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Abstract: The subject of the paper is the exploitation efficiency system of overhead type cranes operating in critical 
systems, results implementation the control risk management and maintenance scheduling processes. The 
study case of the paper is a hot rolling mills system of a steel plant with critical overhead cranes operating 
with hazard conditions and continuous operation. The model output is an optimal overhead cranes 
maintenance scheduling distribution minimizing the production line risk stopped and the model input is a 
digital database structure with historical information related with the operation, maintenance, logistics and 
management process of the overhead cranes in the hot rolling mills plant. The transfer function is a stochastic 
non-linear optimization model with bounded constraint that assess a risk global-system indicator based on 
Monte Carlo simulations. 

1 INTRODUCTION 

Today’s industry has high levels of automation and 
complexity, therefore, decompound the Lego system 
into critical pieces simplifies the problem and gives 
us the opportunity to focus on a specific process. 

The process of degradation is inherent in the 
technical system; consequently, control risk 
management and maintenance scheduling processes 
are increasingly relevant, and the human decision-
making process behind is a target to improve. 

Human decision-making process behind of the 
control risk management and maintenance 
scheduling processes is the coordination of 
components maintenance and/or replacement that 
make up the system but maintaining risk holistic 
and/or clustering objectives defined by the decision 
makers. 

Coordination of larges combinations, meaning 
larges systems, can be a complex problem and 
humanly dreadful to find a faster optimal solution. 
Mathematically speaking is a nondeterministic 
polynomial time NP-complete problem. 

As we know, for the search of optimal solutions, 
it is needed first, to model the system and its possible 
operational scenarios, to make a coherent 
coordination. Reason why, software, tools, robots, 
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platforms are needed to perform this coordination 
duties efficiently. 

In the field of control risk management, we found 
the closed-loop engineering (CLE) framework 
introduced by (Barari et al., 2009) as a well-stablish 
approach for robust and coherent coordination. 

Strong references of CLE implementation are 
(Gholizadeh et al. 2020) for operational and tactical 
decision-making levels to configure a coordinated 
supply chain network, (Jerome et al. 2020) for 
integration of production scheduling decisions within 
a dynamic real-time and (Rui et al. 2020) to assess the 
dynamic reliability of repairable closed-loop systems 
with the consideration of uncertainties. All of them 
are examples of platforms to support robust and 
coherent coordination duties. 

Following the same research line, in this paper, we 
study the control risk management and maintenance 
scheduling processes for overhead cranes operating in 
a steel plant. An innovated exploitation efficiency 
system of crane based on risk management is 
proposed to simulate the same process performed in 
the time real, but in this case, an optimization 
algorithm chooses the best maintenance schedule 
given the historical degradation data of the previous 
process as a result of machine learning analysis, and 
provides the feedback to the entity manager as a 
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closed-loop control system. Among the cases cited, 
the reference (Rui et al. 2020) maintenance decisions 
oriented with a novel non-probabilistic reliability 
assessment approach is an example close to the 
proposal in this paper but in a different system. 

Figure 1 describes the block diagram of the 
engineering solution proposed, called in this paper as 
Integrate Maintenance-e (IMe), e- referring to 
electronic or digital. 

 
Figure 1: Risk based Maintenance Management Efficiency 
Control System. 

In the presented model, the control risk 
management effectivity depends on the maintenance 
scheduling optimization. By nature, in the literature, 
this process is an open problem because engineering 
systems increase their complexity and variety every 
single day and new researches are needed to fill the 
gabs of the challenges. 

Maintenance scheduling as a general problem, 
can be decomposed essentially by hierarchical levels, 
holistic objective (referring to global or integrated 
strategies) or multi-objectives (referring to 
decentralized strategies), and optimization criteria 
cost, reliability, or hybrid approach. Examples are 
cost-holistic (Akaria et al., 2019), cost-multi-
objectives sequential (Briskorn et al., 2019) and 
holistic-reliability approach (Luo et al., 2019). For 
any of the cases, the problem is to find the best 
scheduled maintenance sequence of actions for each 
component considered in the system. 

