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Although The Semantic Web was built with the Open World Assumption in mind, there are many cases where
the Closed World Assumption would be a better fit. This is unfortunate because the OWA prevents rich queries
involving negation from taking place, even in contexts where it would be appropriate. In this paper we present
an English Natural Language Query Interface to event-based triplestores based on Compositional Semantics
that can support both open and closed world semantics with “drop-in” denotations for “no”, “not”, “non”,
and “the least”. Where closed world semantics are not appropriate, omitting these denotations is sufficient
to restore the OWA. The result is a highly expressive compositional semantics supporting complex linguistic
constructs such as chained prepositional phrases, n-ary transitive verbs, superlative phrases, and negation,
suitable for expert systems and knowledge bases.

1 INTRODUCTION

The Semantic Web consists of a collection of triple-
stores accessible via endpoints that process queries
using various query languages. Widely used methods
for querying triplestores include using SPARQL (Har-
ris et al.,, 2013) and Linked Data Fragments (LDF)
(Verborgh et al., 2014). These query languages, while
powerful, are not designed with end-users in mind,
with their primary use cases aimed towards databases
rather than user-facing applications. An alternative
approach to using a database querying language di-
rectly is to use a Natural Language Query Interface
(NLQI). NLQIs have a number of benefits including
being accessible through both text and speech modal-
ities.

There are two main approaches used by NLQIs.
Machine Learning (ML) can be used to attempt to de-
termine the user’s intent and retrieve corresponding
relevant information. This has the advantage of be-
ing able to support a wide variety of queries, with the
risk that returned information may not truly satisfy the
user’s intent. The second type of approach is to use a
Compositional Semantics (CS) to directly answer the
query with regards to a knowledge base. CS is pred-
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icated on the notion that the meaning of a sentence
can be derived from the meaning of its parts (Dowty
etal., 1981). This has the advantage that the answer to
a query is as correct as the information in the knowl-
edge base itself. As a result, CS-based NLQIs are
able to express highly sophisticated “narrow” queries
using complex linguistic constructs including superla-
tives and chained prepositional phrases. For example,
it is possible for the NLQI presented in this paper to
evaluate, with respect to a knowledge base consisting
of facts about the solar system, the query:

which vacuumous moon that orbits the
planet that is orbited by the most moons
was discovered by nicholson or pickering
with a telescope in 1898 at not mt_wilson
or not mt_hopkins

However, CS approaches have drawn a lot of criti-
cism. They have been characterized as being rigid,
and therefore not sufficiently able to handle complex
queries in real world applications. Recent work has
addressed a number of these issues, including ac-
commodating chained complex prepositional phrases
(Peelar, 2016), n-ary transitive verbs (Peelar and
Frost, 2020b) and superlative phrases (Frost and Pee-
lar, 2019). It has also been shown that CS can be
memoized for efficient evaluation (Peelar and Frost,
2020a), which also enables offline pre-computation of
query results.
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One criticism of our previous approaches was that
they relied on the Open World Assumption (OWA)
and hence could not support negation in queries.
While the Resource Description Framework (RDF)
((W30), 2014) underlying the Semantic Web itself is
predicated on the OWA, there exist triplestores where
the Closed World Assumption (CWA) holds, particu-
larly in knowledge bases for expert systems. It would
be ideal to support negation in queries to these triple-
stores.

In this paper, we show that it is possible to ac-
commodate negation in an English NLQI to an event-
based triplestore where the CWA holds. In particu-
lar, we describe an English NLQI to an event-based
triplestore using a CS that supports arbitrary quan-
tification including negation, complex linguistic con-
structs including chained prepositional phrases with
superlatives and n-ary transitive verbs. The approach
is an extension of Montague’s approach (Dowty et al.,
1981). Readers are directed towards (Frost and Pee-
lar, 2019) and (Peelar and Frost, 2020a) for an intro-
duction to the work that this paper builds on.

In Section 2 we describe previous work on NLQIs
to the Semantic Web that support negation. In Sec-
tion 3 we describe how to access a live demonstration
of our NLQI that can accommodate the queries pre-
sented in this paper along with some other example
queries. In Section 4 we describe our event-based se-
mantics and in Section 5 we describe how to accom-
modate negation where the CWA holds. In Section 6
we provide a list of examples queries and explain how
they are processed. Finally, we conclude in Section 7
and Section 8.

