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Abstract: Cyclocross races are a very popular winter sport in Belgium and the Netherlands. In this paper we present a 
methodology to calculate the proximity of riders to a number of cameras that are located on a cyclocross 
course in order to automatically select the correct camera for each rider. The methodology is based on two 
main input sources. The first input is the course with cameras positioned along it. As the course and camera 
information is usually available as pdf and isn’t directly processable by computer programs, we propose the 
conversion GeoJSON. The second requirement for our methodology is accurate location tracking of the 
athletes on the course with the help of wearable GPS trackers. We present an experimental camera proximity 
algorithm that uses both input sources and finds for every rider at any given moment in the race the closest 
camera or vice versa. The output of this methodology results in automatic identification of the filmed riders 
by a given camera at a given moment in the race and might benefit post-processing of the camera video 
streams for further computer vision-based analysis of the streams, for example, to pre-filter the camera streams 
or to generate rider and team stories. 

1 INTRODUCTION 

Over the past few years, cyclocross became more and 
more global as the UCI World Cup series is organized 
across the universe, with its epicentre located in 
Belgium. Races are broadcasted on Belgian and 
Dutch national television and the action is captured 
by an array of approximately 20 cameras. The 
optimal camera stream for a given moment in the race 
is usually selected by the broadcast director who is 
monitoring the race footage in the camera truck at the 
race location. When the race gets very eventful and a 
lot of action happens simultaneously this can be a 
rather hectic job. Furthermore, it is not unimaginable 
that the directors in charge have some subjectivity or 
their preferences for certain riders or sectors. In the 
current workflow, a lot of video footage is lost, as 
only the main broadcast is usually persisted at their 
servers. As it will be illustrated in this paper and in 
further research, this is a missed opportunity because 
having the raw footage at each moment in the race 
might be valuable to generate additional race insights. 
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Data-driven race reporting might offer a solution 
for the previously mentioned shortcomings. The 
evolution of wearable technology and the 
implementation of new wireless standards allow race 
organisers to track every rider on the cyclocross 
course in real-time. Studies of Hess et al. and Merry 
et al. show that nowadays fairly accurate GPS 
tracking is even possible with most of the available 
smartphones. However, for demanding events such as 
cyclocross and long road races, a dedicated GPS 
tracker is used more often. The Quarq Qollector is an 
example of such a device that tracks GPS location and 
combines it with sensor data such as heart rate, power 
and cadence. The sensor is usually mounted on the 
riders’ bikes or at the back of their skinsuit and is 
transmitting its data in real-time to the Quarq servers 
using 3G cellular data connectivity. Based on the 
rider location we can search the camera on the course 
that is best used to capture the riders.  
Cyclocross courses are challenging for riders, but also 
for the film crew to bring the race to the television 
viewer. The design of a cyclocross track can be 
considered as “a fine art” as courses are usually built 
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by a handful of specialists and often ex-professional 
riders such as Adrie van der Poel, Richard 
Groenendael and Erwin Vervecken. Planning, 
building and finalizing the perfect track takes weeks 
to provide riders with a challenging, but safe course. 
Obstacles such as barriers, sandpits and off-camber 
sectors make cyclocross interesting to watch both at 
location and on the television. The broadcast director 
visits the location a couple of days in advance and 
accurately plans the camera setup at race-day. 
Cameras, identified by their index number, are placed 
on a topological map of the course (see Figure 1 for 
an example of such a course plan). 

 
Figure 1: Example pdf document of the race broadcasters 
plan of the Leuven cyclocross track. Plan contains the 
course (yellow line). Cameras are annotated as red circles. 
It is a very detailed plan of the course but is not directly 
processable by a computer program.  

The combination of the multiple camera streams, 
detailed riders’ locations and carefully planned and 
documented course and camera location make the 
cyclocross broadcasting a very interesting use-case for 
automation. As mentioned, camera selection and race 
monitoring can be very hectic at times. In literature 
several implementations that predict the best camera at 
given circumstances based solely on the camera 
streams exist. Shen and Fels proposed a methodology 
that produced a Quality of View (QOV) measurement 
for classifying the quality of each shot in a multi-
camera surveillance system. In a sports related context, 
Chen et al. implemented a methodology to 
automatically select the correct video camera stream 
based on Internet videos in soccer games. However, in 
this paper we present a mechanism that tracks the 
riders’ location based on either GPS files or real time 
data and returns the closest camera to a given rider. 
Video editors and directors could benefit from this 
mechanism as streams can be pre-filtered based on the 
vicinity of riders. Finally, it can also be used to 
generate a summary of a rider/team across all cameras. 

