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Abstract: The paper describes a deep neural network-based detector dedicated for ball and players detection in high reso-
lution, long shot, video recordings of soccer matches. The detector, dubbed FootAndBall, has an efficient fully
convolutional architecture and can operate on input video stream with an arbitrary resolution. It produces ball
confidence map encoding the position of the detected ball, player confidence map and player bounding boxes
tensor encoding players’ positions and bounding boxes. The network uses Feature Pyramid Network desing
pattern, where lower level features with higher spatial resolution are combined with higher level features with
bigger receptive field. This improves discriminability of small objects (the ball) as larger visual context around
the object of interest is taken into account for the classification. Due to its specialized design, the network has
two orders of magnitude less parameters than a generic deep neural network-based object detector, such as
SSD or YOLO. This allows real-time processing of high resolution input video stream.

1 INTRODUCTION

Accurate and efficient ball and player detection is
a key element of any solution intended to automate
analysis of video recordings of soccer games. The
method proposed in this paper allows effective and ef-
ficient ball and player detection in long shot, high def-
inition, video recordings. It’s intended as a key com-
ponent of the computer system developed for football
academies and clubs to automate analysis of soccer
video recordings.

Detecting the ball from long-shot video footage
of a soccer game is a challenging problem. (Ko-
morowski et al., 2019) lists the following factors that
make the problem of ball localization difficult. First,
the ball is very small compared to other objects visi-
ble in the observer scene. Its size varies significantly
depending on the position. In long shot recordings
of soccer games, the ball can appear as small as 8
pixels, when it’s on the far side of the pitch, oppo-
site from the camera; and as big as 20 pixels, when
it’s on the near side of the field. At such small size,
the ball can appear indistinguishable from parts of the
players body (e.g. head or white socks) or the back-
ground clutter, such as small litter on the pitch or parts
of stadium advertisements. The shape of the ball can
vary. When it’s kicked and moves at high velocity,
it becomes blurry and elliptical rather then circular.
Perceived colour changes due to shadows and light-

Figure 1: Exemplary patches illustrating difficulty of the
ball and players detection task. Images of the ball exhibit
high variance due to motion blur or can be occluded by a
player. Players can be in a close contact and occluded.

ing variation. Situations when the ball is in player’s
possession or partially occluded are especially diffi-
cult. Simple ball detection methods based on motion-
based background subtraction fail in such cases. Top
row of Fig. 1 shows exemplary image patches illus-
trating variance in the ball appearance and difficulty
of the ball detection task.

Players are larger than a ball and usually easier
to detect. But it some situations their detection can
be problematic. Players are sometimes in close con-
tact with each other and partially occluded. They can
have unusual pose due to stumbling and falling on the
pitch. See bottom row of Fig. 1 for exemplary images
showing difficulty of the player detection task.

In this paper we present a ball and players detec-
tion method inspired by recent progress in deep neural
network-based object detection methods. Our method
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operates on a single video frame and is intended as
the first stage in the soccer video analysis pipeline.
The detection network is designed with performance
in mind to allow efficient processing of high definition
video. Compared to the generic deep neural-network
based object detector it has two orders of magnitude
less parameters (e.g. 120 thousand parameters in our
model versus 24 million parameters in SSD300 (Liu
et al., 2016)). Evaluation results in Section 4 prove
that our method can efficiently process high definition
video input in a real time. It achieves 37 frames per
second throughput for high resolution (1920x1080)
videos using low-end GeForce GTX 1060 GPU. In
contrast, Faster-RCNN (Ren et al., 2015) generic ob-
ject detector runs with only 8 FPS on the same ma-
chine.

2 RELATED WORK

The first step in traditional ball or player detec-
tion methods, is usually the background subtraction.
The most commonly used background subtraction ap-
proaches are based on chromatic features (Gong et al.,
1995; Yoon et al., 2002) or motion-based techniques
such as background subtraction (D’Orazio et al.,
2002; Mazzeo et al., 2012). Segmentation methods
based on chromatic features use domain knowledge
about the visible scene: football pitch is mostly green
and the ball mostly white. The colour of the pitch
is usually modelled using a Gaussian Mixture Model
and hardcoded in the system or learned. When the
video comes from the static camera, motion-based
segmentation is often used. For computational perfor-
mance reasons, a simple approach is usually applied
based on an absolute difference between consecutive
frames or the difference between the current frame
and the mean or median image obtained from a few
previously processed frames (Higham et al., 2016).