Generally, the objectives and restrictions are not 
well defined because depends on the individual 
system requirements. However, as a consensus, the 
optimization problem is defined as a multi-criteria 
combinatorial problem of non-linear objective 
functions with constrains (adding by us stochastics), 
and the problem objective is to determine the timing 
and sequence of the maintenance tasks periods of 
each component analysed. Therefore, the variables x 
in a maintenance scheduling problem is represented 
by the start time of the maintenance tasks for all the 
component considered. 

Especially, the paper is focuses on defining the 
exploitation efficiency system based on risk 
management for overhead cranes under operation into 
the steel plant, and in a specific scenario description 
as an application example. The idea is to contribute 

with an example of overhead cranes adaptation to the 
digital industry and with a clear union of control risk 
management with maintenance scheduling. 

The motivation of the investigation starts with the 
identification of organization issues in the dedicated 
maintenance department of the steel plant, which is 
focusing on cranes operation into the continuous 
transportation process in the hot rolling mills system. 
In this system, overhead cranes are critical devices, 
because in case of failure or maintenance the 
production line can stop. 

The department have a risky situation also when a 
scheduled maintenance of selected cranes (existing as 
hot redundancy) is performed and at the same time an 
unexpected fail of cranes in use in the system are 
reported. 

In practice, we consider a set of cranes in the 
operation process of the plant. We learn about the 
results of technical degradation of cranes under the 
operation processes, implementation results of 
dedicated to cranes maintenance focused procedures, 
as well as the existing environmental conditions and 
applied plant operation strategies. 

The presented exploitation efficiency system 
based on risk management for proper engineering 
decision making and controls, considers the plant 
operation strategies. The system platform helps also 
to adapt crane maintenance processes to the existing 
operation problems and events and available 
resources, as well as unexpected critical events into 
the hot mill system. 

The IMe platform supports decision-making 
processes aimed at minimizing the risk of the 
operational safety of cranes and the risk of losing their 
operational reliability, as a result of the degradation 
of the structure and utility functions of devices and 
the possibility of a combination and association of 
events and failures resulting in a safety hazard under 
operation processes. 

In our case, maintenance-task distribution or 
maintenance scheduling solution implemented is a 
holistic-reliability approach. 

The approach was selected holistic for an easy 
interpretation of the maintenance impact on the 
system by the entity manager (unique indicator), and 
reliability, because overhead cranes in a steel plant 
are critical devices working in a continuous process, 
by construction, the system must be reliable. 

In this paper, the approach selection is driven by 
individual system requirements and the contribution 
is strongly guided by the CLE framework (Barari et 
al., 2009). 

Conceptually, the proposed model considers two 
layers (live and digital) guided by independent 
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processes that are eventually are combined by the 
platform. 

Live layer presents manufacturing process in the 
real time, representative by dedicated exploitation 
data. Historical data from the crane operation process 
is supplemented with current data obtained from the 
transport process carried out by cranes, which are 
available results with the use of sensors. 

Digital layer based on Digital Twin (DT) 
processes replaces human decisions making by risk 
managements tools, incorporating optimization of the 
decision making involved. 

The first process concerns the registration of the 
process of technical degradation of cranes 
exploitation parameters and losses their functional 
functions, because of the implementation of specific 
transport processes. 

The second process is oriented towards planning 
service processes with the use of specific limited and 
available resources, their correlation with planned 
overhauls of a technological manufacture line and 
their adaptation to the occurring unplanned events 
and expectations. The process of planning service and 
maintenance processes is accompanied by an 
optimization process focused on the planned 
efficiency of the production system and minimizing 
possible production losses. 

Such decision supporting model platform, based 
on parallel real and digital processes, helps to design 
optimal maintenance strategies dedicated to the 
selected cranes, including type of the activities and 
timetable, and needed resources. Is holistic, safety 
and reliability oriented, includes quality and quantity 
cranes representatives’ parameters for decision 
making processes. 

