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Abstract: Code smells and Technical debt are two common notions that are often referred to for quantifying codebase 
quality. Quality metrics based on such notions often reply on rigid thresholds and are insensitive to the project 
unique context, such as development technologies, team size, and the desired code qualities. This challenge 
often manifest itself in inadequate quantification of code qualities and potentially numerous false positives 
cases. This paper presents a novel approach that formulates code quality metrics with thresholds that are 
derived from software design models. This method results in metrics that, instead of adopting rigid thresholds, 
formulates unique and evolving thresholds specific to each code module. This paper presents the novel 
methodology and introduces some novel code quality formulas. To evaluate the proposed formulas, we 
evaluate them against open source codebase developed by experienced software engineers. The results suggest 
that the proposed methodology results in code quality quantification that provides more adequate 
characterization. 

1 INTRODUCTION 

One important goal of software engineering is to 
deliver software systems that can be sustainably 
maintained for extended period of time. Software 
becomes unsustainable often due to deficiencies in its 
design or code (Badreddin, 2018) (Badreddin, 2019). 
Software longevity maximizes returns and justifies 
efforts in design and testing. The code lines at the 
heart of any software systems represent significant 
intellectual investments by professionals often with 
unique domain expertise. Engineers must develop 
systems efficiently and address key requirements, and 
do so while ensuring that the software system is 
scalable to address future users’ needs and 
requirements. Unfortunately, it is not uncommon that 
software becomes prohibitively expensive to 
maintain. Software codes tends to accumulate 
arbitrary complexities that obscure knowledge and 
make maintenance more challenging. Engineers, 
under pressure to deliver functioning systems on time 
and within budget, often take shortcuts and deliver 
code, while may address immediate users’ needs, may 
not be suitable to adapt to evolving requirements in 
the future. Therefore, it is paramount to be able to 
track code quality characteristics throughout the 
software lifecycle. 

Quality quantification methodologies reply on 
desired code characteristics, such as size of code 
modules, the number of dependencies between 
modules, and more. Violation of those desired 
characteristics suggest that future maintenance of the 
codebase will require more time and effort. An 
important notion of such metrics are code smells. 
Large Class and Large Parameter List are example of 
such code smells (Badreddin, and Khandoker, 2018). 
For example, a Class that is more than 750 lines of 
code is determined to suffer from Large Class Code 
smell, suggesting that the Class is too big in size, and 
efforts to comprehend and maintain its code will be 
challenging. 

Code quality metrics that reply on code smells and 
technical debt suffer from key fundamental 
limitations. First, such methodologies are insensitive 
to software project unique contextual elements such 
as, project priorities, development technologies, 
maturity level, and expertise of its developers. These 
metrics operate under the one-size-fits assumption 
that a quality metric is applicable to all software 
modules at all times. Second, these metrics do not 
evolve over time to appropriately consider the 
evolving code base size and its indented life time. A 
software system developed to serve as a prototype 
should not be subject to the same quality metrics for 
one that is intended to be sustained for an extended 
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period of time. Similarly, the quality of a codebase 
that is expected to be subject to extensive 
maintenance should be measured differently than 
code that is unlikely to be changed overtime. Third, 
prevalent quality metrics are largely independent of 
the intended software design specifications. For 
example, a software module designed to perform 
significant computations may appear to violate key 
quality metrics. This violation, however, is 
intentional as per the design specification. 

This paper presents a methodology to address 
some of these limitations as follows. First, the 
methodology defines code quality metrics with 
thresholds that are derived from software design. This 
approach means that metrics can evolve as the 
codebase design evolve throughout the software 
lifecycle. Moreover, this approach means that each 
code module will have its own unique quality metrics 
that are tailored to its unique context. 