2 METHODOLOGY 

In this section we introduce the steps of the 
methodology to match a rider based on its GPS 
location to the closest camera.  

2.1 Course Digitalisation 

The first step to a GPS assisted camera proximity 
algorithm is the digitalisation and annotation of the 
racecourse and cameras positioned along that course. 
Currently this is a partly manual (offline) process in 
which a portable document format (pdf) and a gps 
exchange format (gpx) file are used as input. The gpx 
file can be either provided by a rider who did practise 
on the course or it can be drawn with tools such as 
Komoot, RideWithGPS or Garmin Connect. This gpx 
file of the course is converted with a Python script to 
a GeoJSON linestring object. GeoJSON is a very 
useful standard to store, represent and 
programmatically access geographic data. The 
linestring of the course consists of interconnected 
points (latitude/longitude pairs) of the track (red line, 
Figure 2). 

 

Figure 2: Digitalized version of the cyclocross course of the 
Rectavit Series Leuven (2020) based on Figure 1. Red line 
is the GeoJSON course linestring. The blue markers are 
GeoJSON point features and are representing the cameras 
and their respective identifiers (camera id). 

The locations of the cameras are registered by the 
broadcasters in a pdf containing both the course and 
the locations of the various cameras across the track. 
Every camera on the schematic has an identifier (e.g. 
Camera 7a), but the logic behind the numbering isn’t 
related to its exact location on the track. To make this 
camera locations programming interface friendly, we 
manually added the locations to the GeoJSON track 
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file of the previous step. The installed cameras on the 
course are stored as GeoJSON point features with the 
identifier of the camera as its properties (see Code 1 for 
the json code representing the camera location of 
camera 2). The camera digitalisation is a rather manual 
procedure, but tools such as GeoJSON.io are making 
this rather straightforward. Future work will also 
further focus on the development of a tagging tool that 
can automatically generate the GeoJSON data. 

{ 
      "type": "Feature", 
      "properties": { 
            "type": "camera", 
            "camera_id": 2, 
    }, 
    "geometry": { 
            "type": "Point", 
            "coordinates": [ 
                  4.710833430290222, 
                  50.85269722820937 
            ] 
      } 
} 

Code 1: GeoJSON code representing the “camera 2” 
coordinates on the course as a point geometry. The feature 
has its type and camera_id stored as the properties. 

2.2 Rider Location Processing 

Once we have a structured representation of the track 
and the cameras placed around it, we can start looking 
for riders on it. As mentioned in the introduction, 
several methods do exist to accurately track and trace 
riders on the cyclocross course. We divided rider 
tracking in two separate approaches. In the first 
approach, GPS eXchange (gpx) files were used to get 
time stamped locations of the riders, who recorded 
their races with their own GPS head units or watches. 
These kinds of files are usually uploaded to online 
web applications such as Strava, Trainingpeaks or 
Today’s plan for further analysis. Although this is not 
offering us real time locations of the riders, it still 
provides great information for our camera and rider 
matching algorithm for post-race video analysis and 
summarization. Another benefit of using this 
approach is that there is no need to interface with 
external Application Programming interfaces (APIs) 
and real-time storage and management isn’t an issue. 

The second approach to get the riders’ locations 
is by using one of the many connected GPS trackers 
(eg. SPOT or Quarq Qollector). These GPS trackers 
are usually worn on the riders’ bodies or fixed to their 
bikes. Most of the trackers are accessible by APIs.  

A Python program was written to interface, read 
and interpret the data from the Quarq qollector API. 

Each Quarq Qollector device has a tracking id (tid). 
With the API we were able to periodically (every 
second) retrieve all the sensor and location data that 
was recorded by the Quarq Qollector for a list of 
participating tracking ids. 

Both approaches result in the location of the 
tracked riders for any given moment during the race. 
An abstraction layer was written to quickly get a 
location for a specific rider at a given timestamp, 
independent from the underlying rider tracking 
technology. 