In practice, the input of the model is a database 
structure created for maintenance purposes based on 
historical degradation data of all the system 
components, previous planned process, system 
structure, etc., collected by SCADA (Supervisory 
Control And Data Acquisition) and SAP (Systems, 
Applications and Products in Data Processing) 
systems, in fact, available historical information 
related to the maintenance scheduling management 
process. 

The output of the model in our case is to provide 
to the entity manager a faster and optimal online 
decision-making process as a closed-loop control 
system (CLCS). 

Once the maintenance scheduling management 
process is optimal (supporting by live and digital 
layers), as a result, the holistic operational efficiency 
in the plant increases. In the following sections, the 
model is fully described using a specific scenario. 

The document is organized as follows; firstly, the 
mathematical formulation of the optimization 
problem is presented with the constraint set and the 
flow diagram, as well as all the equations and 
assumptions of the proposed model organized in 
subsections. Following the same idea, in next sections 
the scenario (parametrization) and methods (solution) 
are described, discussed, and validated. Finally, some 
important conclusions are drawn to highlight 
potential outcomes in this research area. 

2 IME-PLATFORM: 
MATHEMATICAL 
MODELLING 

The proposed model aim is to minimize the expected 
value of the convolution function, between the 
overhead cranes loading system capacity distribution 
function of the steel plant impacted by maintenance 
scheduling and the necessary load capacity 
distribution function of the production line. The 
model is defined below: 
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The stochastic non-linear optimization model 
with bounded constraints proposed for the overhead 
cranes’ maintenance scheduling problem solution in 
the steel plant present only continuous variables x = 
TTMi,1 (time to maintenance) and is defined in the 
model constraint intervals. The independent variable 
of the objective function to be optimized x = x1, x2, 
…, xNMi depends on the quantity of maintenance task 
NMi to be coordinated for each overhead crane. 

The optimization variables are only the start times 
for the first maintenance of each overhead crane 
TTMi,1. Once TTMi,1 is established, the remaining 
TTMi,k≠1 are calculated adding the corresponding 
maintenance intervals, which are invariable and 
depends on the operation time between two 
consecutive check-ups. 

Figure 2 shows the conceptual flow diagram 
implemented to solve the problem. The flow diagram 
is linear and only has two conditioning moments, first 
one to guarantee the simulations error criterion, and 
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second one to guarantee the best solution of all the 
scheduling proposals evaluated. 

 

Figure 2: Flow optimization model. 

The problem is solved as follows: the 
optimization algorithm proposes a set of TTMi,1 and 
Ns Monte Carlo simulations are performed to 
determine Ns values of risk (r1, r2, …, rNs). The Risk 
mean E[R] and variance V[R] are determined from (r1, 
r2, …, rNs) and the error criterion is checked. If the 
desired error is not achieved, Ns is augmented and the 
Monte Carlo simulations are repeated for the same set 
of TTMi,1. When the desired error is achieved the 
process is repeated for another set of TTMi,1. This is 
done several times (1, 2, 3, …, N) determining 
decreasing values of Risk mean E[R1], E[R2], …, 
E[RN]. The set of TTMi,1 leading to the lowest Risk 
mean (E[RN]) is the solution. 

The optimization model construction formalized 
in this section is structured in two steps. First one, the 
production-line-capacity and overhead-cranes-
capacity stochastic mathematical models for a steel 
plant are defined. The model used for the overhead 
cranes has two reliability states and considers random 
faults intrinsic to these systems, faults repair times 
and operation standards. Second one, the Monte Carlo 
simulation model used to estimate the risk indicator 
(Capacity Loss) is formalized. 

2.1 Production Line Capacity 
Modelling 

In a continuous production process, always the 
devices target function, at all the hierarchical levels is 
to be available. Redundancies for critical devices are 
crucial in continuous process to obtain high reliability 

performance, therefore, as an example the steel plant 
have more overhead cranes than needed. 

In this paper based on a steel plant scenario, we 
define the production line capacity dependent on the 
total overhead cranes loading capacity of the system. 
In the proposal model, we call this parameter η - 
Production line efficiency because is an indicator 
between [0, 1] and measures the relation between 
minimum availability of overhead cranes required to 
secure the production line and total overhead cranes 
loading capacity of the system. 