2 MOTIVATIONAL EXAMPLE 

To demonstrate the proposed approach of deriving 
complexity measures from software design, consider 
the following simplified UML class diagram (Figure 
1). The class diagram shows a data-heavy class (Class 
D), computational heavy Class (Class E), and some 
associations between classes. While the 
implementation of this model follows the design very 
closely, efforts to quantify code health returns 
significantly low sustainability quantification. For 
example, because Class D is data-heavy, its size in 
terms of lines of code is very small resulting in Lazy 
Class code smell (Taibi, 2017). Similarly, the Class C 
is designed to access many methods and attributes in 
other classes (it is participating in five associations). 
The code analysis of Class C returns God Class code 
smell (Vidal, 2016). Large Parameter List code smell 
was also found in method 1 in Class D. This is 
arguably because the Class is designed to have many 
data fields but only a single method to operate on 
these fields. 

Contemporary code analysis approaches that 
uncovers code smells are agnostic to the intentions of 
the software designers as evident in the provided 
UML Class diagram. The analysis did not consider to 
what extent the implementation is aligned with the 
design. The identified code smells are frequently not 
an indication of unsustainable code but are rather is a 
direct result from the intentional design. Class D is 
Lazy because it is designed to host data and perform 
little computations. Class C is Large and has access 
to many external entities because it is designed as a 

root element. Similarly, Smells of Large Parameter 
list is misleading because the class to which these 
methods belong to are data-heavy and as a result, its 
method has legitimate reason to use large number of 
parameters. Recommended code refactorings to 
remove the code smells will inevitably suggest 
refactorings that are difficult to implement without 
violating the design. 

 

 

Figure 1: UML Class Diagram Example. 

More importantly, the aforementioned smells are 
only detectable after the significant effort of 
developing the codebase. Meaning, the development 
teams are informed of the deficiencies after they have 
manifested with little upfront guidance. The team has 
the only option of implementing potentially time 
consuming refactorings to minimize the smells. 

3 PROPOSED QUANTIFICATION 
APPROACH 

The proposed metrics are derived from the design by 
estimating complexity rating for each Class, which 
itself is estimated from the complexity rating of the 
Class attributes and methods in that Class. Each Class 
element has its own unique complexity rating based 
on its data type and visibility (for attributes), 
parameter list size, type, and return type (for 
methods). In the following, we present the element 
complexity rating and the metrics formula. 

3.1 Element Complexity Rating 

Table 1 illustrates elements complexity rating. These 
ratings are used as input to the proposed metrics 
discussed in the following section to rate the 
complexity of each element.  
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Table 1: Attributes and Methods Complexity Rating. 

Element Scope Name Classification Examples Rating

Attributes 

Visibility ݐݐܣ௏௜௦ 

Primitive Private 1 

Simple 
Protected, 
Package

2 

Complex Public 3 

Type ݐݐܣ௧௬௣௘ 

Primitive 
int, char, 
boolean

1 

Simple 
float, long, 
double, str

2 

Complex 

array, 
struct, 

tuple, date, 
time, list, 

map

3 

Derived 

object, 
array of 
complex 

types

4 

Methods 

Parameters ெܲ௘௧௛. 

Primitive 
int, char, 
boolean

1 

Simple 
float, long, 
double, str

2 

Complex 

array, 
struct, 

tuple, date, 
time, list

3 

Derived 

object, 
array of 
complex 

types, map

4 

Return 
Type 

ܴெ௘௧௛. 

Primitive 
int, char, 
boolean, 

void
1 

Simple 
float, long, 
double, str

2 

Complex 

array, 
struct, 

tuple, date, 
time, list

3 

Derived 

object, 
array of 
complex 

types, map

4 

Visibility ெܸ௘௧௛. 

Primitive Private 1 

Simple 
Protected, 
Package

2 

Complex Public 3 

 

Attributes have two complexity ratings to 
quantify, attribute visibility and attribute type. The 
visibility of attribute ( ௏௜௦ݐݐܣ ) differs in term of 
complexity between primitive, simple and complex 
complexity.  Private attribute, which can be used only 
on its own class, classified as primitive complexity 
with the lowest rating. On the other hand, public 
attributes can be associated with many other classes 
in the system which will increase the complexity to 

the highest rating. Protected and package attributes 
are rated in the moderate complexity rating since it 
can communicate with a limited number of classes 
within the package or based on inheritance role. 