Traditional ball detection methods often use
heuristic criteria based on chromatic or morphologi-
cal features of connected components obtained from
background segmentation process. These criteria in-
clude blob size, colour and shape (circularity, eccen-
tricity). Variants of Circle Hough Transform, modi-
fied to detect elliptical rather than circular objects, are
used to verify if a blob contains the ball (D’Orazio
et al., 2002; Poppe et al., 2010; Halbinger and Met-
zler, 2015). To achieve real-time performance and
high detection accuracy, a two-stage approach may be
employed (D’Orazio et al., 2002). First, regions that
probably contain the ball are found (ball candidates
extraction), then candidates are validated (ball candi-
date validation).

Ball detection methods using morphological fea-
tures to analyze shape of blobs produced by back-
ground segmentation, fail if a ball is touching a player.
See three rightmost examples in the top row of Fig. 1
for situations where these methods are likely to fail.

Earlier player detection methods are based on
connected component analysis (Yoon et al., 2002;
D’Orazio et al., 2007) or use techniques such as
variants of Viola and Jones detector with Haar fea-
tures (Lehuger et al., 2007; Liu et al., 2009). (Lehuger
et al., 2007) present a football player detection
method based on convolutional neural networks. The
network has relatively shallow architecture and pro-
duces feature maps indicating probable player posi-
tions. (Maćkowiak et al., 2010) uses a combination of
Histogram of Oriented Gradients (HOG) and Support
Vector Machines (SVM) for player detection. First
background segmentation, using a domain football
pitch colour, is performed. HOG descriptors are clas-
sified by linear SVM algorithm trained on player tem-
plate database.

(Lu et al., 2013) uses Deformable Part Model
(DPM) (Felzenszwalb et al., 2013) to detect sport
players in video frames. The DPM consists of 6 parts
and 3 aspect ratios. The weakness of this method is
that it may fail to detect partially occluded players due
to non-maximum suppression operator applied after
detection.

A comprehensive review of player detection and
tracking methods in (Manafifard et al., 2017) lists the
following weaknesses present in reviewed algorithms.
One of the most frequent is the problem with cor-
rectly detecting partially occluded players. Motion-
based techniques using background subtraction fail if
a player is standing still or moving very slowly for
a prolonged time. Discrimination of players wear-
ing white jerseys from the pitch white lines can be
challenging using colour cues. Pixel-based player de-
tection methods often fragment player into multiple
separated regions (e.g. parts of legs) due to varia-
tions in the colour of legs, jerseys, shorts and socks.
Template-based detectors have problems with han-
dling occlusions or situations when a players has an
unusual pose (e.g. due to stumbling and falling on
the pitch). See bottom row of Fig. 1 for exemplary
difficult situations for the player detection task.

In recent years a spectacular progress was made
in the area of neural-network based object detection
methods. Deep neural-network based YOLO detec-
tor (Redmon et al., 2016) achieves 63% mean Aver-
age Precision (mAP) on PASCAL VOC 2007 dataset,
whereas traditional Deformable Parts Models (DPM)
detector (Felzenszwalb et al., 2010) scores only 30%.
Current state-of-the-art object detectors can be cate-
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gorized as one-stage or two-stage. In two-stage de-
tector, such as: Fast R-CNN (Girshick, 2015a) or
Faster R-CNN (Ren et al., 2015), the first stage gen-
erates a sparse set of candidate object locations (re-
gion proposals). The second stage uses deep convo-
lutional neural network to classify each candidate lo-
cation as one of the foreground classes or as a back-
ground. One-stage detectors, SSD (Liu et al., 2016)
or YOLO (Redmon et al., 2016), do not include a
separate region-proposal generation step. A single
detector based on deep convolutional neural network
is applied instead. However general-purpose neu-
ral network-based object detectors are relatively large
scale networks with tens of millions of trainable pa-
rameters (e.g. 24 million parameters in SSD300 (Liu
et al., 2016) detector). Another drawback is their lim-
ited performance on on small object detection. Au-
thors of SSD method report significant drop of perfor-
mance when detecting small objects. On COCOtest-
dev2015 dataset average precision drops from 41.9%
for large object to only 9.0% for small objects. This
restricts usage of generic object detectors to recognize
small objects, such as the ball.

Following the successful applications of convolu-
tional neural networks to solve many computer vision
problems, a few neural network-based ball and player
detection methods were recently proposed.