2 PREVIOUS WORK

In 2002, Frost and Boulos introduced the notion of
“complementary sets” as a way of accommodating
negation in FLMS, a set-theoretic version of Mon-
tague Semantics (Frost and Boulos, 2002). Their ap-
proach has two drawbacks: first, that a separate deno-
tation for transitive verbs had to be created for han-
dling queries such as “discover no moon”. In prac-
tice, this meant that 4 denotations of transitive verbs
were required: for active and passive tense verbs,
and a corresponding “no” query (as in “discover no
moon” or “discovered by no person”). The ap-
proach presented in this paper requires only one deno-
tation for transitive verbs for all cases, including with
the presence of chained prepositional phrases and su-
perlatives. Second, their approach required that the
cardinality of the set of entities in the database be a
known constant. The denotations presented in this pa-
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per receive the cardinality of the set of entities as an
argument instead. A query is made to the triplestore
itself to retrieve the cardinality of the set of entities,
removing the need for computing it locally.

Champollion showed that that negation in event-
based CS can be accommodated using ‘“negative
events” (Champollion, 2011). These appear to be
similar to the ideas expressed in (Frost and Boulos,
2002), although both approaches were developed in-
dependently. Where Frost and Boulos discuss repre-
senting the result of a “negative” query by implic-
itly enumerating the complement of a set of enti-
ties, Champollion describes events that preclude other
events from occurring. This gives some confidence
about the nature of the approach taken towards ac-
commodating negation in CS. Our own approach to
negation in this paper is based in part on (Frost and
Boulos, 2002), but is event-based rather than entity-
based and therefore suitable for event-based triple-
stores.

SQUALL (Ferre, 2012) has limited support for
negation in queries, mapping negation onto the
“NOT EXISTS” construct of SPARQL. In particular,
SQUALL has a denotation for the adverb “not”,
where its presence removes triples from the result
set. This implies closed-world semantics for the query
(Darari et al., 2014), although this is not discussed
by the authors. SQUALL is unable to accommo-
date negation in noun-phrases (such as “which non-
moon spins”). SQUALL is also unable to negate
termphrases (for example “not Hall or not Galileo”).
The reading of SQUALL queries is also not as nat-
ural as our semantics. The example given in (Ferré,
2014), “Which author of Paper42 has not affiliation
Salford_University?” could be expressed in the se-
mantics of this paper as “Which author of Paper4?2 is
not affiliated with Salford_University?” Also, where
SQUALL depends strictly on translation to SPARQL,
the approach described in this paper is not tied to any
particular database query language or interface and
could readily be adapted to relational databases.

3 HOW TO ACCESS OUR NLQI

A live demonstration of our NLQI is accessible via
the following URL:

https://speechweb2.cs.uwindsor.ca/solarman4/
demo_sparql.html

In addition to accepting textual input, it also can be
interacted with speech on browsers that support the
WebSpeech API (W3C et al., 2018). Currently, this
includes Google Chrome-based browsers and Firefox.
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3.1 System Overview

The approach presented in this paper is based on
Richard Montague’s denotational semantics (Dowty
et al.,, 1981). In particular, our system derives the
meaning of a query from the meaning of its parts.
A query is evaluated with respect to a triplestore as
though it were a formal mathematical expression us-
ing an Executable Attribute Grammar (Hafiz, 2011).
For example, the query “ganymede discovered no
moons” is evaluated as the expression:

|lphobos|| (||discovered|| (||no|| ||moons||))

where ||x|| represents the denotation (meaning) of x.
3.2 Supported Features

The following are a list of example queries that
demonstrate features supported by the interface.
n-ary Transitive verbs:

who used a telescope to discover a moon
Quantification:

who used two telescopes to discover one
moon = science_team-2
Chained prepositional phrases:

which telescope was used by a person in
1877 = refractor_telescope_l
Superlatives:

hall discovered the most moons that
orbit mars = True
Negated noun-phrases:

a non-planet was discovered = True
Negated verb-phrases:

allen did not discover anything = True
Negated term-phrases, including conjunction:

not hall and galileo discovered phobos
= False
Adjectives:

enceladus is a vacuumous moon = True
The above features can be combined arbitrarily to
form rich queries. For example, adjectives can be
combined with negation:

mars is a non-blue planet = True
In all cases, the query processor returns the syntax
tree of the query to help the user understand how the
query was evaluated (Peelar and Frost, 2020b). A list
of example queries and a discussion of how they are
evaluated can be found in Section 6.

