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Abstract: Inconsistent conclusions have been drawn from recent studies exploring the influence of data similarity on 
the scoring power of machine-learning scoring functions, but they were all based on the PDBbind v2007 
refined set whose data size is limited to just 1300 protein-ligand complexes. Whether these conclusions can 
be generalized to substantially larger and more diverse datasets warrants further examinations. Besides, the 
previous definition of protein structure similarity, which relied on aligning monomers, might not truly reflect 
what it was supposed to be. Moreover, the impact of binding pocket similarity has not been investigated either. 
Here we have employed the updated refined set v2013 providing 2959 complexes and utilized not only protein 
structure and ligand fingerprint similarity but also a novel measure based on binding pocket topology 
dissimilarity to systematically control how similar or dissimilar complexes are incorporated for training 
predictive models. Three empirical scoring functions X-Score, AutoDock Vina, Cyscore and their random 
forest counterparts were evaluated. Results have confirmed that dissimilar training complexes may be 
valuable if allied with appropriate machine learning algorithms and informative descriptor sets. Machine-
learning scoring functions acquire their remarkable scoring power through mining more data to advance 
performance persistently, whereas classical scoring functions lack such learning ability. The software code 
and data used in this study and supplementary results are available at https://GitHub.com/HongjianLi/MLSF. 

1 INTRODUCTION 

In structural bioinformatics, the prediction of binding 
affinity of a protein-ligand complex is carried out by 
a scoring function (SF). In contrast to the classical 
SFs which rely on linear regression using a carefully 
selected array of molecular descriptors driven by 
expert knowledge, machine-learning SFs circumvent 
such predetermined functional forms and instead 
infer a vastly nonlinear model from the data. Various 
studies have already illustrated the remarkable 
performance of machine-learning SFs over classical 
SFs (Ain et al., 2015; Li et al., 2017). 

Controversy over the influence of data similarity 
between the training and test sets on the scoring 
power of SFs has arisen lately. Li and Yang 
quantified the training-test set similarity in terms of 
protein structures and sequences, and used the 
similarity cutoffs to split the full training set into a 
series of nested training sets, showing that machine-
learning SFs failed to outperform classical SFs after 

removal of training complexes whose proteins are 
greatly similar to the test proteins identified by 
structure alignment and sequence alignment, leading 
to the conclusion that the outstanding scoring power 
of machine-learning SFs is exclusively attributed to 
the presence of training complexes with highly 
similar proteins to those in the test set (Li and Yang, 
2017). However, a follow-up but expanded re-
analysis by Li et al. revealed instead that even when 
trained with a moderate percent of dissimilar proteins 
machine-learning SFs would already outperform 
classical SFs, leading to the different conclusion that 
machine-learning SFs owe a considerable portion of 
their superior performance to training on complexes 
with dissimilar proteins to those in the test set (Li et 
al., 2018). Subsequently the same authors further 
demonstrated that classical SFs are unable to exploit 
large capacities of structural and interaction data, as 
incorporating a larger proportion of similar 
complexes to the training set did not render classical 
SFs more accurate (Li et al., 2019). 
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To deeply elaborate how SFs would behave given 
varying degrees of data similarity, here we are 
revisiting this interesting question with an extensively 
revised methodology in the following ways. First, all 
the above-mentioned three studies employed 
PDBbind v2007 refined set as the solo benchmark, 
which is limited to a small amount of merely 1300 
complexes. It remains unclear whether the impact of 
data similarity on SFs would be generalizable to 
larger datasets. Therefore we will employ the updated 
v2013 benchmark (Li et al., 2014) offering 2959 
complexes, whose data size has more than doubled. 
Second, in the above studies the structural similarity 
between a pair of training and test set proteins was 
defined as the TM-score calculated from the structure 
alignment program TM-align, but TM-align can only 
be applied to aligning a single-chain structure to 
another single-chain structure. Given that most 
proteins of the PDBbind benchmarks contain multiple 
chains, each chain was extracted and compared. This 
all-chains-against-all-chains method, despite being 
convenient, could possibly step into the danger of 
misaligning to an irrelevant chain. Thus, we will 
switch to MM-align (Mukherjee and Zhang, 2009), 
which is specifically designed for structurally 
aligning multiple-chain protein-protein complexes. 
Moreover, the similarity of two complexes is 
determined by not only their proteins in global shape 
but also their ligands in local binding sites, hence we 
will supplement a novel similarity measure based on 
pocket topology. 