The second attribute scope of complexity ratings 
is the attribute type (ݐݐܣ௧௬௣௘), which we divided into 
four different complexity classifications. First, 
primitive types such as integer and boolean with the 
minimum complexity rating. Second, simple types 
like double, float, long, and string data fields. Third, 
attributes contain an array, structure, tuple or list are 
considered as a complex attribute type. Finally, 
derived data types with the highest complexity rating 
such as objects and array of complex types. The same 
classifications of complexity assigned to the method 
visibility (݀݋݄ݐ݁ܯ௩௜௦), return type (݀݋݄ݐ݁ܯ௥௘௧௨௥௡) 
and the total of parameters list (ܴெ௘௧௛.). 

3.2 Proposed Design Driven Metrics 

The metrics are defined using the following formulas. 
 

௖௢௠௣ݐݐܣ ൌ ሺݐݐܣ௏௜௦ ∗ ோ௔௧௘ሻ݋ܥ ൅ ൫ݐݐܣ௧௬௣௘ ∗ ோ௔௧௘൯ (1)݋ܥ
 

Where ( ݐݐܣ௖௢௠௣ሻ  is attribute complexity, (ݐݐܣ௏௜௦ ) 
attribute visibility, (்ݐݐܣ௬௣௘) is attribute type. ݋ܥோ௔௧௘ 
capture the complexity rate. 

௖௢௠௣݀݋݄ݐ݁ܯ ൌ 

(2)
ሺ ெܸ௘௧௛. ∗ ோ௔௧௘ሻ݋ܥ ൅ ሺܴெ௘௧௛. ∗ ோ௔௧௘ሻ݋ܥ ൅ ൭෍ሺ ெܲ௘௧௛.

௡

௜ୀଵ

∗  ோ௔௧௘൱݋ܥ

Where (݀݋݄ݐ݁ܯ௖௢௠௣) is method complexity derived 
from Table 1, ( ெܸ௘௧௛.) is method visibility, (ܴெ௘௧௛.) is 
method return type. The term (∑ ሺ ெܲ௘௧௛.

௡
௜ୀଵ ∗  (ோ௔௧௘݋ܥ

captures the complexity rate for all parameters in the 
method, if any. 

௖௢௠௣ݏݏ݈ܽܥ ൌ ൭෍ݐݐܣ௖௢௠௣

௡

௜ୀଵ

൱ ൅ ൭෍݀݋݄ݐ݁ܯ௖௢௠௣

௡

௜ୀଵ

൱ (3)

Finally, the complexity of a class (ݏݏ݈ܽܥ௖௢௠௣ ) is 
comprised of three elements; the sum of all of its 
attribute complexities (∑ ௖௢௠௣ݐݐܣ

௡
௜ୀଵ ), and method 

complexities (൫∑ ௖௢௠௣݀݋݄ݐ݁ܯ
௡
௜ୀଵ ൯ ). 

3.3 Fuzzy Quality Metrics 

We define a fuzzy quality metric is one where the 
quantification value is dependent on the gap between 
the actual and expected value. To demonstrate this 
concept, we illustrate a fuzzy metric for Large Class 
and Long method code metrics. 

ሻݏݏ݈ܽܥሺܿ݅ݎݐ݁ܯݕݖݖݑܨ ൌ ELOCሺ݈ܿܽݏݏሻ (4)
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Where ELOC is the expected size in terms of lines of 
code. That is, the metric for Large Class is a function 
of the absolute distance between the expected and 
actual class size in terms of lines of code. ELOC is 
calculated as follows. 