4 EVENT-BASED
DENOTATIONAL SEMANTICS

The approach described in this paper builds upon
FLMS (Frost and Launchbury, 1989), EV-FLMS
(Frost et al., 2014), UEV-FLMS (Peelar, 2016), and
most recently Memoized UEV-FLMS (Peelar and
Frost, 2020a). Notably, our semantics are event-based
rather than entity-based. The fundamental data struc-
ture underlying our semantics is called the Function
defined by a Relation, or FDBR, described in Sec-
tion 4.2. This data structure has been shown to be
useful in answering a wide variety of Natural Lan-
guage queries (Frost and Peelar, 2019). In this pa-
per, we show how the FDBR can be used to answer
queries involving negation in event-based databases
where the CWA holds.

4.1 Event-based Triplestores

A conventional triplestore is a database of triples that
have the form (Subject, Predicate, Object). An event-
based triplestore is a triplestore where the Subject of a
triple denotes an event (Frost et al., 2013)(Frost et al.,
2014). The main advantage event-based triplestores
offer is that it is straightforward to add additional in-
formation to an event by simply adding more triples
referencing that event. It is less straightforward to do
the same in a triplestore where the Subject denotes an
entity. Such an approach in a conventional triplestore
requires reification and involves using ontological in-
formation to link multiple triples together.

As an example, consider a triple that describes the
statement “Jane bought a pencil”:

<ent:Jane> <act:purchase> <ent:pencil_1> .

Without reification, there is no way to add other in-
formation about the purchase to the triplestore, such
as the price, or the time or location that the transac-
tion took place. In an event-based triplestore, this is
straightforward:

<event:1> <type> <type:purchase_ev> .

<event:1> <subject> <ent:Jane> .
<event:1> <object> <ent:pencil_1> .

Since the triples directly reference the event itself,
adding more information about the event simply in-
volves adding more triples to the triplestore with the
Subject matching the event.

4.2 The Function Defined by a Relation
(FDBR)

The notion of a Function defined by a Relation
(FDBR) was first described in (Peelar, 2016) as use-
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ful datastructure for accommodating chained preposi-
tional phrases in Natural Language Queries. It was
shown that the word “by”, as in “discovered by”,
could be treated as a “virtual preposition” under this
approach. In (Frost and Peelar, 2019) it was shown
that the FDBR can be used to answer many kinds
of NL queries including superlatives (including those
that occur in a prepositional phrase), and as a use-
ful datastructure for memoizing the results of queries
performed in the denotations. This vastly improved
query execution time and opened the door for offline
computation of results. The definition of the FDBR is
as follows:

FDBR(rel) = {(x,image,) | (Je) (x,e) € rel
& image, = {y | (x,y) € rel}}

Where rel is the name of a binary relation. The FDBR
has been shown to be useful for the denotation of
transitive verbs. Consider the denotation for the ac-
tive voice of “discover” given in (Peelar and Frost,
2020b), for example:

||discover| =
At {(s, relevs) | (s,evs) € FDBR(discover_rel)
& (¢ obj_fdbr(evs) # 0)
& relevs = gather(obj_fdbr(evs))}

where obj_fdbr(evs) is the FDBR from the objects in
the events of the set evs to the events they participate
in within evs. “discover phobos”, where phobos is
a proper noun, results in the FDBR:

{(enan, {evioas,evioas})}

The FDBR can be readily extended to n-ary rela-
tions (and hence n-ary transitive verbs) (Peelar and
Frost, 2020b). In this paper we show that with some
small modifications, the FDBR can be used to answer
NL queries with negation as well, in cases where the
CWA holds.

