
Ontology-based Automation of Penetration Testing

Ge Chu and Alexei Lisitsa
Department of Computer Science, University of Liverpool, Liverpool, U.K.

Keywords: Automated Penetration Testing, Information Security, Ontology, Protege, SWRL, BDI Agent.

Abstract: Ontology is a widely used knowledge representation formalism in artificial intelligence area in recent years. In
this paper, we propose an ontology-based automated penetration testing approach. We use protege to create the
ontology, which is constructed based on attack taxonomy. SWRL rules are used to create penetration testing
knowledge base and reasoning. We use agent-based(BDI) framework to achieve the process of automated
penetration testing.

1 INTRODUCTION

Penetration testing is a popular method used to eval-
uate system security from the perspective of an at-
tacker. According to PTES (penetration testing ex-
ecution standard) (Nickerson et al., 2014), the pro-
cess of penetration testing includes seven stages:
Pre-Engagement Interaction, Information Gathering,
Threat Modelling, Vulnerability Analysis, Exploita-
tion, Post Exploitation and Reporting. In general, the
success of penetration testing highly relies on the ex-
pertise, technology and experience of the executive
team. With this in mind, it is worth pointing out that
only a minority of people possess knowledge about
penetration testing and the knowledge of penetration
testing is challenging to share and reuse (Shah and
Mehtre, 2015). Due to these reasons, the efficiency of
penetration testing has been adversely affected. Sim-
ilarly, establishing and subsequent-managing of the
knowledge base also poses a challenge in the research
on automated penetration testing.

Ontology (Guarino, 1995) is a concept from the
field of philosophy, which has been widely used for
knowledge representation in the field of artificial in-
telligence in recent years. It can be used to de-
scribe concepts and their relationships in a certain
domain. With the assistance of domain experts, re-
searchers have currently established ontology in many
areas. For example: SENSUS ontology (Knight et al.,
1995) provided a conceptual structure for machine
translation, UMLS ontology (Bodenreider, 2004) is
a medical language systems , CYC ontology (Lenat
and Guha, 1989) is used to establish human common
sense, and an English dictionary is based on cognitive

linguistics Word-Net ontology (Miller, 1995).
Ontology not only allows the domain knowledge

to be shared and reused through formalisation, but it
also has an excellent conceptual hierarchy and sup-
port for logical reasoning. In this paper, we firstly
build a penetration testing ontology according to at-
tack taxonomy and secondly we use SWRL (Horrocks
et al., 2004) which is a semantic web rule language
combining OWL and RuleML, to create a knowledge
base and reasoning in our automated penetration test-
ing approach. Finally, we use the BDI agent structure
(Rao et al., 1995) to implement an automated pene-
tration testing attack process.

The remainder of this paper is organised as fol-
lows: Section 2 presents related work regarding on-
tology in the information security field. Section 3
outlines our proposed ontology-based on attack tax-
onomy. Section 4 concerns the knowledge base by
SWRL and reasoning. Section 5 describes the process
of automated penetration testing using a BDI agent
structure. Section 6 illustrates a case study of an at-
tack scenario. Finally, we summarise this paper in
section 7.

2 RELATED WORK

There have been some research investigating tax-
onomy and ontology in the security field and re-
lated to automated penetration testing. Pinkstion et
al.(Pinkston et al., 2004) produced an ontology spec-
ifying a model of computer attacks, based on over
4,000 classes of computer attacks for intrusion detec-
tion. It is categorized according to the system compo-

Chu, G. and Lisitsa, A.
Ontology-based Automation of Penetration Testing.
DOI: 10.5220/0009171007130720
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 713-720
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

713



nent targeted, means of attack, a consequence of the
attack and location of the attacker.

Similarly, Herzog et al.(Herzog et al., 2007) put
forward an ontology of information security which
models assets, threats, vulnerabilities, countermea-
sures and their relations. This ontology covered gen-
eral knowledge and can be used as the vocabulary,
roadmap, and an extensible dictionary of the domain
of information security.

In addition to the ontology built for attack or infor-
mation security concepts, some ontologies have been
based on vulnerabilities. For example, Wang et al.
(Wang and Guo, 2009) built an ontology for vulnera-
bility management (OVM), and it has been populated
with all vulnerabilities in NVD such as CVE, CWE,
CVSS, CAPEC and the relationships among them.