2 METHODS 

2.1 Performance Benchmark 

The PDBbind benchmarks have been widely used for 
evaluating the scoring power of SFs. Here v2013 was 
exploited, whose refined set provides 2959 crystal 
structures of protein-ligand complexes as well as their 
experimentally measured binding affinities. Among 
them, a core set of 195 complexes were usually 
reserved for test purpose, and the remaining 2764 
complexes were used for training. Although v2013 
happens to have a core set of the same size as that of 
v2007, only 25 (13%) complexes are identical, 
whereas the other 170 (87%) complexes are new and 
not included for evaluation in the recent three studies. 
As usual, three quantitative indicators of the scoring 
power, namely root mean square error (RMSE), 
Pearson correlation coefficient (Rp) and Spearman 
correlation coefficient (Rs), were employed to assess 
the predictive accuracy of the considered SFs. 

2.2 Similarity Measures 

There are multiple ways to define the similarity of a 
training complex and a test complex, either by their 
proteins, their ligands, or their binding pockets. 
Previously the structural similarity of two proteins 
was defined as the TM-score, which has the value in 
(0,1]. The TM-score was computed by the TM-align 
program which generates an optimized residue-to-
residue alignment for comparing two protein chains 
whose sequences can be different. Nevertheless, TM-
align is limited to aligning single-chain monomer 
protein structures. On the contrary, MM-align is 
purposely designed for aligning multiple-chain 
multimer protein structures. It is built on a heuristic 
iteration of a modified Needleman-Wunsch dynamic 
programming algorithm, with the alignment score 
specified by the inter-complex residue distances. The 
multiple chains in each complex are joined in every 
possible order and then simultaneously aligned with 
cross-chain alignments prevented. The TM-score 
reported by MM-align after being normalized by the 
test protein was used to define the protein structure 
similarity here, thus avoiding the risk of misaligning 
a chain of a protein to an irrelevant chain in another 
protein. 

Likewise, the similarity of binding ligands of the 
training and test sets were also taken into account by 
calculating the ECFP4 fingerprint implemented in 
OpenBabel and their pairwise Tanimoto coefficients. 
Such ligand fingerprint similarity was not explicitly 
used to create a series of nested training sets in two 
previous studies (Li and Yang, 2017; Li et al., 2018), 
but here it is devoted to offer a comparison to protein 
structure similarity. 

The similarity of binding pockets of training and 
test sets is investigated for the first time in the present 
study. While the protein structure similarity is of 
global nature, i.e. it considers the whole protein 
structure when calculating structural similarity, the 
binding of a ligand to a macromolecular protein is 
instead mostly determined by the local environment 
of the binding pocket. In fact, the same ligand–
binding domain may be found in globally dissimilar 
proteins. This explains the rationale of supplementing 
such an extra similarity measure. To implement, the 
TopMap algorithm (ElGamacy and Van Meervelt, 
2015) was applied on the pocket of each protein to 
encode its geometrical shape and atomic partial 
charges into a feature vector of fifteen numeric 
elements. The dissimilarity of two comparing pockets 
was then quantified as the Manhattan distance 
between their feature vectors. Pay attention that the 
dissimilarity calculated by TopMap does not get 
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transformed to a normalized similarity value with 
either a generalized exponential function or a 
generalized Lorentz function. Hence the larger the 
dissimilarity value is, the more dissimilar the two 
comparing pockets are. 

Having the three similarity measures properly 
defined, nested sets of training complexes with 
increasing degree of similarity to the test set were 
created as follows. At a certain cutoff, a complex is 
included in the training set if its similarity to every 
test complex is always no greater than the cutoff 
value. In other words, a training complex is excluded 
from the original full training set if its similarity to 
any of the test complexes is higher than the cutoff. 
Mathematically, given a fixed test set (TS), for both 
protein structure similarity and ligand fingerprint 
similarity whose values are normalized to [0, 1], a 
series of new training sets (NT) were constructed 
through gradually accumulating samples from the 
original training set (OT) according to varying 
similarity cutoff values: 
 

