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Abstract: This work focuses on a design tool, the violin design explorer, for classic violin outline design. Our design
tool employs an evolution strategies algorithm and can be viewed as a creative evolutionary system. With this
system, users without any design knowledge can create their favorite violin outline through a set of simple
choices. The underlying violin designs are implemented using the Digital Amati geometry engine. In order to
validate the design tool we conducted an anonymous experiment. Four groups of participants were asked to
design their favorite violin outline. Design patterns that emerged within these four participant groups during
the experiment seem to validate that our design tool works as we envisioned. We view this implementation of
the designer as the first stage of a comprehensive violin design tool.

1 INTRODUCTION

The origins of evolutionary computation can be traced
back to the late 1950s and started to receive signif-
icant attention during the 1980s (Bäck et al., 2018).
Pioneers have conducted research using evolutionary
computation, especially in the field of design, mu-
sic, and art. Here we explore whether we can use
evolutionary computation in the area of violin outline
design. Our design tool, the violin design explorer,
employs an evolution strategies algorithm and can be
viewed as a creative evolutionary system. The vio-
lin design explorer aims to help users without design
experience to directly integrate their imagination and
creativity into violin outline design and create novel
solutions. The explorer abstracts each violin outline
into a unique genotype representation suitable for de-
sign representation within the Digital Amati geometry
engine (Digital Amati, 2018) which also handles vio-
lin design parameters and constraints. Instead of us-
ing a fitness function the violin design explorer uses
human selection to determine the parent populations
of the evolutionary computation. Besides allowing
users without design background or knowledge to un-
dertake non-trivial design tasks another advantage of
creative evolutionary systems is that they allow the
user to sidestep the limitations of “conventional wis-
dom” and “design fixation” (Menges and Ahlquist,
2011).

We validated the design tool by conducting an
anonymous experiment. Four groups of participants

were asked to design their favorite violin outline. De-
sign patterns that emerged within these four partici-
pant groups during the experiment seem to validate
that our design tool works as we envisioned.

We view this implementation of the designer as
the first stage of a comprehensive violin design tool.
A next logical step would be to extend the designer to
embody acoustic characteristics besides the pure aes-
thetic consideration currently implemented through
Digital Amati. A good starting point for developing
such an extension would be the research by Carleen
Hutchins (Hutchins, 1981).

The remainder of the paper is structured as fol-
lows. Section 2 discusses related work. In Section 3
we describe the main internal structures of our design
tool. Section 4 describes our experiment and we close
the paper with Section 5 where we discuss conclu-
sions and further work.

2 RELATED WORK

2.1 Creative Evolutionary Systems

A creative evolutionary system is a computer system
that makes use of some aspect of evolutionary compu-
tation to explore creative solutions (Bentley, 1999a).
This kind of system is designed to:

• Aid our own creative processes, and/or

• to generate results to problems that traditionally
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required creative people to find solutions (Bentley
and Corne, 2002).

There are five elements that make up a creative
evolutionary system framework:

• An evolutionary algorithm

• A genetic representation

• An embryogeny

• A phenotype representation

• Fitness function(s) and/or processing of user in-
put (Bentley and Corne, 2002)

A creative evolutionary system uses some kind of
evolutionary algorithm to create new offspring. The
genotype representation is a series of elements ab-
stracted from real-world objects. The evolutionary al-
gorithm modifies the genotype representation through
recombination and mutation processes to generate a
new genotype representation. Once the new geno-
type is generated, an embryogeny process decodes the
genotype representation to construct the correspond-
ing phenotype. Finally, a fitness function or human
selection process will help users select an optimal so-
lution to create the solutions that make up the next
generation. The difference between a creative evo-
lutionary system and standalone evolutionary algo-
rithms is that an evolutionary algorithm is used to
search for an optimal solution whereas a creative evo-
lutionary system acts as an explorer to provide inspi-
ration and investigate creative solutions.