(Speck et al., 2017) uses convolutional neural net-
works (CNN) to localize the ball under varying en-
vironmental conditions. The first part of the network
consists of multiple convolution and max-pooling lay-
ers which are trained on the standard object classifi-
cation task. The output of this part is processed by
fully connected layers regressing the ball location as
probability distribution along x- and y-axis. The net-
work is trained on a large dataset of images with an-
notated ground truth ball position. The limitation of
this method is that it fails if more than one ball, or ob-
ject very similar to the ball, is present in the image.
(Reno et al., 2018) presents a deep neural network
classifier, consisting of convolutional feature extrac-
tion layers followed by fully connected classification
layer. It is trained to classify small, rectangular im-
age patches as ball or no-ball. The classifier is used
in a sliding window manner to generate a probabil-
ity map of the ball occurrence. The method has two
drawbacks. First, the set of negative training exam-
ples (patches without the ball) must be carefully cho-
sen to include sufficiently hard examples. Also the
rectangular patch size must be manually selected to
take into account all the possible ways the ball ap-
pears on the scene: big or small due to the perspec-
tive, sharp or blurred due to its speed. The method
is also not optimal from the performance perspective.

Each rectangular image patch is separately processed
by the neural network using a sliding-window ap-
proach. Then, individual results are combined to pro-
duce a final ball probability map. (Gabel et al., 2018)
uses off-the-shelf deep neural network-based classi-
fier architectures (AlexNet and Inception) fine tuned
to detect the ball in rectangular patches cropped from
the input image. Authors reported 99% ball detec-
tion accuracy on the custom dataset from RoboCup
competition. However, their dataset contains much
closer, zoomed, views of the pitch, with the ball size
considerably larger than in a long shot videos used
as an input to our method. Also off-the-shelf archi-
tectures, such as Inception, are powerful but require
much more computational resources for training and
inference . (Kamble et al., 2019) describes deep learn-
ing approach for 2D ball and player detection and
tracking in soccer videos. First, median filtering-
based background subtraction is used to detect mov-
ing objects. Then, extracted patches are classified into
three categories: ball, player and background using
VGG-based classifier. Such approach fails if ball is
touching or partially occluded by the player. (Şah and
Direkoğlu, 2018) uses a similar approach for player
detection, where fixed-size images patches are ex-
tracted from an input image using a sliding window
approach. The patches are initially filtered using hand
crafted rules and then fed into a classification CNN
with a relatively shallow, feed forward architecture.

In contract to above patch-based methods, our
solution requires a single pass of an entire image
through the network. It can be efficiently imple-
mented using modern deep learning frameworks and
use the full capabilities of GPUs hardware. It does not
require extraction, resizing and processing of multiple
separate patches.

(Lu et al., 2017) presents a cascaded convolutional
neural network (CNN) for player detection. The net-
work is lightweight and thanks to cascaded architec-
ture the inference is efficient. The training consists
of two phases: branch-level training and whole net-
work training and cascade thresholds are found using
the grid search. Our method is end-to-end trainable in
a single phase and requires less hyper-parameters as
multiple cascade thresholds are not needed. Training
is also more efficient as our network processes entire
images in a single pass, without the need to extract
multiple patches.

(Zhang et al., 2018) is a player detection method
based on SSD (Liu et al., 2016) object detector. Au-
thors highlight the importance of integrating low level
and high level (semantic) features to improve detec-
tion accuracy. To this end, they introduce reverse con-
nected modules which integrate features derived from
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multiple layers into multi-scale features. In princi-
ple, the presented design modification is similar to
Feature Pyramid Network (Lin et al., 2017) concept,
where higher level, semantically richer features are
integrated with lower level features.

DeepBall (Komorowski et al., 2019) method is an
efficient ball detection method based on fully convo-
lutional architecture. It takes an input image and pro-
duces a ball confidence map indicating the most prob-
able ball locations.

The method presented in this paper proposes a
unified solution to efficiently detect both players and
the ball in input images. It’s architectured to effec-
tively detect objects of different scales such as the ball
and players by using Feature Pyramid Network (Lin
et al., 2017) design pattern.