ሻݏݏ݈ܽܥሺܥܱܮܧ 	ൌ ௖௢௠௣ݏݏ݈ܽܥ ∗ ௙௔௖௧௢௥ሻ (5)ܥܱܮሺݏݏ݈ܽܥ

That is, the expected Class size is the Complexity of 
the class (as defined in ݏݏ݈ܽܥ௖௢௠௣) multiplied by LOC 
factor to capture platform and development language 
dependencies. 

Similarly, the Fuzzy Metric for method is defined 
as follows. 

ሻ݀݋݄ݐሺ݉݁ܿ݅ݎݐ݁ܯݕݖݖݑܨ ൌ (6)ELOCሺ݉݁݀݋݄ݐሻ ൅ LOCሺ݉݁݀݋݄ݐሻ 

Where ELOC(method) is the expected lines of code 
of the method. That is, the metric for Long Method is 
the absolute value of the distance between the 
expected and actual method size in terms of lines of 
code. ELOC(method), which is the expected LOC of 
method, is calculated as follows. 

ሻ݀݋݄ݐ݁ܯሺܥܱܮܧ 	ൌ ௖௢௠௣݀݋݄ݐ݁ܯ ∗ ௙௔௖௧௢௥ሻܥܱܮሺ݀݋݄ݐ݁ܯ (7)

4 CASE STUDY DESIGN 

The goal of this case study is to evaluate whether in 
fact the proposed fuzzy metrics provide adequate 
characterization for the underlying codebase quality. 
Towards that goal, the case study constructs two 
points of analysis (PoA); 1) Analysis of a stable 
codebase developed by experienced professionals. 2) 
Analysis of a stable codebase developed by non-
professionals. Table 2 shows the selected codebases 
from the open source GitHub (GitHub, 2019) to 
represent professional developers, which are 
DataWave (National Security Agency, 2019), 
CopyBara (Google, 2019), Pai (Microsoft, 2019), 
Java (The Algorithms, 2019), Nacos (Alibaba, 2019) 
and Kafka (Apache, 2019), and some other codebases 
as non-professional developers, which are Arrays 
(Glin1, 2019), Cool Cats Project Final (Bakker, 
2019), Address Book (Pryadarshi, 2019), CITIC06a 
(Formoso, 2019), Attendance App (Kumar, 2019) and 
Multitask Downloader (Mario, 2019).  

To determine the UML class diagram of the 
selected projects, we used the tool Understand 
(Scitools, 2019) which can be used for code analysis 
and graphical UML class view. In total, more than 
700 classes from the codebases were selected 
randomly. From the selected systems, we excluded 
interface classes, abstract classes, and classes that 

include test cases. From large systems, we selected 
the first alphabet names of the classes. 

Table 2: The Selected Open Source Projects. 

C
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S
el

ec
te

d 
C

la
ss

es
 

H
ig

h-
T

re
nd

in
g 

R
ep

os
it

or
y DataWave 964 399719 150 

CopyBara 1660 75227 100 

Pai 3159 20506 100 

Java 771 13100 100 

Nacos 1283 62353 100 

Kafka 6216 393403 100 

L
ow

-T
re

nd
in

g 
R

ep
os

it
or

y 
Arrays and 
Array Lists 

13 1119 13 

Cool Cats 
Project Final 

53 1372 9 

Address Book 8 1883 18 

CITIC06a 1 352 7 

Attendance 
App

8 2568 13 

Multitask 
Downloader 

8 1899 13 

5 RESULTS 

We present in this section the results for analysing the 
subject systems. 

5.1 Attribute Complexity 

Table 3 explains the results after applying the first 
formula described earlier, on the codebases attributes. 
Project DataWave, which designed by professional 
developers, has 680 attributes in the selected class. 
Those attributes are 463 primitives, 76 simple and 
141 complex attributes. The complexity rate for those 
attributes is 1038 based on our derived matric.  

The complexity rate for attribute types is 1870 
after measuring 98 primitives, 229 simple, 98 
complexes, and 255 derived attributes. Consequently, 
the total attribute complexity (ݐݐܣ௖௢௠௣) of Data Wave 
project is 2908. The attribute complexity of project 
“Arrays and Array Lists” from low trending 
repositories is 155. 
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Table 3: Attributes Complexity for the Selected Projects. 