S ACCOMMODATING
NEGATION

Negation in NL queries is only possible if the CWA
holds for a database. We modify the semantics pre-
sented in (Frost and Peelar, 2019), (Frost and Peelar,
2018) and (Peelar and Frost, 2020b) such that the re-
sults of denotations may return the complement of an
FDBR in addition to an FDBR, adopting a similar ap-
proach to (Frost and Boulos, 2002). We define this
type as follows:

type Result = FDBR fdbr | ComplementFDBR fdbr
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We then define the intersection of two Result
types as follows:

intersect_result (FDBR a) (FDBR b)
= FDBR $ intersect_fdbr a b
intersect_result (FDBR a) (ComplementFDBR b)
= FDBR $ difference_fdbr a b
intersect_result (ComplementFDBR a) (FDBR b)
= FDBR $ difference_fdbr b a
intersect_result (ComplementFDBR a)
(ComplementFDBR b)
= ComplementFDBR $ union_fdbr a b

Where intersect_fdbr operates as it did previously,
and a new function difference_fdbr is introduced
as follows:

difference_fdbr = hmks.{(e1,evs2) | (e1,evs)) €m
& V(ez,evsn) ((ex,evsy) €s = e #e2)}

That is, difference_fdbr removes all entities found in
the left column of the second FDBR from the first
FDBR. This is a key function for performing nega-
tion, and plays a similar role to the NOT EXISTS op-
erator in SPARQL. A function is introduced for com-
puting the union of Results as well:

union_result (FDBR a) (FDBR b)

= FDBR $ union_fdbr a b
union_result (FDBR a) (ComplementFDBR b)

= ComplementFDBR $ b ‘difference_fdbr"' a
union_result (ComplementFDBR a) (FDBR b)

= ComplementFDBR $ a ‘difference_fdbr' b
union_result (ComplementFDBR a)

(ComplementFDBR b)

= ComplementFDBR $ a ‘intersect_fdbr' b

This is used in the denotation of “and” and “or” as
used with termphrases. Next, we introduce a function
to obtain the cardinality of a Result:

cardinality _ (FDBR np) = List.length np
cardinality (Just num_ents) (ComplementFDBR np)
= num_ents - length np

The first argument to this function is passed in from
the query pipeline described in (Peelar and Frost,
2020a), and is either Nothing or Just num_ents,
where num_ents is the cardinality of the set of enti-
ties in the triplestore. It will only be retrieved if the
query has any denotations involving negation in it.

Our approach maintains leftmost-outermost scop-
ing of quantifiers including negation, which enables a
natural reading of the query.

5.1 Quantifiers

We modify the denotations of all quantifiers to be
characterized in terms of the cardinality:
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a’ = intersect_result
every’’ cardinality nph vbph =
if cardinality result == cardinality nph
then result else FDBR []
one’’ cardinality nph vbph =
if cardinality result == 1
then result
else FDBR []
two’’ cardinality nph vbph =
if cardinality result == 2
then result
else FDBR []
most’’ cardinality nph vbph =
if n_nph /= 0 && (n_nph_v / n_nph) > 0.5
then result else FDBR []
where
n_nph = fromIntegral $ cardinality nph
n_nph_v = fromIntegral $ cardinality res

where in the above denotations, result =
intersect_result’’ nph vbph. Curiously,
the function cardinality appears as the first
argument to these quantifiers, giving them three
arguments in total. This function is passed in from
the caller as a function that can be used to obtain the
cardinality of a FDBR. A function, “apply_card” is
used to automatically apply the cardinality function
to the denotations. For example:
every’ = applyCard every’’

>|< GettsIntersect GI_Every
every = wrapS2 every’

The > | < operator is described in more detail in (Peelar
and Frost, 2020a). It is used to assign a unique name
to the denotations according to the syntax tree of the
query. This is useful for memoization and query opti-
mization. “no” is denoted as follows:
no’’ cardinality nph (FDBR []) =
ComplementFDBR []
no’’ cardinality nph vbph =
if cardinality result == 0 then vbph

else FDBR []
where in the above denotations, result =
intersect_result’’ nph vbph. This is a de-

parture from the denotation of “no” given in (Frost
and Boulos, 2002). Namely, the complement of the
empty FDBR (denoting “everything”) is returned
when an empty FDBR is passed as the second
argument to “no”. This is critical in handling “no” in
the denotation of transitive verbs as discussed later in
Section 5.4.