3 PLAYER AND BALL
DETECTION METHOD

The method presented in this paper, dubbed FootAnd-
Ball, is inspired by recent developments of neu-
ral network-based generic object detectors, such as
SSD (Liu et al., 2016) and DeepBall (Komorowski
et al., 2019) ball detection method. Typical archi-
tecture of a single-stage, neural network-based, ob-
ject detector is modified, to make it more appropri-
ate for player and ball detection in long shot soccer
videos. Modifications aim at improving the process-
ing frame rate by reducing the complexity of the un-
derlying feature extraction network. For comparison,
SSD300 (Liu et al., 2016) model has about 24 million
parameters, while our model only 199 thousand, more
than 200 times less Multiple anchor boxes, with dif-
ferent sizes and aspect ratios, are not needed as we de-
tect objects from two classes with a limited shape and
size variance. The feature extraction network is archi-
tectured to improve detection accuracy of object with
different scales: small objects such as the ball and
larger players. It’s achieved by using Feature Pyramid
Network (Lin et al., 2017) design pattern which effi-
ciently combines higher resolution, low level feature
maps with lower resolution maps encoding higher-
level features and having larger receptive field. This
allows both precise ball localization and improved de-
tection accuracy in difficult situations as larger visual
context allows differentiating the ball from parts of
player body and background clutter (e.g. parts of sta-
dium advertisement).

Generic single-shot object detection methods usu-
ally divide an image into the relatively coarse size grid
(e.g. 7x7 grid in YOLO (Redmon et al., 2016)) and
detect no more than one object of interest with par-

ticular aspect ratio in each grid cell. This prevents
correct detections when two objects, such as play-
ers, are close to each other. Our methods uses denser
grids. For input image of 1920x1080 pixels we use
480x270 grid (input image size scaled down by 4)
for ball detection and 120x68 grid (input image size
scaled down by 16) for player detection. This allows
detecting two near players as two separate objects.

Our method takes an input video frame and pro-
duces three outputs: ball confidence map encoding
probability of ball presence at each grid cell, player
confidence map encoding probability of player pres-
ence at each grid cell and player bounding box ten-
sor encoding coordinates of a player bounding box at
each cell of the player confidence map. See Fig. 4 for
visualization of network outputs.

For the input image with w×h resolution, the size
of the output ball confidence map is w/kB × h/kB,
where kB is the scaling factor (kB = 4 in our im-
plementation). Position in the ball confidence map
with coordinates (i, j) corresponds to the position
(bkB(i− 0.5)c,bkB( j− 0.5)c in the input image. The
ball is located by finding the location in the ball confi-
dence map with the highest confidence. If the highest
confidence is lower than a threshold ΘB, no balls are
detected. This can happen when a ball is occluded by
a player or outside the pitch. The pixel coordinates of
the ball in the input frame are computed using the fol-
lowing formula: (x,y) = (bkB(i−0.5)c,bkB( j−0.5)c,
where (i, j) are coordinates in the ball confidence
map.

The size of the player confidence map is w/kP×
h/kP, where kP is the scaling factor (kP = 16 in our
implementation). The size of the player bounding
box tensor is w/kP× h/kP× 4. The tensor encodes
four bounding box coordinates for each location in
the player confidence map where the player is de-
tected. Position in the player confidence map with
coordinates (i, j) corresponds to the position (bkP(i−
0.5)c,bkP( j− 0.5)c in the input image. Player po-
sitions are found by first finding finding local max-
ima in the player confidence map with the confidence
above the threshold ΘP. This is achieved by applying
non maximum suppression to the player confidence
map and taking all locations with the confidence
above the threshold ΘP. Let P = {(i, j)} be the set
of such local maxima. For each identified player lo-
cation (i, j) in the player confidence map, we retrieve
bounding box coordinates from the bounding box ten-
sor. Similar to SSD (Liu et al., 2016), player bounding
boxes are encoded as (xbbox,ybbox,wbbox,hbbox) ∈ R4

vectors, where (xbbox,ybbox) is a relative position of
the centre of the bounding box with respect to the
center of the corresponding grid cell in the player

VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications

50



Figure 2: Player and ball detection results. Numbers above
bounding boxes show detection confidence from the player
classifier.

Figure 3: Detection results in difficult situations (player oc-
clussion).

confidence map and wbbox, hbbox are its width and
height. The coordinates are normalized to be in 0..1
scale. The bounding box centre in pixel coordi-
nates is calculated as: (x′bbox,y

′
bbox) = (bkP(i−0.5)+

xbboxwc,bkP( j−0.5)+ybboxhc), where (w,h) is an in-
put image resolution. It’s height and width in pixel
coordinates is (bwbboxwc,bhbboxhc).

Detection results are visualized in Fig. 2. Num-
bers above the player bounding boxes show detection
confidence. Detected ball position is indicated by the
red circle. Fig. 3 show player detection performance
in difficult situations, when players’ are touching each
other or occluded.