ܰ ௗܶ௦
௦ ሺܿሻ ൌ ൛	݌௜	|		݌௜ ∈ ௝ݍ	∀	݀݊ܽ	ܱܶ ∈ ܶܵ,

,	௜݌൫ݏ ௝൯ݍ ൑ ܿ	ൟ 
(1)

 

where ௜݌	  and 	ݍ௝  represent the ith and jth samples 
from OT and TS, respectively; ݏ൫݌௜	, ௝൯ݍ  is the 
similarity between	݌௜ and	ݍ௝; and c is the similarity 
cutoff used to control the generation of new training 
sets. By definition, ܰ ௗܶ௦

௦ ሺ0ሻ ൌ ∅, ܰ ௗܶ௦
௦ ሺ1ሻ ൌ ܱܶ . 

When the cutoff value c steadily increases from 0 to 
1, nested sets of training complexes with increasing 
degrees of similarity to the test set were accordingly 
created. Analogously in an opposite direction, nested 
sets of training complexes with increasing degrees of 
dissimilarity to the test set were created as follows, 
but this time with the cutoff value c steadily 
decreasing from 1 to 0: 
 

ܰ ௦ܶௗ
௦ ሺܿሻ ൌ ൛	݌௜	|		݌௜ ∈ ௝ݍ	∃	݀݊ܽ	ܱܶ ∈ ܶܵ,

,	௜݌൫ݏ ௝൯ݍ ൐ ܿ	ൟ 
(2)

 

By definition, ܰ ௦ܶௗ
௦ ሺ1ሻ ൌ ∅,ܰ ௦ܶௗ

௦ ሺ0ሻ ൌ ܱܶ. Indeed, 
∀ܿ ∈ ሾ0, 1ሿ, ܰ ௗܶ௦

௦ ሺܿሻ ∪ ܰ ௦ܶௗ
௦ ሺܿሻ ൌ ܱܶ,ܰ ௗܶ௦

௦ ሺܿሻ ∩
ܰ ௦ܶௗ

௦ ሺܿሻ ൌ ∅. 
Note that the above equations apply to protein 

structure and ligand fingerprint similarity measures 
only. In the case of pocket topology, as the values 
indicate dissimilarity rather than similarity and they 
fall in the range of [0, +∞), a slightly different 
definition is required to construct nested training sets 
with increasing degrees of similarity to the test set 
when the cutoff c steadily decreases from +∞ to 0: 
 

ܰ ௗܶ௦
ௗ ሺܿሻ ൌ ൛ ௜݌ | ௜݌ ∈ ௝ݍ	∀	݀݊ܽ	ܱܶ ∈ ܶܵ,

݀൫݌௜ , ௝൯ݍ ൒ ܿ	ൟ 
(3)

 

where ݀൫݌௜	, ௝൯ݍ  is the dissimilarity between  ௜݌	
and	ݍ௝. Analogously in an opposite direction, nested 
sets of training complexes with increasing degrees of 
dissimilarity to the test set were created as follows 
with c steadily increasing from 0 to +∞: 
 

ܰ ௦ܶௗ
ௗ ሺܿሻ ൌ ൛ ௜݌ | ௜݌ ∈ ௝ݍ	∃	݀݊ܽ	ܱܶ ∈ ܶܵ,

݀൫݌௜ , ௝൯ݍ ൏ ܿ	ൟ 
(4)

 

Likewise by definition, ∀ܿ ∈ ሾ0, ൅∞ሻ,ܰ ௗܶ௦
ௗ ሺܿሻ ∪

ܰ ௦ܶௗ
ௗ ሺܿሻ ൌ ܱܶ,ܰ ௗܶ௦

ௗ ሺܿሻ ∩ ܰ ௦ܶௗ
ௗ ሺܿሻ ൌ ∅. 

2.3 Scoring Functions 

Classical SFs taking on multiple linear regression 
(MLR) were compared to their machine-learning 
counterparts. X-Score (Wang et al., 2002) v1.3 was 
selected as a representative of classical SFs because 
on the PDBbind v2013 core set it performed the best 
among a panel of 20 SFs, most of which are 
implemented in mainstream commercial software. X-
Score is a consensus of three constituent scores which 
all consider four common intermolecular features: 
van der Waals interaction (VDW), hydrogen bonding 
(HB), deformation penalty (RT), and hydrophobic 
effect (HP/HM/HS). The three parallel SFs only 
differ in the computation of the hydrophobic effect 
term. To rebuild X-Score, the three constituent SFs 
were individually trained using MLR with 
coefficients for each score re-calibrated on the new 
training sets with similarity control. To build a 
machine-learning counterpart, the same six 
descriptors were fed to random forest (RF), thereby 
generating RF::Xscore. 