5.2 Negating Noun- and Verb-Phrases

We denote “not”, when applied to a verb-phrase
(such as “not spins”) as follows:

not (FDBR vbph) = ComplementFDBR vbph
not (ComplementFDBR vbph) = FDBR vbph

“non” plays a similar role as a prefix to a noun-phrase,
and can be denoted as:

non = not
5.3 Negating Term-Phrases

One aspect missing from both (Ferré, 2014) and
(Frost and Boulos, 2002) is the notion of negat-
ing termphrases, such as “hall”, “a moon”, “one
moon”, and “no moon”, which exhibits double nega-
tion. Negating termphrases provides more flexibility
to the query interface, making it possible to express
the query:

who discovered in 1877 not one moon that
orbits mars

Where “one” denotes “exactly one”. This query ex-
plicitly is excluding any discoverers that discovered
exactly one moon that orbits mars. It results in hall,
because hall discovered two moons that orbit mars
in 1877. “not” when applied to a term-phrase, such
as “hall” or “a moon” is denoted as follows:

termnot tmph vbph
= intersect_result (not (tmph vbph)) vbph

Therefore not hall spins is evaluated as follows:

(not hall) spins
=> intersect_result (not (hall spins)) spins

=> intersect_result (not (FDBR [])) spins

=> intersect_result (ComplementFDBR []) spins
=> spins

=> True (because spins is not empty)

Negating term-phrases was not discussed in (Frost
and Boulos, 2002), and it offers more flexibility in
the nature of queries that can be performed (see Sec-
tion 6)

5.4 A Denotation for Transitive Verbs
That Accommodates Superlatives,
Prepositional Phrases, and Negation

Transitive verbs are less straightforward to accommo-
date with negation. Consider the following query:

ganymede discovered no moons

This query should evaluate to True, as ganymede, a
moon, was not the subject of any discovery events —
however, ganymede is not the subject of any events
of type discover. Therefore, it is missing from
FDBR (discover_rel).

A denotation is given in (Frost and Boulos, 2002)
that accommodates this usage of transitive verbs;
however it requires syntactic disambiguation at the
grammar level to apply correctly. The approach also
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does not scale well when other linguistic constructs
are introduced, such as chained prepositional phrases
and superlatives, requiring a new denotation to sup-
port each usage. The examples given in that paper
required 4 denotations for transitive verb depending
on the context.

The denotation we introduce expands on the deno-
tation introduced in (Frost and Peelar, 2019), where
we described how superlative phrases can also be
accommodated. This new denotation evaluates the
list of prepositional phrases (including superlatives)
in leftmost-outermost order, which is consistent with
other work in the area (Champollion, 2010), (Ferré,
2014). For example, the query “discovered a
moon in 1877 with a telescope” would be eval-
uvated with scoping as though it were as fol-
lows: “discovered (a moon (in 1877 (with a
telescope))) —thatis, “with a telescope” takes
precedence over ”in 1877, which in turn takes prece-
dence over a moon”.

Only one denotation for transitive verbs is re-
quired for all cases (rather than 4 as in (Frost and
Boulos, 2002)). In particular, the word “no” can be
handled compositionally rather than syntactically in
the query.

We modify the denotation for transitive verbs
given in (Peelar and Frost, 2020a) to evaluate the list
of prepositional phrases in leftmost-outermost order.
The filter_ev function, described in (Peelar, 2016),
is modified to operate on one prepositional phrase at
a time: a new FDBR is computed for each preposi-
tional phrase applied. This allows superlatives to be
neatly evaluated in the order they appear rather than in
a separate stage after the prepositions are evaluated as
denoted in (Frost and Peelar, 2019). filter_ev also
is modified to account for negation in the query: first,
the current prepositional phrase is evaluated against
the empty FDBR (FDBR[]). If the result is not an
FDBR, then it is a no termphrase:

in no place (FDBR [])
=> ComplementFDBR []

This is owing to the denotation of no used in Sec-
tion 5.1. Indeed, the only way to obtain a non-empty
FDBR from applying an empty FDBR is through
negation. When this is the case, filter_ev returns
a complement in the same fashion as (Frost and Bou-
los, 2002).