Riders are often tracked with an identifier. For 
further computer vision-based analysis on the camera 
streams the riders’ names and other relevant 
information about them should be linked with the 
tracking identifier. The linking process should be 
generic and future-proof. The connection of the 
riders’ identities with the tracking devices should 
introduce the least manual effort as possible. In 
cyclocross, new teams appear, and old ones disappear 
rather quickly. Riders’ contracts can range anything 
from one year to three years, so riders changing teams 
is very common. The open WikiData knowledge base 
is the perfect data provider for this information. Most 
of the riders playing a key role in the race are well 
documented in WikiData. Their WikiData entries 
(also called entities in WikiData) are often containing 
lots of meta-information, such as their height, weight, 
team history, birthday and many more. WikiData is 
maintained by a rather active community of 
contributors around the world. Everybody can 
propose changes to a WikiData page. For instance, 
during 2020, the page of famous cyclocross rider 
Wout Van Aert has been already changed/improved 
more than five times. This example makes it safe to 
say that important changes such as team changes or 
big victories will most likely be updated quite 
quickly.   Finally, the WikiData knowledge base can 
also be easily exported as a Javascript Object 
Notation (JSON) document or queried using the 
SPARQL query language. An example query to the 
WikiData SPARQL endpoint is shown in Figure 3. As 
illustrated and if available a royalty free “profile” 
picture is also retrieved. 

It is important that rider ids are linked to the 
WikiData entity id (QID) for further analysis of the 
video streams. Currently the link between the location 
tracking ID and the tracked rider’s WikiData QID 
was made manually. For each tracked rider we make 
a list that projects each tracking ID number on the 
athlete’s WikiData QID that produces the tracking 
data. This process would become much easier if riders 
would have a fixed location tracking ID as well (i.e. 
if they were using the same trackers every race). 

GPS Driven Camera Selection in Cyclocross Races for Automatic Rider Story Generation

69



 

 

Figure 3: Example SPAQRL query that retrieves all 
cyclocross riders from the WikiData knowledge base with 
their WikiMedia image. Result can be stored as JSON or 
XML. This produces useful rider meta-information for 
further computer vision-based video stream analysis. 

2.3 Camera Rider Matching Algorithm 

Now that racetrack, camera locations and rider 
locations are available and converted to a computer-
understandable format a camera matching algorithm 
can be introduced. 

As a start, a formal definition of the proximity of 
a rider to a certain camera should be given. The 
calculation can be tackled in a couple of different 
ways. A first possibility might be the calculation of 
the haversine distance between a rider and all of the 
available cameras. The haversine distance is a 
formula that is very important for geospatial purposes 
as it is calculating the distance between two points 
(using their latitude and longitude coordinates) on a 
sphere (i.e. the earth) (Ingole and Nichat, 2013).   

In some cases, haversine distance can be enough, 
but sometimes the track layout of a cyclocross race 
might not be ideal for this calculation method. Tracks 
usually consist of lots of tight turns on a compact area. 
Figure 4 illustrates this principle. The yellow circled 
camera is the one that is detected as closest to the rider 
(represented by the red X). This might result in a good 
shot of the rider, based on the orientation and direct 
visibility of that specific camera at this location.  

Another possibility is to project both the cameras 
and the riders on the course’s linestring (Westra). The 
proximity of a camera is now determined by the 
distance along the course from the rider to the 
projection of the camera (see Figure 5). The 
projection is achieved by finding the index of the 
 

 

Figure 4: Camera setup on a test course. The red X is the 
current location of the rider following the course in the 
direction of the red arrow. Yellow circled marker is the 
absolute closest camera. Orange circled marker is the next 
camera the rider will visit on the course. 

point on the course with minimum (haversine) 
distance to the camera’s location. If n is the number 
of cameras and l the number of course points this 
approach has a time complexity of O(l·n). As 
mentioned, camera and course data are available prior 
to the race so this step can be pre-processed for faster 
real-time querying.  

A final optimization that can be done is the pre-
indexing of the course points based on the closest 
cameras (see Figure 6). Finding the closest camera for 
a given rider is reduced to a search in a precomputed 
list that is mapping each point on the course to the 
best/closest camera. 

 

Figure 5: Illustration of closest camera along the course 
principle. Rider r is “snapped” on the blue course line 
following the direction of the arrow. Cameras c1 and c2 are 
also projected on the course linestring. Distance d is the 
distance from rider r to a camera c with a given index, 
following the course path. Negative distances are cameras 
behind the rider, positive distances are cameras the rider is 
approaching. Closest camera is the camera with the smallest 
absolute distance. 
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It is worth mentioning that labelling which 
camera is serving which point on the courses can also 
be done manually by the responsible video director 
prior to the race (resulting output is similar to the 
output of the pre-indexing approach, Figure 6) . 
Although this process is a manual effort (that can be 
facilitated by a software tool), it will in some 
situations be more accurate, e.g., when dense forests, 
elevation differences or audiences are blocking the 
direct view of the closest camera. 