In addition, for maintenances purposes also, but 
not related with the overhead cranes system, the steel 
plant need to stop the production line NSPL times, 
therefore two additional parameters STDk (stooped 
time duration) and TBSk (time between stooped) are 
introduced into the model. As a result, the production 
line capacity is defined as follows: 
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(2) 

where t is time, θ is a set of parameters, in this 
case θ = {η, iLC , TBSk, STDk} and m = 1, 2, 3, …, 

NSPL. 

2.2 Overhead Cranes Modelling 

Overhead cranes operation is continuous, eventually 
fails and is repairable. This random behavior can be 
described from distribution functions fitted to 
historical degradation data. Considering the operation 
effectiveness of the overhead crane, in this paper, we 
fix that the system and its components have two states 
z = 0, 1 and between them transition rates are defined 
depending of the distribution function selected in the 
simulation approach. The probability of moving from 
one state to another depends on the failure or repair 
rate of each overhead crane. 

In the two-state model, the overhead cranes are 
considered fully available (z = 1) or totally 
unavailable (z = 0). The stochastic loading capacity 
LCD

i at the time instant t of an overhead cranes i is 
determined by the TTFi,k (time to failure), TTRi,k (time 
to repair) and iLC  (nominal loading capacity). The 

parameters allow to simulate with (3) the behavior of 
LCD

i generating k-th independent random numbers 
from distribution functions fitted to historical 
degradation data. Therefore, the model proposed to 
simulate the stochastics overhead cranes loading 
capacity is defined below: 
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(3) 

where t is time, θ is a set of parameters, now θ = 
{ iLC , TTFi,k, TTRi,k} and m = 1, 2, 3, …, NRNi 

knowing that NRNi depends on the Simulation Window 
used in the optimization model. The k-th independent 
random numbers generated from distribution 
functions fitted to historical degradation data 
guarantees the follows restriction: 

, ,
1 1

Simulation Window
m m

i k i k
k k

TTF TTR
= =

+ ≥  . 

On the other hand, one of the factors that affects 
the overhead crane loading capacity, is not stochastic 
and is not considered a random phenomenon, it is 
type maintenance process, and in this paper, we 
assume independent from the previous one during the 
simulation. The maintenance is contemplated within 
the strategies of a steel plant because it guarantees 
cranes life cycle. Maintenance is the activity designed 
to prevent failures in the production process and in 
this way reduce the risks of unexpected stops due to 
system failures. In a steel plant, to perform some 
maintenance tasks it is necessary that the overhead 
crane does not work, and this causes Capacity Loss in 
the steel plant. Due to this reason, it is advisable that 
this maintenance task be carried out at the time of the 
year where the least frequency of system potential 
failure exists, so that equilibrium and adequate 
environment are secured in the steel plant. To 
consider this effect, in this paper the parameters 
TTMi,k (start time to maintenance) and TDMi,k (time 
duration maintenance) are introduced in the equation 
(4), then we combine the equation (3) and (4) using 
junction symbol & representing the AND logic, as we 
show below: 
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where t is time, θ is a set of parameters, now θ = 
{ iLC , TTMi,k, TDMi,k} and n = 1, 2, 3, …, NMTi; and 

as a combination consequence of both process LCi = 
LCD

i & LCM
i knowing that the junction symbol & is 

used for the AND logic. As a modelling result, the LCi 
variable consider both process, degradation (D) and 
maintenance (M). 

Once we know the LCi for each overhead crane, 
we use reliability block diagrams to compose the 
system loading capacity. A technical complex system 

structure can be reduced in a series-parallel reliability 
block diagram, and the steel company is not the 
exception. Usually, the steel companies have huge 
warehouses, and inside overhead cranes are installed, 
therefore the series-parallel configuration of the 
cranes follows the structure of the warehouse. Based 
on the configuration of the warehouse is possible built 
the system block diagram, and as a result, the system 
simulation process is consequent with the relation 
between cranes. 