Since filter_ev can also receive the complement
of an FDBR, as in the case when negation is present
in the query, applying term-phrases can be difficult.
The complement operation is reversed by taking the
FDBR of the transitive verb itself and performing the
intersection of it with the complement passed into
filter_ev. Whether negation is present in the cur-
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rent prepositional phrase or not, this FDBR is passed
in to the termphrase of that preposition. If no nega-
tion is present in the current preposition, the result is
returned as-is, unless it contains a superlative. Oth-
erwise, if negation is present, then if a complement
of an FDBR was passed into filter_ev, the FDBR
used in the denotation of the transitive verb itself
is used to compute the complement, otherwise the
FDBR passed into filter_ev is used directly. This
allows for discover no moon in 1948 to work as
expected. This can neatly handle the following cases:
discover no moons in no places with no
telescopes
The result is the complement of the FDBR of those
that discovered a moon in a place with a telescope
discover no moons in 1877
The result is the complement of the FDBR of those
that discovered a moon in 1877
discover a moon in 1877
The result is the FDBR of the people that discovered
a moon in 1877.

5.5 Obtaining the Cardinality of the
Entities of the Triplestore

In systems where the Open World Assumption holds,
obtaining the cardinality of the set of entities may not
be possible, as the cardinality of that set may be infi-
nite. Attempting to obtain that set at all may not be
practical. Even in systems where the CWA holds, ob-
taining the set of all entities in the database may not be
feasible. Fortunately, only the cardinality is required
to start answering queries.

A new querying primitive is introduced from (Pee-
lar and Frost, 2020a) that queries the remote triple-
store itself for the cardinality of the set of entities in
the triplestore:

getts_cardinality_allents ev_data props

Here, ev_data represents the URL of the triple-
store itself (in the case of SPARQL, a SPARQL end-
point URL), and props is the set of properties of
the events contained in the triplestore whose enti-
ties should be counted towards the cardinality. In
the example queries given in this paper, the prop-
erties listed for cardinality are subject, object,
location, and implement. We exclude the year
property as all entities must exist both physically and
temporally ((W3C), 2014). This function, like the
other getts* family functions described in (Frost and
Peelar, 2019), can be specialized for different types of
databases, including relational triplestores.

This alleviates having to send the full set of enti-
ties to the semantics in order to answer a query that
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uses negation. Note that the cardinality of the set
of entities of the triplestore is only ever required in
queries that have negation present. Using the memo-
ization and triplestore querying framework described
in (Peelar and Frost, 2020a), a guarantee is made that
if no negation is present in the query, the cardinality
query will never be performed. Therefore, our denota-
tions for negation in queries, including “not”, “non”,
“no” and “the least”, are drop-in enhancements to
NLQIs built using our framework: if the CWA holds
for the application, all one needs to do is add these de-
notations in. Otherwise, the NLQI will operate with
the open world semantics described in (Frost and Pee-
lar, 2019).

In some cases, the user may want to force evalu-
ation of the complement. It is possible to introduce
a special denotation, “force_eval”, will obtain all
triples and force retrieval of all entities. This may be
cached on the interface to alleviate the load against the
remote triplestore using the memoization framework
in (Frost and Peelar, 2019). It may be appropriate
to evaluate the complement if its cardinality is under
a certain threshold as well, triggering “force_eval”
automatically — this could be customized on a per-
application basis.

5.6 Accommodating ‘“The Least”

In (Frost and Peelar, 2019) we described how to ac-
commodate superlative phrases compositionally by
delegating their evaluation to the transitive verb they
are arguments of. This allows them to appear in
chained prepositional phrases.

One problem described with that approach was
answering queries with superlatives such as “the
least” or “the lowest number of”. The main reason
for this was owing to the OWA underlying the
semantics. Under that approach, “which planets
are orbited by the least number of moons”
would return earth, despite both venus and mercury
having a lower number of moons than Earth. The
semantics had no concept of zero and could only
report about what was observable. Since there were
no events explicitly stating that venus and mercury
had no moons, it could not assume that it was not the
case.