Provided that X-Score is a SF dated back in 2002 
which might not reflect the latest development in this 
area, the recent classical SFs AutoDock Vina (Trott 
and Olson, 2010) v1.1.2 and Cyscore (Cao and Li, 
2014) v2.0.3 as well as their random forest variants 
RF::Vina (Li et al., 2015) and RF::Cyscore (Li et al., 
2014) were also built and evaluated. 

Furthermore, as machine learning algorithms can 
easily incorporate more variables for training, the six 
descriptors from X-Score, the six descriptors from 
Vina and the four descriptors from Cyscore were 
combined to spawn a novel machine-learning SFs, 
RF::XVC, to investigate to what extent the mixed 
descriptors would contribute to the performance 
compared to RF::Xscore, RF::Vina and RF::Cyscore. 
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3 RESULTS AND DISCUSSION 

First, we had to determine specific cutoff values to 
systematically adjust how similar or dissimilar 
complexes are incorporated for training. We tried 
different settings and consequently decided that, for 
protein structure similarity, the cutoff value c 
increases from 0.40 to 1.00 with a step size of 0.01 in 
the direction specified by ܰ ௗܶ௦

௦ , and decreases from 
0.99 to 0.40 and then to 0 in the opposite direction 
specified by ܰ ௦ܶௗ

௦ ; for ligand fingerprint similarity, c 
increases from 0.55 to 1.00 in ܰ ௗܶ௦

௦ , and decreases 
from 0.99 to 0.55 and then to 0 in ܰ ௦ܶௗ

௦ ; for pocket 
topology dissimilarity, c decreases from 10.0 to 0 
with a step size of 0.2 in ܰ ௗܶ௦

ௗ , and increases from 0.2 
to 10.0 and then to +∞ in ܰ ௦ܶௗ

ௗ . 
Next, we plotted the number of training 

complexes against the three types of cutoff (Figure 1), 
in order to visibly show that these distributions are 
hardly even. In fact, the distribution of training 
complexes under the protein structure similarity 
measure is extraordinarily skewed, e.g. as many as 
859 training complexes (accounting for 31% of the 
original full training set of 2764 complexes) have a 
test set similarity greater than 0.99 (note the sheer 
height of the rightmost bar), and 156 training 
complexes have a test set similarity in the range of 
(0.98, 0.99]. Incrementing the cutoff by just 0.01 from 
0.99 to 1.00 will include 859 additional training 
complexes, whereas incrementing the cutoff by the 
same step size from 0.90 to 0.91 will include merely 
17 additional training complexes, even none from 
0.72 to 0.73. Therefore, one would seemingly expect 
a significant performance gain from raising the cutoff 
by just 0.01 if the cutoff is already at 0.99. This is also 
true, although less apparent, for ligand fingerprint 
similarity, where 179 training complexes have a test 
set similarity greater than 0.99. The distribution under 
the pocket topology dissimilarity measure, however, 
seems relatively more uniform, with just 15 
complexes falling in the range of [0, 0.2) and just 134 
complexes in the range of [10, +∞). Hence 
introducing this supplementary similarity measure 
based on pocket topology, which is novel in this study, 
offers a different tool to investigate the influence of 
data similarity on the scoring power of SFs with 
training set size unbiased towards both ends of cutoff. 

