1, . . . , prm (predicates or their negations).

This is a different view on logic programs from
the one on answer set programming (Osorio et al.,
2004). The model of the expression F of the above
form is now discussed over the 3-valued domain.

3-Valued Model of Propositional Expression:

For the negation “not” in 3-valued domain
{0,1/2,1} as de f ault negation, we assume, for the
proposition (letter) p, that:

p not p
1 0

1/2 1/2
0 1

Applicable Fixed Point as Model:
Extending the methods of M. Fitting (1985) and

A. van Gelder (1991), we may have models of least
fixed points of mappings as follows, where the pair
(I,J) denotes the set I of propositions assigned to 1,
and the set J of propositions assigned to 0.

For the set A of proposition letters, a monotonic
mapping is extended to this case, on the basis of the
originally proposed mapping:

ΦF : 2A×2A→ 2A×2A,
ΦF(I1,J1) = (I2,J2),

is defined.

I2 =
{p | ∃(p1∧ . . .∧ pi∧not pi+1∧ . . .∧not p j→ p)

in F. ∀pk (1≤ k ≤ i). pk ∈ I1, and
∀pk′ (i+1≤ k′ ≤ j)}. pk′ ∈ J1},

J2 =
{q | ∀(q1∧ . . .∧qi∧not qi+1∧ . . .∧not q j→ q)

in F. ∃qk (1≤ k ≤ i). qk ∈ J1, or
∃qk′ (i+1≤ k′ ≤ j). qk′ ∈ I1, or

∃(q1∧ . . .∧qi∧ not qi+1∧ . . .∧not q j→ not q)
in F. ∀qk (1≤ k ≤ i). qk ∈ I1, and
∀qk′ (i+1≤ k′ ≤ j). qk′ ∈ J1}.

(Extended version of the method by M. Fitting)

The least fixed point of ΦF , that is, the pair (I,J)
is obtained such that, with componentwise subset in-
clusion order ⊆c,

ΦF(I,J) = (I,J),and
if ΦF(I′,J′) = (I′,J′) then (I,J)⊆c (I′,J′).

The least fixed point (I,J) of ΦF may be a model of
F , if it is consistent.
(Note: The pair (I,J) is said to be consistent, if I ∩ J
= /0.)

For the set A, a monotonic mapping is extended on
the basis of the original mapping:

ΠF : 2A×2A→ 2A×2A,
ΠF(I1,J1) = (I2,J2),

is defined:
I2 =
{p | ∃(p1∧ . . .∧ pi∧not pi+1∧ . . .∧not p j→ p)

in F. ∀pk (1≤ k ≤ i). pk ∈ I1, and
∀pk′ (i+1≤ k′ ≤ j). pk′ ∈ J1},

J2 = GUF(I1,J1)
(With (I,J), GUF(I,J) is the greatest unfounded set
un f oundedF(I,J) inductively defined as follows).

q ∈ un f oundedF(I,J)
↔∀(q1∧ . . .∧qi∧not qi+1∧ . . .∧not q j→ q) in F.
∃qk (1≤ k ≤ i). qk ∈ J∪un f oundedF(I,J), or
∃qk′ (i+1≤ k′ ≤ j). qk′ ∈ I, or
∃(q1∧ . . .∧qi∧not qi+1∧ . . .∧not q j→ not q)

in F. ∀qk (1≤ k ≤ i). qk ∈ I, and
∀qk′ (i+1≤ k′ ≤ j). qk′ ∈ J∪un f oundedF(I,J).

(Extension of the method by A.van Gelder et al.)

The least fixed point of ΠF is obtained as a model
of F , if it is consistent.

5.2.2 Algebraic Expression

In a Heyting algebra (HA) (A,
∨
,
∧
,⊥,>) equipped

with the partial order v and an implication⇒:

Any expression E derives some expression F of the
“form” ∧

j(x
j
1
∧
. . .

∧
x j

n j ⇒ y j),

where x j
i and y j are an expression a or not a (denoting

a⇒⊥), for a ∈ A, such that
F v E.

We here have a procedure to get models of a given
Heyting algebra expression F . For the negation “not”
in 3-valued domain {0,1/2,1}, we assume, for the
algebraic element a, that:

a not a
1 0

1/2 0
0 1
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As a procedural way, a model construction (for the
expression F of the form) is presented.

Procedure of 3-Valued Model Construction:

(a) Assume a pair (I,J) ∈ 2A×2A as an input.

(b) If the part x j
1
∧
. . .

∧
x j

n j ⇒ y j contains not a for a
∈ J in the left side of the implication, then remove
it from the part.

(c) If the part x j
1
∧
. . .

∧
x j

n j ⇒ y j contains not a for
a 6∈ J in the left side of the implication, then
this part is replaced by 1 (the greatest element of
{0,1/2,1}).