We propose an alternative approach in this paper,
where “the least” is handled similarly to the word
“no”. The denotation for “the least” first checks
that the complement of the FDBR is non-empty. If so,
“the least” returns the complement of that FDBR
— this allows for “venus” and “mercury” to appear in
the result set while removing all non-candidates. If
the complement of the FDBR is empty, however, then

it performs the same cardinality partitioning that the
“the most” does (Frost and Peelar, 2019), except it
chooses the lowest object cardinality entities to form
the result rather than the greatest.

6 EXAMPLE QUERIES

The following are some example queries that can be
handled by our NLQI. With each query we explain the
result and how it was evaluated.

no people spin = True
The intersection of the people and spins FDBRs is
empty, therefore no returns spin, which is non-empty
and therefore True.

a non person exists = True
“non person” is the complement of the person set,
and the intersection of this complement with the
exists set (which is the complement of the empty
set) is the same as the complement of the union of the
person set with the empty set. The answer is charac-
terized in terms of the cardinality, which for the com-
plement of an FDBR is defined as the cardinality of
the number of set of entities in the triplestore minus
the cardinality of the FDBR itself. This is greater than
0, and therefore there is at least one entity that is both
a non-person and exists.

a person does not exist = False
This computes the intersection of the person FDBR
with the complement of the exists FDBR, which is
just the empty FDBR. Therefore, the result is empty,
and the result is False.

what discovered no moon in 1877 =
everything except: hall
This sentence is treated similarly to what did not
discover a moon in 1877. The result is the com-
plement of the set of entities that discovered a moon
in 1877, in this case, hall.

what discovered a non moon = nothing.
This query is specifically asking about entities that
discovered non-moons — the entities that did not dis-
cover anything are not included in this set and there-
fore an FDBR is returned. Since that FDBR is empty,
the result is that nothing in our triplestore discovered
any non-moons.

allen discovered no moon at no places
= True
The result of “discovered no moon at no
places” is the complement of the FDBR returned
from “discovered a moon at a place”.  This
includes entities that either discovered a moon at
no known location, or discovered a non-moon at a
known location. Since allen does not appear in
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the FDBR returned by “discovered a moon at a
place”, the result is True.

what discovered the most moons using no
telescopes = voyager_science_team
This query combines both a superlative phrase with
negation. The query is asking “out of the events where
entities discovered something without using a tele-
scope, which ones discovered the most moons”. Since
voyager_science_team used no telescopes at all to
discover 22 moons, more than any other entities that
discovered using no telescopes, they are in the result
set.

what was discovered by no team in 1877
= everything.
This query is handled the same as “what was not
discovered by a team in 18777, which returns
the complement of the empty FDBR, since no teams
discovered anything in 1877.

how was something discovered using no
telescope = I can’t perform this query
because I would need to enumerate the
entire triplestore.
This query is asking about which implements that
are not telescopes were used in a discovery event.
However, something is defined as the complement
of the empty FDBR, and discovered using no
telescope is the complement of the FDBR of
discovered using a telescope. Since the inter-
section of the two complements is itself a comple-
ment, how receives the complement of an FDBR
and is unable to enumerate the events to retrieve
implements from directly. Although it is possi-
ble to answer the query by fully evaluating the
complement, we have not implemented this be-
haviour in our NLQI at this time. However, a sim-
ilar query, “which non telescope was used to
discover something” is able to yield the result
“cassini, voyager_l, voyager_2”.

not hall discovered ganymede = True
“not hall” is a negated term-phrase. The result is True
because galileo discovered ganymede, not hall.

which person that does not spin
discovered no planet in 1877 using
a telescope and is a discoverer =
bernard, bond, cassini, christy, dollfus,
galileo, hall, herschel, holman, huygens,
karkoschka, kowal, kuiper, lassell,
melotte, nicholson, perrine, pickering,
sheppard, showalter
The result is all of the people that are discoverers,
since none of the members of person spin, and
none of them discovered a planet in 1877 using a
telescope. It may be helpful to examine the scoping
of this query:
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which (person ‘that' (does not spin))
((discovered (no planet) [in 1877, using
(a telescope)]) and (is a discoverer))

nothing exists = False
This is False because the intersection of thing and
exists is non-empty.

everything exists = True
This is True because thing and exists are both the
complement of the empty FDBR, and the intersection
of those results in the same. Therefore “thing” is a
subset of “exists”.