Keeping in mind the above-illustrated non-even 
distributions, we re-trained the three classical SFs 
(MLR::Xscore, MLR::Vina, MLR::Cyscore) and the 
four machine-learning SFs (RF::Xscore, RF::Vina, 
RF::Cyscore, RF::XVC) on the 61 nested training sets 
generated with protein structure similarity measure, 
evaluated their scoring power on the PDBbind v2013 

core set, and plotted their predictive performance (in 
terms of Rp, Rs and RMSE) in a consistent scale 
against both cutoff value and number of training 
complexes in two similarity directions (Figure 2). 
Looking at the top row alone, where RF::Xscore was 
not able to surpass MLR::Xscore until the similarity 
cutoff reached 0.99, it is therefore not surprising for 
Li and Yang to draw their conclusion that after 
removal of training proteins that are highly similar to 
the test proteins, machine-learning SFs did not 
outperform classical SFs in Rp (Li and Yang, 2017) 
(note that the v2007 dataset employed in previous 
studies has an analogously skewed distribution as the 
v2013 dataset employed in this study; data not 
shown). Nonetheless, if one looks at the second row, 
which plots essentially the same result but against the 
associated number of training complexes instead, it 
becomes clear that RF::Xscore trained on 1905 (the 
number of training complexes associated to cutoff 
0.99, about 69% of the full 2764 complexes) 
complexes was able to outperform MLR::Xscore, 
which was already the best performing classical SF 
considered here. In terms of RMSE, RF::Xscore 
surpassed MLR::Xscore at cutoff=0.91 when they 
were trained on just 1458 (53%) complexes whose 
proteins are not so similar to those in the test set. This 
is more apparent for RF::XVC, which outperformed 
MLR::Xscore at a cutoff of just 0.70, corresponding 
to only 1243 (45%) training complexes. In other 
words, even if the original training set was split into 
two halves and the half with proteins dissimilar to the 
test set was used for training, machine-learning SFs 
would still produce a smaller prediction error than the 
best classical SF. Having said that, it does not make 
sense for anyone to exclude the most relevant samples 
for training (Li et al., 2018). When the full training set 
was used, a large performance gap between machine-
learning and classical SFs was observed. From a 
different viewpoint, through comparing the top two 
rows showing basically the same result but with 
different horizontal axis, the crossing point where 
RF::Xscore started to overtake MLR::Xscore is 
located near the right edge of the subfigures in the 
first row, whereas the same crossing point is 
noticeably left shifted in the second row, suggesting 
that the outstanding scoring power of RF::Xscore and 
RF::XVC is actually attributed to increasing training 
set size but not exclusively to a high similarity cutoff 
value as claimed previously. 

Due to the skewness of the distribution of training 
complexes under the protein structure similarity 
measure, it should be understandable to anticipate a 
remarkable performance gain from raising the cutoff 
by only 0.01 if it already touches 0.99 because it will 
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Figure 1: Number of training complexes against protein structure similarity cutoff (left column), ligand fingerprint similarity 
cutoff (center column) and pocket topology dissimilarity cutoff (right column) in two directions, either starting from a small 
training set comprising complexes most dissimilar to the test set (top row) or starting from a small training set comprising 
complexes most similar to the test set (bottom row). The histogram plots the number of additional complexes that will be 
added to a larger set when the protein structure similarity cutoff is incremented by the step size of 0.01 (left), when the ligand 
fingerprint similarity cutoff is incremented by 0.01 (center), or when the pocket topology dissimilarity cutoff is decremented 
by 0.2 (right). Hence the number of training complexes referenced by an arbitrary point of the red curve is equal to the 
cumulative summation over the heights of all the bars of and before the corresponding cutoff. By definition, the histogram of 
the three subfigures at the bottom row is identical to the histogram at the top row after being mirrored along the median cutoff.

incorporate as many as 859 complexes whose 
proteins are the most similar to those in the test set. 
However, this is only true for machine-learning SFs 
but false for classical SFs. The Rp for RF::Xscore, 
RF::Vina and RF::XVC notably increased from 
0.642, 0.640 and 0.660 to 0.658, 0.683 and 0.714, 
respectively, and their RMSE reduced from 1.74, 1.75 
and 1.72 to 1.72, 1.69 and 1.63, respectively. By 
contrast, the performance of classical SFs even 
worsened a little bit, raising RMSE from 1.79 to 1.81 
for MLR::Xscore and degrading Rp from 0.620 to 
0.603 for MLR::Cyscore. Feeding the most relevant 
data to train MLR models surprisingly cost them to 
be even less accurate. 