In order to consider the block diagram structure of 
the system, we propose a simple rule in this paper. 
Following the generic series-parallel structure, when 
two or more overhead cranes are in series (Crane1 & 
Crane2 & … CraneN) the junction symbol & is used 
for the AND logic, while the symbol || is used for the 
OR logic when the overhead cranes are in parallel 
(Crane1 || Crane2 || … CraneM), therefore, during the 
simulation process of the system when two or more 
overhead cranes are in series, if one crane fail, all the 
chain of cranes in series stop, overwise, when two or 
more cranes are in parallel, if one crane fail, the 
redundancy system is still working. 

As a conclusion, we simulate independently the 
LCi for each overhead crane i, then we combine all 
the N-series cranes in each M-parallel chain of cranes 
using the junction symbol &, and then we aggregate 
all the equivalent M-parallel chain of cranes using the 
junction symbol || to obtain the system loading 
capacity X. Below, we define the general notation for 
the overhead cranes system loading capacity: 

( )( ) ,
1 1

|| &
M N

m n
m n

X LC
= =

=                           (5) 

2.3 Risk Indicator Modelling 

The risk function denoted as R can be generated with 
the sum of X + Y random, independent, and non-
negative variables. By definition, the product of R(s) 
= P(s)Q(s) is defined with the generating function 
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0
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=  of X and the generating function 

( )
0

j
jj
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=  of Y. Consequently, the generating 

function of R(s) is generally defined by the 
convolution formula: 

1

k

k j k j
j

r p q −
=

=                             (6) 

where pj and qj are the generated sequence from 
P(s) and Q(s) respectively. 

In this investigation, X is the overhead cranes 
system loading capacity distribution function affected 
by the maintenance scheduling defined in (5), and Y 
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is the production line capacity defined in (2). The risk 
function is denoted in this investigation as R and is 
defined below as a convolution product between (5) 
and (2): 

1

if

0 if
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t t t t
t

t t

Y X X Y
R

X Y
=

 − <= 
 ≥
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where t = 1, 2, 3, …, T (Simulation Window). 
The expected value of the risk function E[R] is 

defined in this paper as Capacity Loss. In this work, 
to estimate E[R] the Monte Carlo simulation method 
is used. The convergence process is fluctuating in this 
method. However, the error level decreases when the 
number of samples increases, according to the law of 
large numbers. In this method it is not practical to run 
a simulation with many samples, because more 
calculation time is required. Therefore, it is necessary 
to balance the required precision and the calculation 
time with a stop criterion. This criterion guarantees 
that the simulation continues, until the risk indicator 
has the precision specified for the simulation. The 
parameter used as stopping criterion in the method is 
the coefficient of variation β defined below. 
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3 IME-PLATFORM: 
MATHEMATICAL 
PARAMETERIZING 

The system analyzed have 33 overhead cranes with 
loading capacity between 2-80. Depending on 
operation time and loading capacity, each crane has 
weekly, every two weeks or monthly inspection 
frequency as we describe in the Table 1. 

Table 1: Inspection frequency relation. 

Capacity 
(tons) 

Inspection 
frequency 

TTM 
(hours) 

TDM 
(hours) 

50T – 120T Weekly 168 3 

32/8T – 20T 
Every 2 
weeks 

336 3 

5T-8T Monthly 672 3 

The inspection frequency are maintenance tasks, 
therefore in the model are considered as TTMi,k and 
TDMi,k,, where k-th is the number of inspections for 
each overhead crane depending on the simulation 
window. In the historical degradation data case, the 
fitted distribution function for each crane is a result of 

the fitting-selection decision making flow diagram 
from previous work. 

In order to parameterize the degradation process 
of the system, the Table 2 summarize all the finals 
distributions selected for each overhead crane. 

Table 2: Degradation distribution parameters. 