Developers High-Trending Repository Low-Trending Repository 

System 
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D
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Number of Attributes 680 64 18 153 467 403 45 64 73 10 95 90 

Visibilit
y 

Primitive 463 64 17 113 318 263 42 21 37 5 54 61 

Simple 76 0 0 0 0 0 0 0 15 0 0 0 

Complex 141 0 1 40 147 139 3 43 21 5 29 29 

Complexity 
Rate 

1038 64 20 233 763 682 51 150 130 20 177 148 

Type 

Primitive 98 36 5 55 98 51 23 6 9 3 7 29 

Simple 229 10 4 12 182 119 1 20 31 1 27 19 

Complex 98 1 3 42 53 62 5 4 6 2 11 8 

Derived 255 17 6 44 134 171 16 34 27 4 51 34 

Complexity 
Rate 

1870 127 46 381 1157 1159 104 194 197 27 298 277 

Attribute Complexity 2908 191 66 614 1920 1841 155 344 327 47 457 375 

 
5.2 Method Complexity 

For measuring method complexity, we used the 
design driven metric (݀݋݄ݐ݁ܯ௖௢௠௣). The outcomes 
illustrated in Table 4 where we used the same 
classification that we used it on attribute visibility to 
classify method visibility. The complexity rate for all 
the 1239 methods found from the selected classes for 
project DataWave, for example, is 3384. In the 
second factor of method complexity, which is method 
return type, we found 553 primitive methods, 229 
simple methods, 121 complex method and 335 
derived methods. As a result, the total complexity rate 
for the methods return type is 2714. After that, we 
estimated complexity rate for the total parameters of 
the methods which is 3325. Finally, we added the 
complexity rate of the three factors, method visibility, 
method return type and the total parameters to 
estimate method complexity. 

5.3 Class Complexity 

The final step is to estimate class complexity 
 by adding both attribute complexity and (௖௢௠௣ݏݏ݈ܽܥ)
method complexity. Table 5 show the class 
complexity of the selected datasets which resulting 
out of adding both attribute complexity and method 
complexity. It also shows the total lines of code of the 

selected classes of each system. In the high trending 
repositories, the highest number of LOC is from Data 
Wave with 24233 and the lowest is Java system with 
10054 LOC. From the low trending repositories, the 
total number of LOC of the selected classes is 
between 249 and 1744. 

6 ANALYSIS 

In this section, we present the analysis for classes and 
methods complexity. 

6.1 Class Complexity Analysis 

In Figure 2 we can observe the high correlation 
between LOC and class complexity of the high 
trending repository systems. The correlation was 
between 0.76 and 0.91 with an average 0.85 for all 
high trending systems. Meanwhile, the correlation for 
the low trending systems comes between 0.51 and 
0.89 with an average 0.7 as shown in Figure 3. 
According to these findings, we can see the strong 
relationship between class complexity and the lines of 
code for that class. 
 
 

Towards a Model-based Fuzzy Software Quality Metrics

143



Table 4: Method Complexity for the Selected Projects. 

Developers High-Trending Repository  Low-Trending Repository 

System 
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Number of Methods 1239 1017 625 402 780 643 43 26 82 9 130 112 