In order to evaluate the security of a system,
(Stepanova et al., 2015) proposed a novel penetration
testing ontology to achieve semi-automatic knowl-
edge extraction from vast amounts of data, which
would yield a holistic view on security analysis. (Gao
et al., 2013) proposed a taxonomy which consists of
five dimensions including attack impact, attack vec-
tor, attack target, vulnerability and defence. They also
provided an ontology-based model to assess the secu-
rity of the system from an attacker’s of view.

Most other research models the penetration test-
ing as a planning problem expressed in terms of an
attack tree (Ning et al., 2008), attack graph (Kotenko
and Doynikova, 2014) or other forms of planning such
as PDDL (Planning Domain Definition Language)
(Obes et al., 2013).The major problem with this ap-
proach is that it is computationally expensive, and
this approach faces challenges in decision-making
environments where an agent must plan and act in
real-time (Bordini et al., 2007). Some research at-
tempted to achieve automated penetration testing by
using Markov Decision Processes (MDP) or Partially
Observable Markov Decision Processes (POMDP).
However, scalability has been reported in (Sarraute
et al., 2013) as a primary issue limiting applications
of POMDP. To solve these problems, (Moga et al.,
2015) presented two patterns of massive type attacks
applicable in cyberspace using BDI (belief-desire-
intention) agents. Furthermore, (Chu and Lisitsa,
2018) proposed an automated penetration testing ap-
proach based on BDI agents model.

Our approach is based on these previous research
and builds an ontology from the perspective of pen-
etration testing in practice. Our approach also has
the reasoning ability to achieve automation using BDI
agent-based architecture.

3 ONTOLOGY DESIGN

An ontology is a formal, explicit specification of a
shared conceptualisation (Studer et al., 1998). The
main components of ontology are classes, relations,
functions, axioms and instances. We can build ontol-
ogy based on taxonomy in the domain.

3.1 Taxonomy for Penetration Testing

Based on taxonomies of attack in previous work and
ATT&CK knowledge base (Strom et al., 2018), we
establish an attack taxonomy from the perspective of
penetration testing. By penetration testing in practice
(Broad and Bindner, 2013), we summarise the attacks
into the following categories: information gathering
attack, configuration attack, buffer overflow attack,
password attack, web attack, sniffer attack, social en-
gineering attack, and denial of service attack.

3.1.1 Information Gathering Attack

Information gathering is the most critical step in pen-
etration testing. Typically, we need to collect infor-
mation about the target including IP address, opened
port, application information, OS information, human
or organisation information, network information, de-
fence mechanism, configuration information, vulner-
ability information, physical environment informa-
tion and so on. The collection of the above informa-
tion determines whether the penetration test is suc-
cessful or not.

3.1.2 Configuration Attack

Such attacks are usually based on an administrator’s
misconfiguration of the system. For example, the
robot.txt file usually exposes the structure informa-
tion of the website, or the directory that allows users
to upload files has executable permission so that at-
tackers can upload a malicious file and execute it.

3.1.3 Buffer Overflow Attack

A buffer overflow is a typical software coding mis-
take that an attacker could exploit to gain access to the
target system. When a program, while writing data
to a buffer, overruns the buffer’s boundary and over-
writes adjacent memory locations. It allows attackers
to change the program flow and execute their com-
mands or programs. Buffer overflow is a widespread
and very dangerous vulnerability, which widely ap-
pears in various operating systems and application
software. It is a famous attack in penetration testing.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

714



3.1.4 Password Attack

Password attack is an essential part of penetration
testing. Usually, an attacker can gain some specific
permission from the target system if a password at-
tack is successful. The most commonly used pass-
word attack is based on a dictionary, which consists
of all possible passwords.

3.1.5 Web Attack

WEB attack is an attack against web applications.
The most common attacks include Injection, Cross-
Site Scripting (XSS) and Cross-Site Request Forgery
(CSRF). The Open Web Application Security Project
(OWASP) (Pandya and Patel, 2016) publishes the
TOP 10 vulnerabilities every year to raise awareness
amongst developers and managers, which becomes
the application security standard. However, these vul-
nerabilities tend to be exploited by attackers.