Network Architecture. Figure 4 shows high level
architecture of our FootAndBall network. It’s based
on Feature Pyramid Network (Lin et al., 2017) design
pattern. The input image is processed in the bottom-
up direction by five convolutional blocks (Conv1,
Conv2, Conv3, Conv4, Conv5) producing feature
maps with decreasing spatial resolution and increas-
ing number of channels. Numbers in brackets denote

Table 1: Details of FootAndBall detector architecture. Third
column lists size of the output from each block as (width,
height, number of channels) for an input image with w× h
resolution. All convolutional layers, except for 1x1 con-
volutions, are followed by BatchNorm and ReLU non-
linearity (not listed in the table for brevity). All convolu-
tions use ’same’ padding and stride one.

Block Layers Output size
Conv1 16 filters 3x3

Max pool 2x2 (w/2,h/2,16)
Conv2 32 filters 3x3

32 filters 3x3
Max pool 2x2 (w/4,h/4,32)

Conv3 32 filters 3x3
32 filters 3x3
Max pool: 2x2 (w/8,h/8,32)

Conv4 64 filters 3x3
64 filters 3x3
Max pool: 2x2 (w/16,h/16,64)

Conv5 64 filters 3x3
64 filters 3x3
Max pool 2x2 (w/32,h/32,32)

1x1Conv1 32 filters 1x1 (w/4,h/4,32)
1x1Conv2 32 filters 1x1 (w/8,h/8,32)
1x1Conv3 32 filters 1x1 (w/16,h/16,32)
Ball 32 filters 3x3
classifier 2 filters 3x3

Sigmoid (w/4,h/4,1)
Player 32 filters 3x3
classifier 2 filters 3x3

Sigmoid (w/16,h/16,1)
BBox 32 filters 3x3
regressor 4 filters 3x3 (w/16,h/16,4)

the width, height and number of channels (w,h,c)
of feature maps produced by each block. The fea-
ture maps are then processed in the top-down direc-
tion. Upsampled feature maps from the higher pyra-
mid level are added to feature maps from the lower
level. 1x1 convolution blocks decrease the number
of channels to the same value (16 in our implementa-
tion), so two feature maps can be summed up. Re-
sultant feature maps are processed by three heads:
ball classification head, player classification head and
player bounding box regression head. Ball classifi-
cation head takes a feature map with spatial resolu-
tion w/4× h/4 as an input and produces one chan-
nel w/4× h/4 ball confidence map denoting prob-
able ball locations. Each location in the ball confi-
dence map corresponds to 4×4 pixel block in the in-
put image. Player classification head takes a feature
map with spatial resolution w/16× h/16 as an input
and produces one channel w/16×h/16 player confi-
dence map denoting detected player locations. Each
location in the player confidence map corresponds to
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2x up

+

2x up

+
2x up
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Player confidence map
(w/16, h/16, 1)
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(w/32, h/32, 16)

(w/4, h/4, 16)

Input image: (w, h, 3)

(w/16, h/16, 4)

Ball classifier

Bbox regressor

Figure 4: High-level architecture of FootAndBall detector. The input image is processed bottom-up by five convolutional
blocks (Conv1, Conv2, Conv3, Conv4 and Conv5) producing feature maps with decreasing spatial resolution and increasing
number of channels. The feature maps are then processed in the top-down direction. Upsampled feature map from the higher
pyramid level is added to the feature map from the lower level. 1x1 convolution blocks decrease the number of channels to the
same value (32 in our implementation). Resultant feature maps are processed by three heads: ball classification head, player
classification head and player bounding box regression head. Numbers in brackets denote size of feature maps (width, height,
number of channels) produced by each block, where w,h is the input image width and height.

16×16 pixel block in the input image. Player bound-
ing box regression head takes the same input as the
player classification head. It produces produces four
channel w/16× h/16× 4 player bounding box ten-
sor encoding coordinates of a player bounding box at
each location of the player confidence map. Details of
each block are listed in Table 1. The network has fully
convolutional architecture and can operate on images
of any size.

Using Feature Pyramid Network (Lin et al., 2017)
architecture allows using both low-level features from
the first convolutional layers and high-level features
computed by higher convolutional layers. Informa-
tion from first convolutional layers is necessary for a
precise spatial location of the object of interest. Fur-
ther convolutional layers operate on feature maps with
lower spatial resolution, thus they cannot provide ex-
act spatial location. But they have bigger receptive
fields and their output provides additional context to
improve classification accuracy. This is especially im-
portant for the ball detection tasks. The ball is very
small and other objects, such as parts of players’ body
or stadium advertisement, may have similar appear-
ance. Using larger receptive field and higher level
features can improve discriminability of the ball de-

tector.