Crane 
ID 

Failure time 
distribution 

Repair time 
distribution 

807 Exponential 
µ = 743.80 

Lognormal 
µ = 1.07; σ = 0.93 

808 Weibull 
a = 1796.93; b = 0.60 

Generalized Pareto 
k = -1.05; σ = 
12.56; θ = 0 

809 Gamma 
a = 0.54; b = 2607.04 

Inverse Gaussian 
µ = 6.82; λ = 4.70 

810 Exponential 
µ = 9184 

Exponential 
µ = 3.25 

870 Birnbaum Saunders 
β = 377.02; γ = 2.59 

Loglogistic 
µ = 0.98; σ = 0.48 

871 Weibull 
b = 0.64; a = 1060.19 

Inverse Gaussian 
μ = 2.30; λ = 4.43 

1011 Exponential 
µ = 3254.86 

Exponential 
µ = 8.60 

1010 Inverse Gaussian 
µ = 476.41; λ = 79.40 

Inverse Gaussian 
µ = 5.9; λ = 1.87 

872 Exponential 
µ = 2396 

Exponential 
µ = 6.63 

873 Exponential 
µ = 5571.4 

Exponential 
µ = 4.53 

874 Exponential 
µ = 1189.2 

Exponential 
µ = 72.5 

879 NaN NaN 
1001 Weibull 

b = 0.82; a = 458.66 
Lognormal 
µ = 1.44; σ = 1.14 

1000 Burr 
α = 2318.3; c = 0.75; k = 
3.15 

Inverse Gaussian 
µ = 10.44; λ = 4.59

1002 Exponential 
µ = 3285.9 

Exponential 
µ = 12.95 

1003 NaN NaN 
1004 NaN NaN 
1005 Weibull 

b = 0.70; a = 429.64 
Inverse Gaussian 
µ = 65.65; λ = 2.93

1006 Exponential 
µ = 2534.4 

Exponential 
µ = 5.07 

1007 Exponential 
µ = 1125.7 

Exponential 
µ = 2.6 

1008 NaN NaN 
1009 NaN NaN 
1016 NaN NaN 
1021 NaN NaN 
502 Exponential 

µ = 1478.2 
Exponential 
µ = 4.38 

981 Birnbaum Saunders 
β = 508.68; γ = 3.13 

Inverse Gaussian 
µ = 16.82; λ = 2.11

983 Weibull 
b = 0.62; a = 611.51 

Inverse Gaussian 
µ = 8.52; λ = 3.53 
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Table 2: Degradation distribution parameters (cont.). 

Crane 
ID 

Failure time 
distribution 

Repair time 
distribution 

985 Generalized Extreme 
Value 
k = 0.8; σ = 1176.1; µ = 
903.95 

Inverse Gaussian 
µ = 72.79; λ = 2.69

804 Exponential 
µ = 4008.8 

Exponential 
µ = 3.59 

813 Burr 
α = 1027.3; c = 0.78; k = 
2.92 

Inverse Gaussian 
µ = 22.66; λ = 2.73

815 Nakagami 
µ = 0.28; Ω = 2852.2 

Inverse Gaussian 
µ = 3.88; λ = 2.03 

812 Exponential 
µ = 8564.6 

Exponential 
µ = 6.44 

811 Exponential 
µ = 8803.5 

Exponential 
µ = 4.18 

Note: NaN means non failures registered. 

Once we know all the parameters related with the 
overhead cranes system capacity, the next step is the 
production line capacity. Two essentialise 
information, the monthly STD is 12; 10; 16 and 12 
hours every week respectively, therefore STB 
between them are 168 hours; and the efficiency 
indicator is 85% in the simulated scenario. 

In the case of the simulation parameters, the 
simulation window is one year (8760 hours) and we 
assume robust expected value estimation (Capacity 
Loss indicator) by Monte Carlo simulation when ε = 
0.01. 

4 IME-PLATFORM: 
MATHEMATICAL SOLVING 

The model is fully implemented in MATLAB 
(R2019b), a multi-paradigm numerical computing 
environment and proprietary programming language 
developed by MathWorks and can be running in any 
personal computer. 