3.1.6 Sniffer Attack

If there is no vulnerability or the target system is well-
protected, a human experienced penetration tester
would typically attempt to perform a sniffer attack.
Firstly, they break into other systems which are un-
der the same sub-network as the original target, and
the tester can monitor and analyse all network flow to
gain sensitive information such as a password.

3.1.7 Social Engineer Attack

Social engineer attacks are against humans, such as
administrators who have weak security awareness.
Social engineering is the term used for a broad range
of malicious activities accomplished through human
interactions. In remote penetration testing, usually
perform Spear-Phishing Attack by email or link, Web-
site forge Attack or Spoofing Attack.

3.1.8 Denial of Service Attack

A denial-of-service (DoS) is an attack where the at-
tackers (hackers) attempt to prevent legitimate users
from accessing the service. In a DoS attack, the at-
tacker usually sends excessive data flow to the net-
work or server to exhaust target resources. In pene-
tration testing, a DoS attack is not typical and usu-
ally leads to the reboot of the target system for some
purposes. These kinds of attacks include SYN flood,
TCP/UDP attack, SMTP attack, ICMP attack, and so
on. If the attack source comes from a different device,
we call it a distributed denial-of-service attack(DDoS
attack).

3.2 Our Ontology

According to our proposed taxonomy above, we build
an ontology for penetration testing by Protege (Musen
et al., 2015) which is a widely-used open-source on-
tology editor and a knowledge management system.
Classes describe concepts in a domain. Object prop-
erties represent the relations between instances, data
properties represent a property of the instance, restric-
tions represent axioms, and individuals represent in-
stances of a class. Figure 1 illustrates our ontology
for penetration testing.

In the ontology, we build attackers, targets and at-
tack methods classes as top level concepts. Attackers
class includes a set of attacker instances, such as at-
tacker1.

The targets class includes a set of target instances,
and for the presentation purposes we create target1
and target2. These target instances are described by
data properties such as IP address, port, OS, applica-
tion , configuration , vulnerability and current permis-
sion. Due to the limited space in this paper, we only
present two target instances and indicate their same
subnet relation. Through the ontology, we can easily
understand the network topology of the target.

The attack methods class consists of multiple lev-
els of attack methods, based on our proposed pene-
tration testing taxonomy, such as buffer overflow at-
tack or password attack. Under the class of the at-
tack method, the specific attack actions are defined as
instances which include data properties such as ac-
tion, precondition and postcondition. Similarly, due
to the limited space in this paper, we only present
one instance which indicates to perform a buffer over-
flow attack with CVE number MS08-067. Property
characteristics and descriptions are used to represent
axioms and restrictions in our ontology. For exam-
ple, the object property isSameSubnet is transitive
and symmetric. That is, if target1 and target2 are in
the same subnet, target2 and target3 are in the same
subnet. Then we can know that target1 and target3
are also in the same subnet. This knowledge usually
comes from insights gained during penetration test-
ing.

To describe the relations between instances, we
define five object properties below:

• hasPermission: represents the attacker has spe-
cific current permission in a target.

• isConnected: represents the attacker instance can
be connected to target instance.

• isNotConnected represents the attacker instance
cannot be connected to target instance.

Ontology-based Automation of Penetration Testing

715



Figure 1: Ontology for penetration testing.

• isSameSubnet: represents the target instances
which in the same subnet.

• exploitBy: represents attacker can perform spe-
cific attack.

All attack methods are pre-defined and extensible in
our ontology; in other words, the ontology will con-
tinue to expand.

4 SWRL AND REASONING

After creating the ontology for penetration testing, we
add SWRL rules to implement the inference func-
tion. SWRL is regarded not only as a combination
of rules and ontology but also as being able to use
relationships and vocabulary in an ontology directly.
SWRL rules include two parts, body part and head
part, which represent precondition and postcondition.
The body and head consist of a set of atoms. Infor-
mally, a rule can be read as meaning that if the body
part is true, then the head part must also be true.