2.2 Evolutionary Computation in
Engineering Design

As one of the most well known evolutionary algo-
rithms, the genetic algorithm (Kramer, 2017), is now
a well-established technique in engineering design
applications. For example, in 1992 John Frazer and
his students used a genetic algorithm in yacht hull de-
sign (Frazer, 2002). Their program was intended to
explore a range of widely different alternative solu-
tions to yacht hull design (Figure 1). The program
starts by generating a randomized initial population
of yacht hull designs. All designs are evaluated by
a fitness function which considers both objective and
subjective factors. The objective engineering factors
include parameters such as stability, center of buoy-
ancy, wetted surface area, prismatic coefficient, and
blocking. The subjective factors (i.e. designer crite-
ria) mainly considered aesthetic appearance, historic
tradition, and allusion of form.

On the basis of the fitness function, the designs
with the highest fitness scores are selected and be-
come the parent population. The crossover and mu-

Figure 1: Yacht hull designs (Frazer, 2002).

tation processes are then applied to the parent popula-
tion and produce new offspring. These processes con-
tinue until a satisfactory design emerges. The yacht
hulls design program produces a range of choices for
clients and provides a series of new ideas in yacht hull
designs to explore.

2.3 Evolutionary Computation in Art

Compared with engineering design, music and art are
more subjective, fuzzy and difficult to analyze. But it
can still be evolved through evolutionary computing.
The algorithmic art assembly (Algorithmic Art As-
sembly, 2019) hosted in San Francisco in 2019 show-
cased a diverse range of artists who are using algo-
rithmic tools and processes in their works. Although
the algorithmic tools are not necessarily evolutionary
in nature it points to a new approach of using com-
putational tools in music and art generation. Darwin-
Tunes (MacCallum et al., 2012) is a computational
engine to evolve music. As shown in Figure 2 it uses a
genetic algorithm to maintain a population of tree-like
digital genomes, each of which encodes a computer
program representing a song. DarwinTunes uses re-
combination and mutation to randomly create songs
with novel musical motifs, rhythms, and harmonies.
Instead of using a fitness function, user selection via
a web interface is the only way to help DarwinTunes
select the parent individuals for the next generation.

One of the best known “evolutionary artists”,
Steven Rooke, uses genetic programming algorithms
to evolve some astonishing pieces of art (Rooke,
2002). The image evolution system begins with a
series of randomly generated tree structure genomes.
Based on these genomes the computer generates cor-
responding images according to specific mapping
rules. In each generation, the image evolution sys-
tem determines the parent genomes by random selec-
tion or user selection. The parent genomes generate
new offspring through crossover and mutation steps.
Figure 3 shows some of the images generated by the
image evolution system.
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Figure 2: The DarwinTunes program (MacCallum et al.,
2012).

Figure 3: Some creative outcomes of Rooke’s image evolu-
tion system (Rooke, 2002).

3 THE DESIGNER

Our violin design explorer is conceived as a creative
evolutionary system which can help users without
formal design background create their favorite violin
outline design.

3.1 The Digital Amati Project

Digital Amati (Digital Amati, 2018) developed by
Harry Mairson is a software package based on Eu-
clidean geometry and uses a “geometry engine” lan-
guage (AmatiML) to design classical stringed instru-
ments. The AmatiML language defines a series of ge-
ometric elements such as points, line segments, and
circles; and uses a series of inscribed circles and re-
verse curves formed by these geometric elements to
draw a violin outline (Figure 4).

In the violin design explorer all violin drawing
work is handled by the Digital Amati software.

Figure 4: A violin outline drawn by Digital Amati.

Figure 5: The scope of points.

3.2 Representation

3.2.1 Genetic Representation

In the violin design explorer the genotype represen-
tation consists of an array of point locations (details
follow below). Each array corresponds to a single vi-
olin outline. Each element in the genotype represen-
tation array has a scope. For example, consider points
a and b that are the centers of two circles (Figure 5).
Point g is the intersection of these two circles. Here
we can interpret point g as the apex of the violin’s
upper left sharp corner. As the positions of points a
and b change the sharp corner of the violin changes.
When the positions of points a and b are far enough
apart the intersection (point g) of the two circles dis-
appears. Therefore, point g has a scope attached in
order to ensure that the two circles intersect. A scope
can be interpreted as a range of values that satisfies
certain criteria.

Interestingly, in Digital Amati the scopes for some
points can be discontinuous. For example, the scope
of point P (see Table 1) is 6-9 and 11-13 written in
interval notation as [6,9] and [11,13]. The violin de-
sign explorer manages these discontinuities by using
five different models or search spaces for violin out-
lines. Table 1 summarizes the different models and
their point scopes used by the violin explorer.