Loss Function. is a modified version of the loss
used in SSD (Liu et al., 2016) detector. The loss
minimized during the neural network training consists
of three components: ball classification loss, player
classification loss and player bounding box loss. Pro-
posed network does not regress ball bounding box.
Ball classification loss (Lb) is a binary cross-entropy
loss over predicted ball confidence and the ground
truth:

LB =− ∑
(i, j)∈PosB

logcB
i j− ∑

(i, j)∈NegB

log
(
1− cB

i j
)
, (1)

where cB
i j is the value of the ball confidence map at

the spatial location (i, j). PosB is a set of positive ball
examples, that is the set of locations in the ball con-
fidence map corresponding to the ground truth ball
position (usually for one input image it’s only one lo-
cation). NegB is a set of negative examples, that is the
set of locations that does not correspond to the ground
truth ball position (all locations do not containing the
ball). Player classification loss (Lp) is a binary cross-
entropy loss over predicted confidence in each cell in
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the player confidence map and the ground truth.

Lp =− ∑
(i, j)∈PosP

logcP
i j− ∑

(i, j)∈NegP

log
(
1− cP

i j
)
, (2)

where cP
i j is the value of the player confidence map

at the spatial location (i, j). PosP is a set of posi-
tive player examples, that is the set of locations in the
player confidence map corresponding to the ground
truth player position. NegP is a set of negative ex-
amples, that is the set of locations that does not cor-
respond to any ground truth player position. Player
bounding box loss (Lbbox) is Smooth L1 loss (Gir-
shick, 2015b) between the predicted and ground truth
bounding boxes. As in SSD (Liu et al., 2016) detector
we regress the offset of the bounding box with respect
to the cell center and its width and height.

Lbbox = ∑
(i, j)∈Posp

smoothL1
(
l(i, j)−g(i, j)

)
, (3)

where l(i, j) ∈ R4 denotes a predicted bounding box
coordinates in the location (i, j) and g(i, j) ∈R4 are a
ground truth bounding box coordinates in the location
(i, j).

Similar to SSD, we regress relative position of the
center (cx,cy) of the bounding box with respect to the
location centre and its relative width (w) and height
(w) with respect to the location/cell height and width.

The total loss is the sum of the three above com-
ponents, averaged by the number of training examples
N:

L =
1
N
(αBLB +αBLP +Lbbox) , (4)

where αB and βP are weights for the LB and LP cho-
sen experimentally.

Sets of positive ball PosB and player PosP ex-
amples are constructed as follows. If (x,y) is a
ground true ball position in pixel coordinates, then
the corresponding confidence map location (i, j) =
(bx/kB,y/kBc) and all neighbourhood locations are
added to PosB. If (x,y) is a ground truth position
of the player’s bounding box center in pixel coordi-
nates, then the corresponding confidence map loca-
tion (i, j) = (bx/kP,y/kPc) is added to PosP. Due to
smaller size of players confidence map, we mark only
a single cell as a positive example.

Sets of negative ball NegB and negative player
NegP examples correspond to locations in the confi-
dence map, where the objects are not present. The
number of negative examples is orders of magnitude
higher than a number of positive examples and this
would create highly imbalanced training set. To mit-
igate this, we employ hard negative mining strategy
as in (Liu et al., 2016). For both ball and players
we chose a limited number of negative examples with

the highest confidence loss, so the ratio of negative to
positive examples is at most 3:1.

Network Training. The network is trained us-
ing combination of two datasets: ISSIA-CNR Soc-
cer (D’Orazio et al., 2009) and Soccer Player Detec-
tion (Lu et al., 2017) datasets. ISSIA-CNR Soccer
dataset contains six synchronized, long shot views of
the football pitch acquired by six Full-HD DALSA
25-2M30 cameras. Three cameras are designated
for each side of the playing-field, recording at 25
fps. Videos are acquired during matches of the Ital-
ian ’serie A’. There’re 20,000 annotated frames in the
dataset annotated with ball position and player bound-
ing boxes. Fig. 2 shows exemplary frames from the
ISSIA-CNR Soccer Dataset. Soccer Player Detec-
tion dataset is created from two professional football
matches. Each match was recorded by three broad-
cast cameras at 30 FPS with 1280x720 resolution. It
contains 2019 images with 22,586 annotated player
locations. However, ball position is not annotated.