SWRL rules are used to determine the attack ac-
tions when certain preconditions are satisfied as well
as obtain new knowledge. Therefore, the SWRL rule
base is a vital part of making decisions in the automa-
tion of penetration testing. We take the buffer over-
flow vulnerability MS08-067 as an example:

Rule1:
attacker(?attacker)

∧
isConnected(?attacker, target1)∧

vulnerability(target1,”MS08-067”)
→ exploitBy(?attacker,MS08-067)

Rule1 presents the process of an attack on vulnerabil-
ity MS08-067: when the attacker can connect to the
target2, and it has MS08-067 vulnerability, it then per-
forms the actions of an MS08-067 attack. After rea-
soning by Inference Engine in Protege, a new relation
occurs between the attacker instance and the MS08-
067 instance, which is represented by object property
exploitBy. Figure 2 shows how the attacker1 will per-
form the MS08-067 attack.

Figure 2: Example for SWRL rule-based reasoning.

SWRL rules can not only make a decision but are
also able to produce new knowledge. For example,
ontology can discover potential attack paths through a
combination of SWRL rules, property characteristics
and descriptions. The rule2 presents a penetration
testing scenario into the internal network. That is, if
the attacker can connect to target2 and successfully
gains root permission, then target2 becomes an
internal attacker. In this way, we can get the path to
reach its final target.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

716



Rule2:
attacker(?attacker)

∧
isConnected(?attacker, target2)∧

exploitBy(?attacker, target2)
∧

currentPermission(target2,”root”)
→ attacker(target2)

5 AUTOMATION

Based on our ontology and SWRL rules, we make use
of the BDI agent framework to achieve the process
of automated penetration testing. In general, ontol-
ogy is used to store knowledge of targets and attacks,
while the BDI agent is used to perform specific attack
actions. Owlready2 (Lamy, 2017) is a module for
ontology-oriented programming in Python, which is
used to interact between ontology and the BDI agent
by performing actions such as load, query, create, up-
date classes, instances, properties and perform rea-
soning. In addition, BDIPython is used to implement
the BDI mechanism, which is a Python library used
to support BDI-style Programming (Bremner et al.,
2019). Our approach includes two knowledge bases,
which SWRL rules and BDI plans. The SWRL rules
are used to make decisions about an attack by in-
ference in ontology, while plans are used to perform
multiple steps of attack in the BDI agent. In fact, only
the result of an attack will be updated to the ontology
rather than the information generated by the interme-
diate process of an attack. The advantage of using
an SWRL-based ontology knowledge base is that the
agent can infer new knowledge rather than relying on
pre-defined plans.

5.1 BDI Agent-based Interaction

The BDI agent is one of the classical models of cog-
nitive architecture, which include three essential logic
components: belief, desire and intention. The BDI
agent is defined as a tuple <Ag, B, D, I, P>,where:

• Ag: is an agent name.

• B: is a belief set which represents the informa-
tional state of the agent. Usually, they refer to
environmental information.

• D is a desire set which represents the motivational
state of the agent. They represent objectives or
situations that the agent would like to accomplish
or bring about.

• I: is an intention set which represents the deliber-
ative state of the agent. They show what the agent
has chosen to do.

• P: is a plan set which consists of available actions.
Plans may include other plans that an agent can
perform to achieve one or more of its intentions.

The structure of a plan is shown below:
Trigger Event: context <- body.

The interaction between the BDI agent and the ontol-
ogy can be illustrated by the following pseudocode.
In this example, we first call a Nmap port scanner as a
function to get port information from the target. Sec-
ondly, the updateontology function assigns the result
of the port scan into the ontology and performs rea-
soning to obtain new knowledge. Finally, the sshat-
tack function updates the result of ssh attack into the
ontology data property if there is an exploitBy relation
between the instance of the attacker and sshAttack.

Algorithm 1: Interaction between agent and ontology.

1: function PORTSCAN(ip)
2: result← Nmap(ip)
3: return result
4: end function
5: function UPDATEONTOLOGY(portscan)
6: onto← ontology.load
7: onto.target1.port← portscan
8: syncReasoner
9: end function

10: function SSHATTACK(ip, port)
11: if onto.attacker.exploitBy = onto.sshAttack

then
12: result← sshAttackRule(ip, port)
13: end if
14: onto.target1.ssh← result
15: end function