In the following we briefly highlight the function
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Table 1: The violin explorer genotype representation models.

Model Genotype Scopes
Model 1 [q,O,e,c] q:[1,8] O:[4,5] e:[6,10] c:[2,6]
Model 2 [q,O,e,c,P] q:[2,4] O:[3,5] c:[2,6] P:[6,9] e:[8,10]
Model 3 [q,O,e,c,P] q:[2,4] O:[3,5] c:[2,6] P:[11,13] e:[8,10]
Model 4 [q,O,e,c,P] q:[5,8] O:[3,5] c:[2,6] P:[6,9] e:[8,10]
Model 5 [q,O,e,c,P] q:[5,8] O:[3,5] c:[2,6] P:[11,13] e:[8,10]

Figure 6: The effect of the point q value.

Figure 7: The effect of the point O value.

of each point in the genotype representation. The
value of point q controls the width of the upper bouts
of a violin. As the value of point q increases, the up-
per bouts of the violin design will become wider. As
shown in Figure 6, the point q value of the left design
is 2 and the right design is 8.

The value of point O controls the smoothness of
the upper bouts of a violin. When the value of point O
increases, the upper bout of a violin is smoother. For
example, there are three upper bouts design in Fig-
ure 7. The point O value of the left design is 3. The
point O value of the middle design is 5. The point O
value of the right design is 6.

The value of point e controls the width of the mid-
dle bouts of a violin. As the value of point e increases,
the middle bouts of the violin will become narrower.
As shown in Figure 8, the point e value of the left de-
sign is 6 and the point e value of the right design is
10.

The value of point c controls the shape of the
lower bouts. As the value of point c increases, the cor-
ner of the violin’s lower bouts become much sharper.
As shown in Figure 9, the point c value of the left de-
sign is 2 and the point c value of the right design is
6.

The value of point P also affects the shape of a
violin’s lower bouts. As the value of point P increases,
the violin’s lower bouts become taller and rounder. As
shown in Figure 10, the point P value of the left design
is 6 and the point P value of the right design is 8.

Figure 8: The effect of the point e value.

Figure 9: The effect of the point c value.

3.2.2 Embryogeny

An embryogeny is a mapping process from geno-
type to phenotype (Bentley and Corne, 2002). The
embryogeny process of the violin explorer is imple-
mented through the Digital Amati software package.
The Digital Amati package uses the AmatiML lan-
guage to define a series of geometric elements such as
points, lines, and circles; and use a series of inscribed
circles and reverse curves formed by these geometric
elements to draw a violin outline. Each component in
the genotype is used to construct part of a particular
violin outline as described in in the previous section.

3.2.3 Phenotype Representation

A phenotype representation in the violin design
explorer is a violin outline drawn by the Digi-
tal Amati software using the Retrofit and Batik li-
braries (Retrofit 2, 2019; ApacheTM Batik SVG
Toolkit, 2019), as shown in Figure 11.

These phenotype representations are treated as so-
lutions to violin outline designs and are evaluated by
the users of the system.

3.3 The Core Evolutionary Algorithm

The violin design explorer uses a standard evolution-
ary strategies algorithm (Beyer, 2013; Hansen et al.,
2015), as outlined in the following:
Step 1: The violin design explorer is initialized by

randomly generating 10 violin outlines. These vi-
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Figure 10: The effect of the point P value.

Figure 11: The phenotype representation of the violin ex-
plorer.

olin outlines are treated as the original population
pool.

Step 2: Users are asked to select two of the most sat-
isfying designs from the population pool.

Step 3: These two designs will become the parent
population. Offspring are introduced through re-
combination. All offspring are placed into the
population pool until it reaches the maximum
population; in our case 10 violin outlines.

Step 4: Mutation is applied to each single violin out-
line in the population pool based on values in
strategy parameters of the system. The strategy
parameters themselves are also mutated within the
overall mutation process.

Step 5: Once recombination and mutation have gen-
erated enough new individuals to fill the popula-
tion pool, users will be asked to select two of the
most satisfying designs from the population pool.
These two designs will be treated as the parent
population for the next generation.