Among the three classical SFs, MLR::Xscore was 
the most predictive, followed by MLR::Cyscore. 
MLR::Vina performed substantially worse because 
the Nrot term was not re-optimized provided that no 
optimization detail was disclosed by the original 
authors. Hence MLR::Vina in principle served as a 
baseline model for comparison. It is important to 
witness that their performance stagnated and could 

not benefit from more training data, even those that 
are most relevant to the test set. In line with the 
conclusion by Li et al., classical SFs are unable to 
exploit large volumes of structural and interaction 
data (Li et al., 2019) because of insufficient model 
complexity with few parameters and imposition of a 
fixed functional form. This is a critical disadvantage 
of classical SFs because more and more structural and 
interaction data will be available in the future and 
these SFs cannot properly exploit such big data. 

RF::XVC, empowered by its integration of 
features from all three individual SFs, undoubtedly 
turned out to be the best performing machine-learning 
SF, followed by RF::Vina and RF::Xscore. 
RF::Cyscore somewhat underperformed and failed to 
match its performance to RF::Vina or RF::Xscore. 
We suspect a possible reason could be the lack of 
adequate distinguishing power of two of the four 
descriptors used by Cyscore (hydrogen-bond energy 
and the ligand's entropy) during RF construction, as 
their variable importance had been previously shown 
to be significantly low, reflected by the percentage of  

Influence of Data Similarity on the Scoring Power of Machine-learning Scoring Functions for Docking

89



 

Figure 2: Scoring power of three classical SFs (MLR::Xscore, MLR::Vina and MLR::Cyscore) and four machine-learning 
SFs (RF::Xscore, RF::Vina, RF::Cyscore and RF::XVC) evaluated on the PDBbind v2013 benchmark when they were built 
on nested training sets generated with protein structure similarity measure. The left, center and right columns demonstrate the 
predictive performance of the considered SFs in terms of Rp, Rs and RMSE, respectively. The first row plots the performance 
against cutoff, whereas the second row plots essentially the same result but against the associated number of training 
complexes instead. Both rows present the result where training complexes were formed by proteins that were firstly most 
dissimilar to those in the test set and then progressively expanded to incorporate similar proteins as well. The bottom two 
rows, conversely, depict the performance in a reversed similarity direction where only training complexes similar to those in 
the test set were exploited initially and then dissimilar complexes were gradually included as well.
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increase in mean square error observed in out-of-bag 
prediction after a particular feature was permuted at 
random (Li et al., 2014). Despite being the least 
predictive among the group of machine-learning SFs, 
RF::Cyscore still possessed the capability of keeping 
proliferating performance persistently with more 
training data, which was not seen in classical SFs. 
Though RF::Cyscore performed far worse than 
MLR::Cyscore initially (Rp=0.490 vs 0.563), with 
this learning capability it kept improving and finally 
managed to yield a comparable Rp value on the full 
training set (0.594 vs 0.603) and produce an even 
lower RMSE value (1.83 vs 1.84). 

From the top two rows of Figure 2 we have just 
illustrated that RF::XVC already surpassed classical 
SFs when trained on just 45% of complexes most 
dissimilar to the test set, although this percentage 
could be further reduced to 32% if extra sets of 
features were put into assessment (Li et al., 2019). We 
now inspect a different scenario, represented by the 
bottom two rows, where the training set was initially 
composed of complexes highly similar to those in the 
test set only and regularly enlarged to include 
dissimilar complexes as well. In this context, the 
curves for RF::XVC, RF::Vina and RF::Xscore are 
always above those of the classical SFs in Rp and Rs 
and always below in RMSE, indicating the superior 
performance of these machine-learning SFs to any of 
the classical SFs regardless of the cutoff. This 
constitutes a strong result that under no circumstances 
did any of the classical SFs outperform any of the 
machine-learning SFs (except RF::Cyscore due to the 
possible reason explained above). This was one of the 
major conclusions made by Li et al. on the v2007 
benchmark (Li et al., 2019) and now it is deemed 
generalizable to the larger and more diverse v2013 
benchmark being investigated here. 