For training we select 80% of images and use re-
maining 20% for evaluation. We use data augmen-
tation to increase the variety of training examples
and reduce overfitting. The following transformations
are randomly applied to the training images: random
scaling (with scale factor between 0.8 and 1.2), ran-
dom cropping, horizontal flip and random photomet-
ric distortions (random change of brightness, contrast,
saturation or hue). The ground truth ball position and
player bounding boxes are modified accordingly to
align with the transformed image.

The network is trained using a standard gradient
descent approach with Adam (Kingma and Ba, 2014)
optimizer. The initial learning rate is set to 0.001 and
decreased by 10 after 75 epochs. The training runs for
100 epochs in total. Batch size is set to 16.

4 EXPERIMENTAL RESULTS

Evaluation Dataset. We evaluate our method on
publicly available ISSIA-CNR Soccer (D’Orazio
et al., 2009) and Soccer Player Detection (Lu et al.,
2017) datasets. For evaluation we select 20% of im-
ages, whereas remaining 80% are used for training.
Both datasets are quite challenging, there’s noticeable
motion blur, many occlusions, cluttered background
and varying player’s size. In ISSIA-CNR dataset the
height of players is between 63 and 144 pixels. In
Soccer Player Detection dataset, it varies even more,
from 20 to 250 pixels. In ISSIA-CNR dataset one
team wears white jerseys which makes difficult to dis-
tinguish the ball when it’s close to the player.

FootAndBall: Integrated Player and Ball Detector

53



Evaluation Metrics. We evaluate Average Preci-
sion (AP), a standard metric used in assessment of
object detection methods. We follow Average Pre-
cision definition from Pascal 2007 VOC Challenge
(Everingham et al., 2010). The precision/recall curve
is computed from a methods ranked output. For the
ball detection task, the set of positive detections is
the set of ball detections (locations in the ball con-
fidence map with the confidence above the threshold
ΘB) corresponding to the ground truth ball position.
Our method does not regress bounding boxes for the
ball. For the player detection task, the set of positive
detections is the set of player detections (estimated
player bounding boxes) with Intersection over Union
(IOU) with the ground truth players’ bounding boxes
above 0.5. Recall is defined as a proportion of all pos-
itive detections with confidence above a given thresh-
old to all positive examples in the ground truth. Pre-
cision is a proportion of all positive detections with
confidence above that threshold to all examples. Av-
erage Precision (AP) summarizes the shape of the pre-
cision/recall curve, and is defined as the mean preci-
sion at a set of eleven equally spaced recall levels:

AP =
1

11 ∑
r∈{0,0.1,...1}

p(r) , (5)

where p(r) is a precision at recall level r.

Evaluation Results. Evaluation results are summa-
rized in Table 2. The results show Average Preci-
sion (AP) for ball and player detection as defined
in the previous section. The table also lists a num-
ber of parameters of each evaluated model and in-
ference time, expressed in frames per second (FPS)
achieved when processing Full HD (1920x1080 res-
olution) video. All methods are implemented in Py-
Torch (Paszke et al., 2017) 1.2 and run on low-end
nVidia GeForce GTX 1060 GPU.

Our method yields the best results on the ball
detection task on ISSIA-CNR dataset. It achieves
0.909 Average Precision. For comparison we eval-
uated three recent, neural network-based, detection
methods. Two are dedicated ball detection methods
trained and evaluated on the same datasets: (Reno
et al., 2018) scores 0.834 and (Komorowski et al.,
2019) 0.877 Average Precision. The other is general
purpose Faster R-CNN (Girshick, 2015a) object de-
tector fine-tuned for ball and player detection using
our training datasets. Despite having almost two or-
der of magnitude more parameters is has lower ball
detection average precision (0.866).

On the player detection task we compared our
model to general purpose Faster R-CNN (Girshick,

Figure 5: Visualization of incorrect ball detection results.
Top row show image patches where the ball is not detected
(false negatives). The bottom row shows patches with in-
correctly detected ball (false positives).

2015a) object detector. Comparison with other re-
cently published player detection method was not
made due to reasons such as unavailability of the
source code, usage of proprietary datasets, lack de-
tails on train/test split or different evaluation met-
rics than used in our paper. On ISSIA CNR dataset
our method achieves higher ball and player detec-
tion average accuracy (0.909 and 0.921 respectively)
than Faster R-CNN (0.866 and 0.774) despite having
two orders of magnitude less parameters. On Soccer
Player Dataset Faster R-CNN gets higher score (0.928
as compared to 0.885 scored by our method). On av-
erage these two methods have similar accuracy. But
due to the specialized design our method can process
high definition video (1920 x 1080 frames) in a real
time at 37 FPS. Faster R-CNN throughput on the same
video is only 8 FPS (Faster-RCNN implementation
based on ResNet-50 backbone, included in PyTorch
1.2 distribution https://pytorch.org). DeepBall
network has the highest performance (87 FPS) but it’s
a tiny network built for ball detection only.