 
Figure 6: Alternative straightforward approach. Only riders 
are projected on the course. Each point on the course is 
labelled with the camera that is serving that location on the 
track. This can be done by the race directors prior to the race 
or can be the result of the camera on course projection 
technique. Getting the closest camera is now a case of 
looking at the camera index of the point of the rider on the 
course. Distance to the camera can also be pre-processed 
for each point on the course using either the haversine or 
the distance across the course metric. 

Now that we know the closest camera for a given 
rider, we also want to get an idea how far away that 
camera is. Figure 5 explains the distance (dr,c) between 
a camera c and the rider r. The distance is not the 
direct distance between both points but is again the 
distance along the course’s path. A negative distance 
means that the camera is behind the rider and 
positioned earlier on the course. A positive distance 
means that the rider is approaching this camera. 

 

Figure 7: Visual illustration how the referencing approach 
uses distances w.r.t. a reference point. The distance between 
two points is the result of the difference between distances 
from both points to the reference point. 

 
Figure 8: Example output of the camera matching algorithm 
for a cyclocross race of the 2019-2020 season. Manual 
verification in the video stream shows that riders 1231 and 
1232 are indeed visible by the camera. This shows the 
feasibility of tracking a rider during the race across the 
available cameras which is facilitating the video searching 
process. 

To further speed up the camera matching 
algorithm the distances of riders and cameras on the 
courses were mapped with respect to a fixed point on 
the course. We choose the start of the course as the 
reference point (see Figure 7). This allowed pre-
indexing all camera projection locations elapsed 
distances w.r.t. the course starting point. Finding the 
distance between a rider and a camera with given 
index is now a case of finding the elapsed distance of 
the rider (projected on the course line) w.r.t the course 
reference point, look up of the elapsed distance of the 
camera’s elapsed distance (w.r.t course reference 
point) and subtracting both distances.  

3 RESULTS 

With the introduced building blocks, we can now 
track riders on the course and find their distances to a 
given camera. This approach facilitates several 
interesting analyses. A first possibility is the sorting 
of riders based on their proximity to a certain camera. 
Figure 8 shows an example of such a search for the 
cyclocross race of Leuven around minute 50 of the 
race. Solely based on sensor data and the course and 
camera metadata we can reduce the number of riders 
that might have been filmed by a certain camera. As 
an example, and as shown in Figure 8, the total 
number of riders nearby was limited to only two of 13 
riders. From one side this methodology might give us 
an idea of how many and who to expect at a given 
camera at a given moment in the race. This can for 
example be very interesting to limit the number of 
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Figure 9: Example of how camera proximity algorithm can 
help computer vision techniques with rider identification.  

candidates for automatic rider recognition/annotation. 
On the other side a certain rider could also be 
followed across the different cameras which enables 
the tracking of a specific rider across all cameras 
during the race. This can be useful for teams or for 
fans who are only interested in their favourite rider. 

Table 1: Benchmark setup with execution times of pre-
processing stage and of some scenarios of the Leuven 
cyclocross case. 

Test setup – race moment 22/02/2020 15:05:43 

Hardware Apple MacBook Pro (2018) 

Intel Core i5 – 2.3 Ghz – Quad Core 

8GB RAM 

Intel Iris Plus Graphics 655 1536 
MB 

Total number of 
cameras 

17 

Total number of 
riders 

13 

Pre-processing  45.5 s 

Loading 
configuration  

0.01 s 

Distance all riders to 
all cameras  

3.11 s 

Distance 1 camera 
to all riders 

0.18 s * 

Distance from 1 
rider to all cameras 

0.23 s * 

* time scales linearly when #cameras/riders increase. 

The last cyclocross races were held before the 
suggested methodology was developed, we could 
only test this approach in an offline manner. 
Nevertheless, it is important that the performance of 
the implemented workflow is appropriate for real-
time querying as well. To verify the feasibility of live 
camera proximity tracking in cyclocross races, the 
proximity algorithm was tested in several different 
race scenarios. Detailed results of the test can be 
found in Table 1. We used a total of 17 cameras and 
13 riders with tracking information in this test. The 
most expensive operation was the retrieval of 
proximity of all riders to all cameras, which took 
roughly 3 seconds. This can be improved with further 
reasoning and knowledge of the sequence in which 
the cameras were positioned. For instance, if only one 
of the 17 cameras detects nearby riders, it doesn’t 
make sense to run the camera proximity algorithm 
five seconds later on a camera that is on the other side 
of the course. Moreover, as GPS systems have an 
accuracy of around 10 meters (Fong et al.) and riders 
are riding at speeds ranging between 3 and 15 m/s, the 
execution time of 3 seconds is justifiable.  