Interestingly, unlike in the previous similarity 
direction where the peak performance for machine-
learning SFs was achieved by using the full training 
set of 2764 complexes, here the peak performance 
was obtained at a cutoff of 0.61 (1647 complexes) for 
RF::XVC (Rp=0.731, RMSE=1.62), 0.65 (1580 
complexes) for RF::Vina (Rp=0.703, RMSE=1.67), 
and 0.46 (1990 complexes) for RF::Xscore 
(Rp=0.686, RMSE=1.70). Such peak was also 
detected on the v2007 benchmark (Li et al., 2019), 
and its occurrence seems to be due to a certain 
compromise between the training set volume and its 
relevance to the test data: incorporating additional 
complexes dissimilar to the test set beyond a certain 
threshold of similarity cutoff would probably 
introduce data noise. That said, the performance 
difference between machine-learning SFs trained on 

a subset generated from an optimal cutoff and those 
trained on the full set is just marginal. For instance, 
the RMSE obtained by RF::XVC, RF::Vina and 
RF::Xscore trained on the full set was 1.63, 1.69 and 
1.72, respectively, pretty close to their peak 
performance. Training machine-learning SFs on the 
full set of complexes, although being a bit less 
predictive compared to training on a prudently 
selected subset of complexes most similar to the test 
set, has the hidden advantage of possessing the widest 
applicability domain, suggesting that such models 
should predict better on more diverse test sets 
containing protein families not present in the v2013 
core set. Moreover, this simple approach of using the 
full set for training does not bother to search for the 
optimal cutoff value, which does not seem an easy 
task. Failing that would probably incur a suboptimal 
performance than simply utilizing the full set. 

Consistent with the common belief, now validated 
again after Li et al.’s study on the v2007 dataset (Li 
et al., 2019), training complexes formed by proteins 
similar to those in the test set contribute significantly 
more to the performance of machine-learning SFs 
than proteins dissimilar to the test set. For example, 
RF::XVC yielded Rp=0.719, Rs=0.718, RMSE=1.64 
when trained on the 1360 complexes (cutoff=0.87) 
comprising proteins most similar to the test set, versus 
Rp=0.611, Rs=0.609, RMSE=1.82 when the same SF 
was trained on the 1360 complexes (cutoff=0.84) 
comprising proteins most dissimilar to the test set. 

Switching the similarity measure from protein 
structure to ligand fingerprint (result at GitHub) also 
confirms the above observations. RF::Xscore resulted 
in a smaller RMSE than MLR::Xscore at the  cutoff 
of 0.79 when they were trained on 2083 (75%) 
complexes whose ligands are not so similar to those 
in the test set. Raising the cutoff by only 0.01 from 
0.99 to 1.00, equivalent to incorporating 179 
additional training complexes containing ligands 
most similar to those in the test set, helped to strongly 
boost the performance of machine-learning SFs (Rp 
increased from 0.677 to 0.714 for RF::XVC and from 
0.643 to 0.683 for RF::Vina) but not classical SFs (Rp 
stagnated at 0.622 for MLR::Xscore and slightly 
increased from 0.598 to 0.603 for MLR::Cyscore). 
Classical SFs were unable to exploit the most relevant 
data for training, whereas every machine-learning SF 
exhibited the capability of keeping growing 
performance consistently with more training data. 
Assessed in a reverse similarity direction, the strong 
conclusion still holds: under no circumstances did 
MLR::Xscore, MLR::Vina or MLR::Cyscore surpass 
RF::XVC, RF::Xscore or RF::Vina. The performance 
of machine-learning SFs peaked at about 500 to 1000 
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complexes containing ligands most similar to the test 
set, but it is difficult to find such an optimal subset. 

Further switching the similarity measure to pocket 
topology (result available at GitHub) reveals novel 
findings. Recall that under this measure the training 
complexes are fairly more evenly distributed among 
the dissimilarity cutoff values than the other two 
measures (Figure 1). Dropping the cutoff from 0.20 
to 0.00 merely introduced 15 additional training 
complexes whose pockets are most similar to those in 
the test set. To our surprise, including these 15 most 
relevant samples in training machine-learning SFs 
weakly downgraded the performance of RF::XVC 
(Rp dropped from 0.717 to 0.711) and RF::Vina (Rp 
dropped from 0.688 to 0.687), but the difference is 
insignificant. What is significant is that from the 
dissimilarity cutoff range of 6 to 2, among which the 
majority of training complexes (1807 or 65%) are 
distributed (Figure 1), machine-learning SFs kept 
learning and improving performance persistently. 
These are not the most relevant data compared to the 
397 complexes with a dissimilarity of less than 2, yet 
they contributed considerably to the performance of 
machine-learning SFs. On the contrary, the 
performance of classical SFs nearly levelled off. 