As we describe above, the model has a stochastic 
non-linear objective function with bounded 
constraints. In order to solve this specific problem, 
PSO algorithmic was used because Capacity Loss risk 
indicator (objective function value given the 
maintenance scheduling) is the results of a 
convolution by Monte Carlo simulation, therefore we 
do not know the objective function derivate and 
Newton's, Lagrange, quasi-Newton or Sequential 
Quadratic Programming traditional methods cannot 
be used. 

Knowing the features of the objective function, 
during the model implementation three possible well-

stablished algorithms to solve derivative free 
problems were found and tested: GA (genetic 
algorithm), PSO (particle swarm optimization), and 
Nelder-Mead modified (NMm). 

GA as a global searching algorithm, in large 
search regions needs numerous evaluations in the 
objective function to find the minimum. 

NM, by definition is a searching algorithm 
without restriction, but during the implementation 
was possible bound the independent variables of the 
objective function to adapt the algorithm to the 
problem (NMm). NM has a limitation related with the 
number of independent variables. Independently of 
the objective function, when the number of 
independent variables is more than ten, the algorithm 
rarely finds the global optimum if the initialization of 
the search is not accurate. 

Given the previous statements, PSO a local 
searching algorithm, is the option selected to be used 
because behaves better in this particular problem, 
finds the solution with less evaluations in the 
objective function, and as a consequence, the time 
needed to solve the problem is lower than GA. In 
addition, the number of independent variables is not 
a limitation for this algorithm. 

PSO is fully applicable to this problem. PSO 
algorithmic used in this investigation is based on the 
algorithm described in (Kennedy et al., 1995), using 
modifications suggested in (Mezura-Montes et al., 
2011) and in (Pedersen, 2010). PSO algorithm iterates 
until it reaches a stopping criterion, in this case, when 
the relative change in the best objective function 
value is less than 1.0000e-06 (Function Tolerance 
described in the diagram flow). 

Once the optimization algorithm used on the 
solution and the full parameterization are described, 
the results of the proposed optimization model given 
the steel plant scenario is shown in Figure 3. 

 

Figure 3: Convergence process of the optimization 
algorithm. 

Figure 3 is the convergence process of the 
optimization algorithm and shows how the Capacity 
Loss decrease when the maintenance scheduling 
change. Proper planned maintenance scheduling 
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process improve the operational efficiency in the steel 
plant, and the CLCS guaranty the expected results. 
The exploitation efficiency system based on risk 
management is valuable for the entity manager 
because he/she can decide according to standards risk 
level, what would be the best moment in the year to 
perform the maintenance process in the system. 

Simulation-based approaches are powerful for 
modeling stochastic processes with complex 
functions, but the time to simulate these processes can 
be a limitation with the current computing power. In 
our case the average time duration of ten consecutive 
simulations performed with an i5 5250U 1.6 GHz 
CPU for the described parametrization is [(1.955813 
± 0.072131)·Ns·E] seconds. 

5 CONCLUSIONS 

The paper describes with a parameterized scenario, 
how the exploitation efficiency system based on risk 
assessment find the optimal overhead cranes 
maintenance scheduling in the steel plant. 
Experimental results show that presented closed-loop 
control model can help to organize the maintenance 
scheduling strategy in the steel plant. The paper 
solves the assessing risks problem of transportation 
process in the steel plant through the simulation-
based approach which considers the relationship 
between random factors (historical degradation data 
fitted by machine learning framework) during the 
production process and maintenance scheduling 
process (planned process, making-decision 
framework). 

The presented model has the advantage of 
minimum set of data needed for robust decision 
making, but two fissures are in place, the model is a 
local focused problem solution (unique), means, we 
do not have any comparative reference to assess the 
model, just validations by steps and study cases, and 
the time because we use simulation-based approach. 

The local solution is well accepted by the steel 
plant and futures steps of the investigation will 
recover the results of the application in practice, but 
still remain open the generalization of the proposal in 
others system with similar orientation problems. 

The presented model opens the way to extensive 
simulations under various scenarios and conditions, 
with the possibility to be updated in real-time, to 
detect anomalies, to control systems and to conduct 
accurate diagnostics and prognostics of cranes into 
selected scenarios. 
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