what was not discovered by hall
= everything except: deimos, phobos
This is the complement of the FDBR “discovered by
hall”. The answer is the set of all things excluding
those that hall discovered.

phobos and deimos were not discovered
by not hall = True
This query features double negation and is equiva-
lent to asking “phobos and deimos were discovered
by hall”. The result is True.

not not kuiper discovered not not
nereid
This query also features double negation on the
termphrases kuiper and nereid. This is equivalent
to the query kuiper discovered nereid.

which non vacuumous moon that orbits
most planets that spin was not discovered
by kuiper at two places using the most
telescopes in 1942 = none.
This query features a variety of complex lin-
guistic constructs, including nested n-ary transi-
tive verbs, adjectives, negation, chained preposi-
tional phrases, quantification and superlative phrases.
The result is “none” because “non vacuumous moon
that orbits most planets that spin” returns
the empty FDBR, and the intersection of the empty
FDBR with any set is also the empty FDBR.

not no moon orbits mars = True
This query features a negated termphrase, which it-
self consists of the word “no” (entailing negation it-
self). “orbits mars” is the FDBR from the enti-
ties phobos and deimos to their orbit events, and
“not no moon orbits mars” evaluates to “orbits
mars” with the entities of “no moon orbits mars”
removed. Since “no moon orbits mars” is False, it
returns the empty FDBR, which is then removed from
“orbits mars”, giving a non-empty result. There-
fore, the query returns True. This provides evidence
that our NLQI correctly handles negation as a compo-
sitional construct.

who discovered no moons at no places =
allen, baum, buie, burns ... (full results
omitted here)... weaver, young.e_f,
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young_l_a

The result is everyone that is not known to have dis-
covered a moon at a place. This includes the discov-
erers that discovered a moon at no known location, or
whose location property is not listed in the event, or
discoverers that discovered a non moon at a known
location.

7 FUTURE WORK

Our next efforts will be focused on creating an NLQI
to DBPedia using the approaches described here and
in (Peelar and Frost, 2020a). Specifically, we plan
to use Timbr.ai (Timbr, 2020) to provide a relational
view of DBPedia, targeting SQL as the query lan-
guage. Once this is done, we plan to test our NLQI
using well-known benchmarks such as QALD (Us-
beck et al., 2018).

We also plan to explore interfacing with non-event
based triplestores in general. ML approaches may be
useful in contexts where ontological information is
not available for reification.

8 CONCLUSIONS

We have shown that it is possible to accommodate
negation in our event-based CS efficiently. We have
shown that our approach to negation is powerful, able
to be applied to noun-phrases, verb-phrases, and term-
phrases. We presented a denotation for “no” that en-
ables it to be treated as a quantifier that can be compo-
sitionally used in conjunction with transitive verbs, ei-
ther as an argument to the verb or as a preposition. We
improved on (Frost and Boulos, 2002) by maintain-
ing only one denotation for transitive verbs through-
out the semantics rather than requiring different de-
notations depending on the context. Notably, our ap-
proach to negation seems to be consistent with other
work in event semantics (Champollion, 2011). We
improved on (Ferré, 2013) by enabling the negation
of term-phrases, and also enabling our approach to be
used with other query languages than SPARQL. We
discussed the necessity of the Closed World Assump-
tion for queries involving negation and described how
to extend the CS in (Frost and Peelar, 2019) to ac-
commodate negation in queries. Where the CWA is
not appropriate, leaving out the denotations for “not”,
“non”, and “the least” is sufficient to restore the
Open World Assumption in the semantics. Our ap-
proach also fits within the memoization framework in
(Frost and Peelar, 2019). We also discussed exam-
ple queries that are supported with our NLQI and ex-

plained how the results are formed. We believe now
that our semantics is ready to be benchmarked directly
against other systems on large knowledge bases using,
for example, QALD-9 (Usbeck et al., 2018).
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APPENDIX

The complete source code for the demonstration, in-
cluding the semantics and parsing framework, can be
found online at the Hackage Haskell package reposi-
tory under the XSaiga project (Hafiz et al., 2020):

https://hackage.haskell.org/package/XSaiga