5.2 Automation Process

(Chu and Lisitsa, 2018) proposed an approach for the
automation of penetration testing based on the BDI
agent. They proposed using a belief set and plan
set to store target information and penetration test-
ing knowledge, respectively. Our approach is based
on their BDI agent framework. However, the differ-
ence is that target information, and penetration test-
ing knowledge is stored in the ontology. In our ap-
proach, target information is stored as instances un-
der target classes with data properties such as IP ad-
dress, port, OS, application, configuration, vulnera-
bility and current permission. The object property is-
SameSubnet represents the relation between targets.
From the prospects of attackers, attack actions are
stored as instances under the attacker methods class
with data properties such as action, precondition and
post-condition. SWRL rules are used to determine the

Ontology-based Automation of Penetration Testing

717



attack actions and their preference according to target
information, in the meantime, updating the informa-
tion or relations in the ontology. After the ontology
determines the specific attack action, the BDI plan
will perform the attack. At this point, the belief set in
the BDI agent is used to store new information gen-
erated during the attack. Finally, the ontology will be
updated, including the object property exploitBy and
the data property current property after the attack is
finished in the BDI agent by Owlready2. The process
of our ontology-based automation of penetration test-
ing is presented in Figure 3:

Figure 3: Process of automation of penetration testing.

6 ATTACK SCENARIO

To validate our approach, we present an attack sce-
nario in a virtual environment. Our demo runs on the
Kali Linux virtual machine, while the target runs on a
WindowsXPSP3 virtual machine. We use Metasploit,
a popular penetration testing framework (Kennedy
et al., 2011) as the attack action space. In BDIPython,
we use functions to define attack actions and plan
rules to active the BDI reasoning cycle. The target
information is shown below :

- Ip address: 192.168.1.162
- Ports: 135, 139, 445, 3389
- Operating system: WindowsXP SP3
- Vulnerabilities: MS08067,Weak password
- Current permission: None

In our demo, we pre-define MS08-067 buffer over-
flow attack and ssh password attack. We can see from

Figure 4: firstly, after we input the target IP address
and the attacker’s IP address, our demo start to probe
the target port.

Figure 4: Probe target’s port.

Then, according to the port results, there is no ssh
port running on the target. Thus, our demo performs
MS08-067 attack.

Figure 5: MS08-067 attack.

Figure 6: System permission.

Finally, the MS08-067 attack is successful (see
Figure 5), and we obtain the highest permission in the
target system. Figure 6 shows a connection has been
created between the attacker and target machine with
system privilege through 4444 port.

We can see the update of data properties in target1
instance and the relation between attacker instance
and MS08-067 instance in our ontology(see Figure
7). In target1 data properties, current permission is
changed to system.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

718



Figure 7: Properties update in ontology.

7 CONCLUSION

In this paper, we proposed an ontology-based auto-
mated penetration testing approach. According to
our proposed penetration testing attack taxonomy, we
built an ontology by Protege. To help make decisions
and produce new knowledge, we make use of SWRL
rules to create a penetration testing knowledge base
as well as to achieve reasoning functions. Finally, we
use agent-based(BDI) framework and Owlready2 to
achieve the process of automated penetration testing.
To validate our approach, we used BDIPython library
to implement an attack scenario in a virtual environ-
ment. The ontology and BDI agent are extendable,
while we are going to find ways to extend it automat-
ically in the future.

REFERENCES

Bodenreider, O. (2004). The unified medical language sys-
tem (umls): integrating biomedical terminology. Nu-
cleic acids research, 32(suppl 1):D267–D270.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).
Programming multi-agent systems in AgentSpeak us-
ing Jason, volume 8. John Wiley & Sons.

Bremner, P., Dennis, L. A., Fisher, M., and Winfield, A. F.
(2019). On proactive, transparent, and verifiable eth-
ical reasoning for robots. Proceedings of the IEEE,
107(3):541–561.

Broad, J. and Bindner, A. (2013). Hacking with Kali: prac-
tical penetration testing techniques. Newnes.

Chu, G. and Lisitsa, A. (2018). Poster: Agent-based (bdi)
modeling for automation of penetration testing. In
2018 16th Annual Conference on Privacy, Security
and Trust (PST), pages 1–2. IEEE.

Gao, J.-b., Zhang, B.-w., Chen, X.-h., and Luo, Z. (2013).
Ontology-based model of network and computer at-
tacks for security assessment. Journal of Shanghai
Jiaotong University (Science), 18(5):554–562.

Guarino, N. (1995). Formal ontology, conceptual analysis
and knowledge representation. International journal
of human-computer studies, 43(5-6):625–640.