#EXTVLCOPT:start-time=28 
#EXTVLCOPT:stop-time=36 
camera_1.mp4 
#EXTVLCOPT:start-time=500 
#EXTVLCOPT:stop-time=550 
camera_17.mp4 
#EXTVLCOPT:start-time=900 
#EXTVLCOPT:stop-time=1100 
camera_5.mp4 

Code 2: Sample .m3u file. An m3u file is a kind of playlist 
that extracts specific parts from larger video files (in our 
example the different camera streams) and plays them 
subsequently.  

With this information in mind, we can start 
collecting video extracts from different camera 
streams and compile them in either a rider specific 
summary or extract only the parts from a raw camera 
stream in which riders were nearby. When the streams 
are available as individual files (e.g. camera_1.mp4, 
camera_17.mp4 and camera_5.mp4 in code extract 2) 
it is possible to make an m3u playlist which is 
bundling all the separate clips as one continuous 
video, without the need to duplicate the data of the 
original camera streams (Garcia et al.). Code extract 
2 shows the content of an m3u file, selecting 3 video 
extracts from three different camera stream files. 
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4 CONCLUSIONS AND FUTURE 
WORK 

The proposed mechanism is not only useful for race 
broadcast directors, but the filtered streams can also 
be further processed by video processing algorithms 
to annotate, index and document the race footage. The 
camera proximity algorithm can serve as a first filter 
for the video footage before it is processed by the 
video processing tools which are also currently being 
developed within our cyclocross video research 
project. Techniques such as text recognition, face 
recognition and pose estimation are used to further 
annotate the filtered video extracts from the camera 
streams.  

The camera proximity algorithm can also further 
assist the computer vision modules (Xue et al.). 
Currently the main components of our computer 
vision pipeline are a Detectron2 pose estimator to 
locate the riders and a Keras-OCR (Python library 
that combines a CRAFT text detector and CRNN text 
recognition to read jersey numbers and sponsors, Nag 
et al. and Baek et al.) and text recognition module. 
For instance, as the example in Figure 9 illustrates, 
our text recognition detects “Tormans” and the output 
of the camera proximity algorithm (see table in Figure 
9) outputs that only one rider of that team is in the 
neighborhood of the camera in question (i.e. camera 
17). Combined with the help of the WikiData 
information available about the riders and their teams, 
we can easily find out the rider’s identity (i.e. Corné 
van Kessel).  

Moreover, the use of WikiData information of 
riders has also been found to be beneficial as it offers 
a semi-automated way to get up-to-date data about 
riders.  In the future we plan to even further extend 
this WikiData approach. Participants of a cyclocross 
race are usually available as a PDF document roughly 
an hour before the race. We are currently writing a 
Python library to process these formatted PDF 
documents and extract riders and their bib numbers. 
A similar approach can be used on the PDF of the race 
results. The parsed information of both PDF 
documents can then be committed to the WikiData 
page of the cyclocross race. New WikiData entities 
are automatically created if the race or rider isn’t on 
WikiData yet. Ultimately, this extra information 
could be very helpful to link the output of the camera 
proximity algorithm with insights gathered from the 
computer vision techniques applied on the camera 
streams. For instance, in Figure 10, the WikiData race 
participant information helps the computer vision 
pipeline to identify the rider based on the shoulder 
number on the rider’s left arm. 

 

Figure 10: Example of optical character recognition (OCR) 
on camera 17 output stream. With the combination of the 
detected shoulder number and the participant list added to 
the race’s WikiData page the rider was correctly 
recognized. In combination with the camera proximity 
algorithm this can produce an accurate rider detector and 
tracker. 

As mentioned, another aspect we’re currently 
focussing on is the creation of an intuitive camera 
coverage labelling tool for the race directors. Such a 
tool should allow them to easily label the locations of 
the cameras on the racecourse using a web application 
on a wearable device. The tool could do the 
conversion process to the GeoJSON standard 
automatically, which would be a huge step towards a 
fully automated camera proximity algorithm.  

As a final note, the proposed methodology of 
linking participant location data with camera and 
course/playfield information can also be repurposed 
in other sports such as cross country skiing (Swarén 
et al.) or motorsports. With some adaptations the 
proposed methodology can also be used in team 
sports such as hockey, rugby or soccer. However, 
these type of team sports might benefit from a more 
accurate location tracking system such as Ultra Wide 
Band (UWB) or Radio-Frequency Identification 
(RFID) (Gudmundsson and Horton) position tracking 
as GPS accuracy errors and the relatively small 
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dimensions of the playgrounds might give false 
camera proximity results (Castillo et al.).  
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