(d) Find a model (I′,J′) for the expression obtained
by repeating procedure applications of (b) and (c)
(until no more procedure can be applied).

(e) If (I,J) ⊆ (I′,J′) by pointwise (componentwise),
get (I′,J′) successfully as a return. Otherwise, go
back to the first item (a), or halt in failure.

Proposition 3. If the pair (I′,J′) is successfully got
in the Procedure of Model Construction and I′ ∩ J′ =
/0, then it is a 3-valued model of the given expression.

Proof. Observing the Procedure with a pair (I,J), we
may see that:

(i) By the routine (b), the expression not a (for a∈ J
may be evaluated as 1, such that the part may be
reduced to the (sub)expression without not a.

(ii) By the routine (c), the part may be evaluated as
1, such that the part may be removed from the
scope of the whole meet

∧
j.

(iii) By the routine (d), a model (I′,J′) may be ob-
tained without any element not a in the left side
of any part (with an implication), because the re-
peated routines with (b) or (c) may remove the
forms not a.

(iv) If (I,J) ⊆ (I′,J′) componetwise, any part (with
an implication) within the scope of the whole
meet

∧
j may be settled as 1 by the pair (I′,J′),

since the right side of any such part contains y j

of the form b or not b (for b ∈ A).

6 CONCLUSION

With respect to abstract state machinery, human com-
puter interaction (HCI) is included in the modal mu-
calculus extension of the paper such that

(i) The meanings of formulas as conditions to the
state set may be more complex, but

(ii) The meaning may be clearer on the basis of
Heyting algebra.

This version has got refinements of postfix modal op-
erator from algebraic senses. Model theories are orig-
inally constructed, in case that the postfix modal oper-
ator contains programs based on logical or algebraic
expressions. A semiring structure is viewed from the
point that the models of programs may cause state
transitions in abstract state machine, which is given
by an explicit nondeterminism description expanded
from the way (Yamasaki, 2017).

Some remarks are summarized:

(i) With the version of this paper, which contains
new predicates of awareness, communication
and behavior, an autonomy may be designed in
addition to mu-operator (least fixed point opera-
tor).

(ii) With the autonomy design, we may have a re-
covery system for human to practice.

(iii) A complexity of HCI is now relaxed by the de-
scription of meanings of formulas conditioning
HCI, such that the description of meanings may
be related to Heyting algebra.

(iv) Model theories for programming within postfix
modal operator may be described on the basis of
logical and algebraic methods.

As regards further refinements of this extended
version of modal mu-calculus as a logical framework,

• More complex human computer interaction with
some concept more cognitive, and

• More sophisticated “awareness”

should be examined.

From views of a logical framework, it should be
noted that the modal mu-calculus extension of the pa-
per contains

• the second-order propositions with fixed point op-
erator, and

• the predicates of awareness, communication and
behavior to include formulas as arguments.

As advanced works, we should have references to:

(i) Regarding the second-order (quantified) propo-
sitions, the paper (Goranko and A., 2018) treats
concepts of (in)dependence functions.

(ii) The paper concerned with epistemic and intu-
tionistic logic is to be viewed.

(iii) With respect to quantified variables by means of
quantifies ranging over the set of agents, “dis-
tributed knowledge” is discussed (Naumov and
Tao, 2019).
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(iv) For an extension of propositional modal logic
without quantification, the paper (Fitting, 2002)
introduces relations and terms with scoping
mechanism by lambda abstraction.

(v) Concerning the second-order predicates, the pa-
per (Kooi, 2016) treats the concept of knowing,
which is more complex than the autonomy with
awareness to be designed in this paper.

(vi) As regards epistemic contradictions, the pa-
per (Beddor and Goldstein, 2018) presents the
belief predicate with the credence function of
agents, which is, from the epistemic view, much
more complex than the awareness predicate for
autonomy system of this paper.

With respect to communication technology
(Kowalski and Toni, 1996),

(i) Argumentation was, in terms of non-classical
negation, formulated for lawful affairs, and

(ii) Abstract attack and defense are the argumenta-
tion concepts to have been used rather than com-
munications for recovery processes,

while HCI may be captured in argumentation and de-
bate theories for us to design recovery process of suc-
cess and failure examinations.

From model theoretic views, it is notable that the
argumentation model may be expressed by means of
3-valued logic. The 3-valued model of Heyting alge-
bra expressions discussed in this paper is related to
the semantics for defeasible reasonings able to imple-
ment argumentation (Governatori et al., 2004):

(i) Defeasibility is beforehand assumed in the given
rules, to be more complex, and

(ii) The plain program consisting of rules or Heyting
algebra expressions is simpler in the sense that
propagation of ambiguity (caused by contradic-
tory predicates) must be well reasoned or ruled
out for its blocking.
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