Herzog, A., Shahmehri, N., and Duma, C. (2007). An ontol-
ogy of information security. International Journal of
Information Security and Privacy (IJISP), 1(4):1–23.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., Dean, M., et al. (2004). Swrl: A semantic
web rule language combining owl and ruleml. W3C
Member submission, 21(79):1–31.

Kennedy, D., O’gorman, J., Kearns, D., and Aharoni, M.
(2011). Metasploit: the penetration tester’s guide. No
Starch Press.

Knight, K., Chander, I., Haines, M., Hatzivassiloglou, V.,
Hovy, E., Iida, M., Luk, S. K., Whitney, R., and Ya-
mada, K. (1995). Filling knowledge gaps in a broad-
coverage machine translation system. arXiv preprint
cmp-lg/9506009.

Kotenko, I. and Doynikova, E. (2014). Security assess-
ment of computer networks based on attack graphs
and security events. In Information and Communica-
tion Technology-EurAsia Conference, pages 462–471.
Springer.

Lamy, J.-B. (2017). Owlready: Ontology-oriented pro-
gramming in python with automatic classification and
high level constructs for biomedical ontologies. Arti-
ficial intelligence in medicine, 80:11–28.

Lenat, D. B. and Guha, R. V. (1989). Building large
knowledge-based systems; representation and infer-
ence in the Cyc project. Addison-Wesley Longman
Publishing Co., Inc.

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.

Moga, H., Boscoianu, M., Ungureanu, D., Lile, R., and
Erginoz, N. (2015). Massive cyber-attacks patterns
implemented with bdi agents. In Applied Mechan-
ics and Materials, volume 811, pages 383–389. Trans
Tech Publ.

Musen, M. A. et al. (2015). The protégé project: a look
back and a look forward. AI matters, 1(4):4.

Nickerson, C., Kennedy, D., Smith, E., Rabie, A., Friedli,
S., Searle, J., Knight, B., Gates, C., and McCray, J.
(2014). Penetration testing execution standard.

Ning, Z., Xin-yuan, C., Yong-fu, Z., and Si-yuan, X.
(2008). Design and application of penetration at-
tack tree model oriented to attack resistance test. In
2008 International Conference on Computer Science
and Software Engineering, volume 3, pages 622–626.
IEEE.

Obes, J. L., Sarraute, C., and Richarte, G. (2013). At-
tack planning in the real world. arXiv preprint
arXiv:1306.4044.

Pandya, D. and Patel, N. (2016). Owasp top 10 vulnerability
analyses in government websites. International Jour-
nal of Enterprise Computing and Business Systems,
6(1).

Pinkston, J., Undercoffer, J., Joshi, A., and Finin, T. (2004).
A target-centric ontology for intrusion detection. In
In proceeding of the IJCAI-03 Workshop on Ontolo-
gies and Distributed Systems. Acapulco, August 9 th.
Citeseer.

Ontology-based Automation of Penetration Testing

719



Rao, A. S., Georgeff, M. P., et al. (1995). Bdi agents: from
theory to practice. In ICMAS, volume 95, pages 312–
319.

Sarraute, C., Buffet, O., and Hoffmann, J. (2013). Pen-
etration testing== pomdp solving? arXiv preprint
arXiv:1306.4714.

Shah, S. and Mehtre, B. M. (2015). An overview of
vulnerability assessment and penetration testing tech-
niques. Journal of Computer Virology and Hacking
Techniques, 11(1):27–49.

Stepanova, T., Pechenkin, A., and Lavrova, D. (2015).
Ontology-based big data approach to automated pene-
tration testing of large-scale heterogeneous systems.
In Proceedings of the 8th International Conference
on Security of Information and Networks, pages 142–
149. ACM.

Strom, B. E., Applebaum, A., Miller, D. P., Nickels, K. C.,
Pennington, A. G., and Thomas, C. B. (2018). Mitre
att&ck: Design and philosophy. MITRE Product MP,
pages 18–0944.

Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowl-
edge engineering: principles and methods. Data &
knowledge engineering, 25(1-2):161–197.

Wang, J. A. and Guo, M. (2009). Ovm: an ontology for
vulnerability management. In Proceedings of the 5th
Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Informa-
tion Intelligence Challenges and Strategies, page 34.
ACM.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

720