Method 
Visibility 

Primitive 103 89 70 78 117 39 1 4 14 1 12 15 

Simple 127 47 14 0 2 15 0 4 10 0 40 9 

Complex 1009 881 541 324 661 589 42 18 58 8 78 88 

Complexity 
Rate 

3384 2826 1721 1050 2104 1836 127 66 208 25 326 297 

Method 
Return 
Type 

Primitive 553 573 92 297 400 243 35 21 45 5 93 84 

Simple 229 169 192 36 185 78 4 1 21 2 14 10 

Complex 121 78 26 11 74 101 0 0 4 1 2 3 

Derived 335 197 315 58 128 221 4 4 12 1 21 15 

Complexity 
Rate 

2714 1933 1814 634 1508 1586 59 39 147 16 211 173 

Total 
Methods 

Parameter 

Primitive 199 145 40 145 154 82 11 5 2 0 11 19 

Simple 441 289 198 64 549 100 1 1 32 1 18 15 

Complex 148 89 29 106 117 100 3 0 1 0 5 3 

Derived 450 619 296 86 183 272 12 23 29 6 27 35 

Complexity 
Rate 

3325 3466 1707 935 2335 1670 70 99 185 26 170 198 

Method Complexity 9423 8225 5242 2619 5980 5092 256 204 540 69 707 668 

Table 5: Class Complexity and Correlation between LOC and Class Complexity. 

Developers System LOC 
Attribute 

Complexity 
Method 

Complexity 
Class 

Complexity 

Correlation (LOC and 
Class Complexity) 

Each 
System 

Average 

High-Trending 
Repository 

DataWave 24233 2908 9423 12331 0.85 

0.85 

Pai 12813 1988 8225 10213 0.85 

Copybara 14636 1905 5242 7147 0.85 

Java 10054 614 2619 3233 0.88 

Nacos 15148 1913 5914 7827 0.76 

Kafka 11547 1788 5092 6880 0.91 

Low-trending 
Repository 

Arrays and ArrayLists 1094 155 256 411 0.51 

0.7 

Cool Cats Pro Final 1147 344 204 548 0.89 

Address book 1744 327 540 867 0.73 

CITIC06a 249 47 67 114 0.57 

Attendance App 2271 1912 6033 7945 0.84 

Multitask downloader 1723 375 668 1043 0.71 
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Figure 2: Correlation in High-Trending Repository. 

 

Figure 3: Correlation in Low-Trending Repository. 

6.2 Method Complexity Analysis 

 

Figure 4: Methods Complexity and LOC in Class1. 

We have applied the proposed method complexity 
approach on the same code repositories. For example, 
in the method number 8 in class 1 from DataWave 
project (Figure 4), the total method complexity is 4 
and the LOC is 3. Also, in the second class, method 
number 5 there are 14 LOC and we can see that the 
method complexity is 11 (Figure 5).  

 

Figure 5: Relationship between Methods Complexity and 
Methods LOC in Class 2. 

Accordingly, we can feel the strong relationship 
between method complexity and the number of lines 
of code for that method. 

7 ESTIMATING FUZZY 
METRICS 

To estimate the fuzzy code quality metrics, we need 
to find a pattern to explain the relationship between 
class complexity and the LOC for that class, and 
between method complexity and LOC for that 
method. 

7.1 Fuzzy Metric (Large Class) 

We estimated the factor (ݏݏ݈ܽܥሺܥܱܮ௙௔௖௧௢௥ሻ) that we 
need to be used in expecting the lines of code in the 
class (ELOC(Class)) by the following steps. First, in 
our case study, we selected 758 classes from 12 
projects. The total number of the LOC for all those 
classes is 97,986 with an average 129 LOC per class 
as shown in Table 6. 

Table 6: Estimating Class LOC Factor. 

Number of Classes 758 
LOC of the selected 

classes 
Total 97968 

Average 129 

Class Complexity 
Total 22561 

Average 29.76 

Estimating factor 
(average) 

2 -69.72 
3 -39.95 
4 -10.19 
5 19.57 

The next step is to calculate the class complexity 
of all selected classes which is 22,561, and the 
average is 29.76 per class. Then, we found that the 
average of class complexity is less than the average 
of LOC, so, we multiplied the average of class 
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complexity with the factor “2”. The result was -69.72 
which is less than average of LOC. We increased the 
factor every time until we found the first factor that 
when we multiply it with the class complexity, we get 
a number greater than class LOC, which is 5. This 
means that we will use 5 as a class LOC factor 
 .in the expected lines of code (௙௔௖௧௢௥ሻܥܱܮሺݏݏ݈ܽܥ)

ሻݏݏ݈ܽܥሺܥܱܮܧ 	ൌ ௖௢௠௣ݏݏ݈ܽܥ ∗ 5 

Based on that, we applied (ELOC(Class)) formula to 
use it to measure the fuzzy large class code smell 
(FuzzyMetric(Class)) on ours dataset. 