Using Feature Pyramid Network design pattern,
where higher level features with larger receptive field
are combined with lower level features with higher
spatial resolution, is an important element of our de-
sign. Evaluation of a similar network but without
top-down connections and without combining multi-
ple feature maps with different receptive fields, pro-
duces worse results. Such architecture (FootAnd-
Ball – no top-down) achieves 4-5% percentage points
lower Average Precision in all categories.

Fig. 5 show examples of incorrect ball detections.
Two top rows show image patches where our method
fails to detect the ball (false negatives). It can be no-
ticed, that misclassification is caused by severe occlu-
sion, where only small part of the ball is visible, or
due to blending of the ball image with white parts of
the player wear or white background objects outside
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Table 2: Average precision (AP) of ball and player detection methods on ISSIA-CNR and Soccer Player datasets. Two last
columns show the number of trainable parameters and inference time in frame per seconds for high resolution (1920, 1080)
video.

Dataset ISSIA-CNR Soccer Player
Ball AP Player AP mAP Player AP #params FPS

(Reno et al., 2018) 0.834 - - - 313k 32
DeepBall 0.877 - - - 49k 87
Faster R-CNN 0.866 0.874 0.870 0.928 25 600k 8
FootAndBall (no top-down) 0.853 0.889 0.872 0.834 137k 39
FootAndBall 0.909 0.921 0.915 0.885 199k 37

the play field, such as stadium advertisement. The
bottom row shows examples of patches where a ball
is incorrectly detected (false positives). The detector
is sometimes confused by players’ white socks or by
the background clutter outside the play field.

5 CONCLUSIONS

The article proposes an efficient deep neural network-
based player and ball detection method. The pro-
posed network has a fully convolutional architecture
processing entire image in a single pass through the
network. This is much more computationally ef-
fective than a sliding window approach proposed in
other methods, such as (Reno et al., 2018). Addi-
tionally, the network can operate on images of any
size that can differ from size of images used dur-
ing the training. It outputs ball locations and player
bounding boxes. The method performs very well on
a challenging ISSIA-CNR Soccer (D’Orazio et al.,
2009) and Soccer Player Detection (Lu et al., 2017)
datasets (0.915 and 0.885 mean Average Precision).
In ball detection task it outperforms two other, re-
cently proposed, neural network-based ball detections
methods: (Reno et al., 2018) and (Komorowski et al.,
2019). In player detection task it’s on par with fine-
tuned general-purpose Faster R-CNN object detector,
but due to specialized design it’s almost five times
faster (37 versus 8 FPS for high-definition 1920x1080
video). This allows real time processing of high-
definition video recordings.

In the future we plan to use temporal information
to increase the accuracy. Combining convolutional
feature maps from subsequent frames may help to dis-
criminate between object of interest and static distrac-
tors (e.g. parts of stadium advertisement or circular
marks on the pitch).

Another research direction is to investigate model
compression techniques, such as using half-precision
arithmetic, to improve the computational efficiency.
The proposed method can process high definition

videos in real time on relatively low-end GPU plat-
form. However, real time processing of recordings
from multiple cameras poses a challenging problem.
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Şah, M. and Direkoğlu, C. (2018). Evaluation of image rep-
resentations for player detection in field sports using
convolutional neural networks. In International Con-
ference on Theory and Applications of Fuzzy Systems
and Soft Computing, pages 107–115. Springer.

Speck, D., Barros, P., Weber, C., and Wermter, S. (2017).
Ball localization for robocup soccer using convolu-
tional neural networks. In Behnke, S., Sheh, R., Sarıel,
S., and Lee, D. D., editors, RoboCup 2016: Robot
World Cup XX, pages 19–30, Cham. Springer Inter-
national Publishing.

Yoon, H.-S., Bae, Y.-l. J., and Yang, Y.-k. (2002). A soc-
cer image sequence mosaicking and analysis method
using line and advertisement board detection. ETRI
journal, 24(6):443–454.

Zhang, L., Lu, Y., Song, G., and Zheng, H. (2018). Rc-cnn:
Reverse connected convolutional neural network for
accurate player detection. In Pacific Rim International
Conference on Artificial Intelligence, pages 438–446.
Springer.

VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications

56