Step 6: Repeat Step 3 through Step 5 to generate new
generations of violin designs.

This evolutionary process terminates after it
reaches a predefined number of generations or when
users are satisfied with the current design. In our case

Figure 12: Recombination process.

we limit the number of generations to 50 across all 5
models.

3.3.1 Evolutionary Strategies Scheme

As we have seen, the violin design explorer uses a
(µ, λ)-ES scheme to create new individuals in each
generation. Here µ is the number of parents and λ

is the number of offspring (Beyer, 2013). We chose
the values µ = 2 and λ = 10 according to the recom-
mendations by Hanson et al. (Hansen et al., 2015).
According to Hanson et al. the optimal truncation
ratio is µ/λ = 0.27 with a corresponding maximized
progress per offspring of 0.202. Our choice of the
values for µ = 2 and λ = 10 gets us close to the opti-
mal truncation ratio, keeps things straight forward in
terms of computation, and yet still maintain a man-
ageable number of designs for the user to process.

3.3.2 Recombination

Recombination is applied at each generation cy-
cle which recombines parent individuals in different
ways to create new offspring. The violin explorer
defines a breakpoint integer bp which is randomly
generated and designed to determine the position to
break a genotype into two pieces. For example, when
bp = 3 both parents are divided into two pieces from
the 3rd position (Figure 12) and the resulting pieces
are recombined to form offspring.

According to our overall algorithm the recombi-
nation process will repeat until sufficient offspring are
generated.

3.3.3 Mutation

Mutation plays an important role in evolutionary strat-
egy in order to enhance the overall search for pos-
sible solutions (Bentley, 1999b). The mutation pro-
cess in the violin design explorer involves making
small changes to each genotype element. The value of
change is determined by the mutation strength param-
eter. The mutation strength parameter itself is an array
that is randomly generated when the original popula-
tion is initialized. This array has the same length as
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the genotype representation array and each array ele-
ment within the mutation strength array corresponds
to a position in the genotype representation. The mu-
tation strength of each element is used to produce ran-
dom changes in the corresponding genotype element
according to a Gaussian distribution with a mean of
zero. During the evolutionary process the mutation
strength is reduced in order to foster a better conver-
gence behavior.

3.3.4 Solution Evaluation

In our currently implementation violin outline design
is considered an aesthetic problem. It is almost an
impossible task to establish a fitness function to cap-
ture aesthetics. Many factors such as a user’s age and
background, as well as current fashion trends may be-
come key factors influencing violin design. Therefore
the violin design explorer uses human interaction pro-
cesses instead of using a fitness function to evaluate
violin outline designs.

4 EXPERIMENT

The primary objective of our experiment is to vali-
date the violin design explorer. Four distinct groups of
participants were asked to design their favorite violin
outline. We were working under the hypothesis that if
we see distinct design patterns in the four participant
groups then our violin design explorer works as envi-
sioned. The design patterns that emerged within these
four participant groups during the experiment seem to
validate that our design tool works as we envisioned.

4.1 Experiment Setup

Our experiment population consisted of 100 volun-
teers of different ages and backgrounds. The volun-
teers were asked two questions to determine their ex-
perimental grouping:

• Which age group are you in? “18 to 40” or “older
than 40”?

• Do you have an artistic background such as paint-
ing or playing musical instruments?

Based on the participants’ answers to these two ques-
tions they were divided into four experimental groups
each with 25 participants as shown in Table 2.

During the experiment volunteers used the violin
design explorer to design their favorite violin outlines.
Our analysis of the data often makes reference to the
“classic” or “original” violin design. By this we mean
a design as established by the old Italian masters in

Figure 13: The designs of group 1.

Figure 14: The designs of group 2.

the 1600’s. Figure 11 shows an image of this refer-
ence design.

4.2 Results

The volunteers in group 1 were between 18 and 40
years old and had an artistic background. The 25 vio-
lin designs of that group are shown in Figure 13.

The volunteers in group 2 were between 18 and
40 years old and had no artistic background. The 25
violin designs in that group are shown in Figure 14.

The volunteers in group 3 were older than 40 years
and had an artistic background. The 25 violin designs
in that group are shown in Figure 15.