7.2 Fuzzy Metric (Long Method) 

We estimated the factor (݀݋݄ݐ݁ܯሺܥܱܮ௙௔௖௧௢௥ሻ) by 
applying the same technique that we use it in 
expecting the lines of code in the class 
(ELOC(Class)). We found that “2” is the best number 
to represent the factor for the method as shown in 
Table 7. 

ሻ݀݋݄ݐ݁ܯሺܥܱܮܧ 	ൌ ௖௢௠௣݀݋݄ݐ݁ܯ ∗ 2 

Table 7: Estimating Factor of Method LOC Factor. 

Method LOC (average) 6.8 

Method Complexity (average) 7.66 

Estimating 
factor (average) 

2 8.53 

3 16.19 

8 COMPARING WITH 
DETECTION TOOLS 

In order to evaluate our approach, we will be using 
PMD (PMD, 2019) which is an Eclipse plug-in tool 
used for analysing source code and detecting code 
smells such as large class and long method. We found 
that 7.22% of the high trending projects and 9.41% of 
the low trending projects considered as large class 
code smell after applying fuzzy metric. Moreover, 
only 1.36% of the high trending repositories methods 
are smelly methods and 5.17% of the low trending 
repositories. In total, 50 methods are long method 
code smell which is 0.42%.  

After comparing the results of our design driven 
fuzzy metrics with PMD results, we can see the 
differences between them in term of large class and 
long method code smells. The toll PMD discovered 
only 0.86% of large class code smell and 0.43% of 
long method from the high trending repositories. In 
addition, from the low trending repositories, PMD 

discovered 3.23% smelly classes and 2.85% smelly 
methods.  

By comparing our metrics to the existing code 
smell detection tools, we can find that in both of them, 
less smelly classes and methods in the high trending 
projects, which designed by professionals and 
expected to be a high quality with less code smells, 
than the low trending projects. Accordingly, using 
software quality fuzzy metrics provides high level 
and adequate characterization based on software 
design. 

9 THREATS TO VALIDITY 

In this section we will discuss construct, internal and 
external validity threats to this study. 

9.1 Construct Validity 

In our case study, we analysed open source code from 
various sources and made assumptions on code 
quality. We attributed specific quality characteristics 
primarily based on the developers of the code base. It 
is possible that the case study construct is not valid 
due to the assumption about code quality 
characteristics. To minimize this risk, we analysed a 
significantly large number of lines of code and 
included code fragments from different code 
repositories. We also analysed sample code elements 
to evaluate our assumptions. 

9.2 Internal Validity 

For the threats that could have influenced our dataset 
extraction process, we include project stars, commits, 
and the number of contributors as criteria to classify 
the quality level of the projects form open source 
communities. However, these criteria could be 
changed from time to time. This means that the 
projects that we selected as a top trending project in 
GitHub on the time that we performed the research, 
we could not find some of them any time later. 
Another internal validity refers to the extent to which 
the study makes sure that the two class factors, 
variables and methods, are the only factors that can 
be measured and has an effect on the class. Future 
work will add to the formula a third factor that related 
to the class, which is the association. 

9.3 External Validity 

The external validity concerns applying our findings. 
The study is limited to limit number of classes from 
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12 Java projects. The reason is that we analysed the 
systems manually since we do not have a software 
tool to perform the analysis automatically. However, 
our decision to analyse few systems was also due to 
the need for manually validating class complexity, 
rather than just relying on tool output (Bavota, 2015). 
Moreover, since the commercial source code is not 
available, we targeted open source systems for our 
analysis. 