4 CONCLUSIONS 

Here we have revisited the question of how data 
similarity influences the performance of scoring 
functions (SFs) on binding affinity prediction. By 
systematically evaluating three classical SFs and four 
machine-learning SFs on a substantially larger dataset 
and using not only protein structure but also ligand 
fingerprint and pocket topology for measuring 
training-test data similarity, we have confirmed that 
dissimilar training complexes may contribute 
considerably to the superior performance of machine-
learning SFs (Li et al., 2018; 2019), which is not 
exclusively due to inclusion of the most relevant data 
as claimed recently (Li and Yang, 2017). These SFs 
keep learning with more data and improving scoring 
power steadily. Training data most relevant to the test 
set contribute substantially more to the predictive 
performance of machine-learning SFs than those 
most irrelevant to the test set. Training machine-
learning SFs on all the available complexes, despite 
not being the most predictive when compared to 
training on a certain subset of complexes which has 
to be wisely selected, will broaden the applicability 
domain and should therefore lead to better result if 
evaluated on external benchmarks comprising new 
complexes not included in the current benchmark. 

ACKNOWLEDGEMENTS 

We thank SDIVF R&D Centre for providing a project 
grant (SDIVF-PJ-B-18005) to carry out this work. 

REFERENCES 

Ain, Q.U. et al. (2015) Machine-learning scoring functions 
to improve structure-based binding affinity prediction 
and virtual screening. Wiley Interdiscip. Rev. Comput. 
Mol. Sci., 5, 405–424. 

Cao, Y. and Li,L. (2014) Improved protein-ligand binding 
affinity prediction by using a curvature-dependent 
surface-area model. Bioinformatics, 30, 1674–1680. 

ElGamacy, M. and Van Meervelt,L. (2015) A fast 
topological analysis algorithm for large-scale similarity 
evaluations of ligands and binding pockets. J. 
Cheminform., 7, 42. 

Li, H. et al. (2019) Classical scoring functions for docking 
are unable to exploit large volumes of structural and 
interaction data. Bioinformatics, btz183. 

Li, H. et al. (2017) Identification of Clinically Approved 
Drugs Indacaterol and Canagliflozin for Repurposing to 
Treat Epidermal Growth Factor Tyrosine Kinase 
Inhibitor-Resistant Lung Cancer. Front. Oncol., 7, 288. 

Li, H. et al. (2015) Improving autodock vina using random 
forest: The growing accuracy of binding affinity 
prediction by the effective exploitation of larger data 
sets. Mol. Inform., 34, 115–126. 

Li, H., Leung,K.S., et al. (2014) Substituting random forest 
for multiple linear regression improves binding affinity 
prediction of scoring functions: Cyscore as a case study. 
BMC Bioinformatics, 15, 1–12. 

Li, H. et al. (2018) The impact of protein structure and 
sequence similarity on the accuracy of machine-
learning scoring functions for binding affinity 
prediction. Biomolecules, 8, 12. 

Li, Y., Liu,Z., et al. (2014) Comparative assessment of 
scoring functions on an updated benchmark: 1. 
compilation of the test set. J. Chem. Inf. Model., 54, 
1700–1716. 

Li,Y. and Yang,J. (2017) Structural and Sequence 
Similarity Makes a Significant Impact on Machine-
Learning-Based Scoring Functions for Protein-Ligand 
Interactions. J. Chem. Inf. Model., 57, 1007–1012. 

Mukherjee, S. and Zhang,Y. (2009) MM-align: A quick 
algorithm for aligning multiple-chain protein complex 
structures using iterative dynamic programming. 
Nucleic Acids Res., 37, e83. 

Trott, O. and Olson,A.J. (2010) AutoDock Vina: Improving 
the speed and accuracy of docking with a new scoring 
function, efficient optimization, and multithreading. J. 
Comput. Chem., 31, 455–461. 

Wang, R. et al. (2002) Further development and validation 
of empirical scoring functions for structure-based 
binding affinity prediction. J. Comput. Aided. Mol. 
Des., 16, 11–26. 

 

BIOINFORMATICS 2020 - 11th International Conference on Bioinformatics Models, Methods and Algorithms

92