The volunteers in group 4 were older than 40 years
and had no artistic background. The 25 violin designs
in that group are shown in Figure 16.

We averaged the genotype representations within
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Table 2: Four experimental groups.

Group 1 Participants are between the ages of 18 to 40 and have an artistic background.
Group 2 Participants are between the ages of 18 to 40 but do not have any artistic background.
Group 3 Participants are older than 40 and have an artistic background.
Group 4 Participants are older than 40 but do not have any artistic background.

Figure 15: The designs of group 3.

Figure 16: The designs of group 4.

Figure 17: The average designs for the four groups.

each experimental group in order to compute the “av-
erage” design for each group and these designs are
shown in Figure 17. A visual inspection of these av-
erage designs reveals that the average design of group
3 (older than 40 with an artistic background) is most
similar to the classic violin design of the old Italian

Table 3: The design variance in each group.

Group Design Variance
1 1.93
2 2.29
3 1.41
4 1.94

Table 4: Design deviation from the classic design.

Group Design Deviation
1 1.94
2 2.37
3 1.35
4 2.20

masters in Figure 11.
An interesting metric to consider is the design

variance in each group. The design variance is com-
puted by computing the parameter variances in each
group and then averaging those variances for each
group. The design variance for each group is shown
in Table 3. We observe that groups 1 and 3 have the
lowest design variances indicating that users with an
artistic background have similar notions of optimal
designs. The lowest design variance is in group 3 indi-
cating the older users with an artistic background tend
to have very similar ideas about violin designs. The
highest design variance is in group 2 indicating that
younger users without any artistic background are the
most likely to experiment with violin designs.

The design deviation from the classic design in
Figure 11 in each group can also be considered as a
metric. We computed the design deviation by com-
puting the standard deviation of the designs in each
group from the classic design. Table 4 shows the
design deviations in each group. Perhaps not unex-
pected we find that groups 1 and 3 have the lowest
deviation from the classic design. We also find that
group 3 (older users with an artistic background) have
the overall lowest deviation from the classic design
validating our casual observation from earlier that the
designs in this group are most similar to the classic
violin design. Finally, we find that users in group 2
(younger users without an artistic background) have
the highest design deviation further validating the fact
that users in this group are the most likely to experi-
ment with violin designs.

Given these not unexpected design patterns within
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each of the groups we feel that this validates the work-
ings of our violin design explorer.

5 CONCLUSIONS AND FURTHER
WORK

Here we discussed an evolutionary design tool, the
violin design explorer, for violin outline design. With
this system, users without any formal design back-
ground can create their favorite violin outline through
a set of simple choices. Our design tool employs an
evolution strategies algorithm and can be viewed as
a creative evolutionary system. The genotype repre-
sentation of the system directly supports violin out-
line manifestation through the Digital Amati software
library. In order to validate the design tool we con-
ducted an anonymous experiment. Four groups of
participants were asked to design their favorite vio-
lin outline. Design patterns that emerged within each
of these four participant groups during the experiment
seem to validate that our design tool works as we en-
visioned.

Currently we partition the violin outline search
space into five parts via the five models driven by pa-
rameter scopes. We would like to explore other ways
of structuring the search space and therefore provide
potential solutions to the users in different ways. Fur-
thermore, in our current implementation we use the
default violin template and its associated parameters
provided in Digital Amati as a starting point for the
evolution of new outlines. This completely constrains
the user to stay within the somewhat classical look
of a violin with upper, lower, and “C” bouts, etc.
It would be interesting to experiment with different
kinds of templates as starting points providing the
user with a larger range of possible outline designs.

Here we only explored one aspect of violin de-
sign – the aesthetics of the violin outline. Our goal is
to provide comprehensive interactive design tool for
a fully functional violin. In order to accomplish this
we will need to address body cavity design as well
as neck, sound hole and bridge designs. This means
we have to develop models for these violin parts in or-
der to provide constrained parameter spaces that make
sense for violin design similar to the scopes we saw
in the outline design. A good starting point for devel-
oping these kind of models is the research by Carleen
Hutchins (Hutchins, 1981).

Ultimately we would like to be able to generate
designs that are sufficiently detailed so that they can
be directly submitted to a CNC (Xu and Newman,
2006) or other milling machine for construction.
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