10 RELATED WORK 

It has been argued that code metrics are too sensitive 
to context and that metrics appropriate for one project 
are not an adequate predictor for another. (Gil and 
Lalouche, 2016) has demonstrated this phenomenon 
by applying both statistical and visual analysis of 
code metrics. Fortunately, they demonstrate that 
context dependency can be neutralized by applying 
Log Normal Standardization (LNS) technique. In a 
similar study, (Zhang, 2013) demonstrated that code 
metrics are dependent on six factors, namely, 
application domain, programming language, age, 
lifespan, the number of changes, and the number of 
downloads. (Aniche, 2016) investigated the effect of 
architecture on code metrics. They proposed SATT 
(Software Architecture Tailored Thresholds), an 
approach that detects whether an architectural role is 
considerably different from others in the system in 
terms of code metrics and provides a specific 
threshold for that role. Our work presented in this 
paper is similar, in the sense that it aims at improving 
the accuracy of code metrics thresholds. However, 
while the SATT approach derives a unique threshold 
only if the architectural role of the module is deemed 
to be significantly different, our approach derives the 
unique thresholds even in cases where the 
architectural role may only be slightly different. 

There is sizable evidence that prevalent standard 
code metrics are in fact ineffective even in standard 
cases. (Concas, 2007) investigated 10 properties 
related to classes, methods and the relationships 
between them and found that distributions are often 
Pareto or long-normal distributions. As such, they 
argued that standard evaluations that are often based 
on means and standard deviations are misleading. 
Another study has found a manifestation of Power 
law, a law that is very common in natural and social 
phenomenon, in source code (Wheeldon, 2003). A 
power law implies that small values are extremely 
common, whereas large values are extremely rare. In 
that study, the authors identify twelve new power 
laws relating to the static graph structures of Java 

programs. (Yao, 2009) apply complex network theory 
to lar object-oriented software system. They 
demonstrated that large object-oriented software 
network is a scale-free network with power-law 
distribution of degree, low shortest path length and 
high clustering coefficient. In particular, with 
increase of softwarepsilas scale, scale-free property is 
more and more evident. In a survey study (Badreddin, 
2018) they found that there are some increase in 
formal and informal modeling platforms and tools 

In a related work, (Herraiz, 2011) analyzed the 
size of a large collection of software (the Debian 
GNU/Linux distribution version 5.0.2) and found that 
the statistical distribution of its source code file sizes 
follows a double Pareto distribution. Because 
identifying appropriate metrics and their threshold is 
challenging, many have proposed using experience as 
a primary source for metric definition (Lanza, 2007) 
(Coleman, 1995) (Nejmeh, 1988). Resorting to 
experience is in fact related to the proposed approach 
in this paper. Software design is a formalization of the 
expertise of the software developer team, their 
domain expertise, and the software context under 
development. 

11 CONCLUSION 

In this article, we introduced a new approach to 
measure software quality by using fuzzy metrics that 
are derived from the software design. This metrics 
starts by estimating complexity rating for each class, 
which itself is estimated from the complexity rating 
of the class attributes, and the complexity rating of the 
class methods. Next, for estimating the fuzzy code 
quality metrics, we followed a pattern to explain the 
relationship between class complexity and the LOC 
for that class, and between method complexity and 
LOC for that method.  

To evaluate our new approach, we used a case 
study constructs two points of analysis, analysis of a 
stable codebase developed by experienced 
professionals from high trending repositories, and 
analysis of a stable codebase developed by non-
professionals from low trending repositories. We 
found that our new metrics works better with the high 
trending repositories that developed by professional 
developers. We can observe that the correlation 
between class complexity and class’s lines of code is 
extremely high, r = 0.85, in average of high trending 
repositories. Finally, we compared the results of our 
metrics with the results of a code smell detection tool 
to evaluate our approach. We discovered that both of 
our approach and the detection tool leading to almost 
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the same results which validate our approach. In 
future work, we are going to apply our metrics to a 
large number of projects implemented with different 
programming languages. 
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