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Abstract: Graph databases are gaining wide use as they provide flexible mechanisms to model real world entities and
the relationships among them. In the literature, there exists several studies that evaluate performance of graph
databases and graph database query languages. However, there is limited work on comparing performance for
graph database querying under different graph representation models. In this study, we focus on two graph
representation models: ordinary graphs vs. hyper-graphs, and investigate the querying performance of Neo4j
for various query types under each model. The analysis conducted on a benchmark data set reveal what type
of queries perform better on each representation.

1 INTRODUCTION

Graph databases have found wide range of applica-
tions as they provide a powerful mechanism to store,
query, and analyse graph-like data. Such data is al-
ready large in volume and is still been produced as
a result of scientific research, e.g. computational bi-
ology and chemoinformatics, and social networking
applications such as Facebook and Twitter.

Although graph database technology can be con-
sidered as a new innovation, there are several graph
database implementations and a wide range of studies
comparing their performance with respect to differ-
ent aspects. The work given in (Jouili and Vansteen-
berghe, 2013) compares the performance of different
graph database implementations in terms of data load-
ing, traversal, and capacity to handle simultaneous re-
quests. In (Kolomičenko et al., 2013), performance
of different graph database implementations are com-
pared with respect to creating indexes, querying short-
est paths, and finding nodes/edges with certain prop-
erties. In addition to them, there are studies that focus
on comparing different graph database querying lan-
guages (Holzschuher and Peinl, 2013; Holzschuher
and Peinl, 2016) and on comparing performance
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of graph databases against relational database sys-
tems (Batra and Tyagi, 2012; Vicknair et al., 2010).
In the literature, there also exists studies that compare
data analytics capabilities of graph databases. For in-
stance, in (Lee et al., 2012; Yan et al., 2005), perfor-
mance of the graph isomorphism algorithms provided
by different graph database systems are compared.

In this study, we focus on querying performance
of graph database when data is represented using
different graph models. More specifically, we use
Neo4j1 as the graph database, and investigate its
querying performance for data that is modeled (i) as
a simple graph, and (ii) as a hyper-graph. A hyper-
graph is a generalization of a simple graph where an
edge can connect zero or more vertices as opposed
to connecting exactly two nodes in simple graphs.
Hyper-graphs are argued to better handle semantics
of data (Bu et al., 2010; Li and Li, 2013) and have
been subject to several studies.

Today there are graph database vendors, such as
HypergraphDB2, that directly support hyper-graph
data model. However, Neo4j is known as world lead-
ing graph database technology (Patil et al., 2018)
and, although not natively, supports modelling data
as hyper-graphs. In this study we model a book data
set under simple graph and hyper-graph models and
investigate querying performance of Neo4j for sev-

1https://neo4j.com
2http://www.hypergraphdb.org
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eral types of queries. In this paper we also argue what
type of hyper-edges should be formed, which type of
modelling is preferable for which type of queries.

The rest of the paper is organized as follows. In
Section 2, we provide definitions of simple graph,
hyper-graph and their respective data models, and
briefly introduce graph databases. In Section 3 we in-
troduce the data set used in this study, and the models
proposed. In Section 4 we report the graph query-
ing performances for both models and discuss the ob-
tained results. The last section concludes the paper.

2 PRELIMINARIES

In this section we firstly define graph and hyper-graph
data models, then introduce the graph database con-
cept.

2.1 Graph Data Model

Graph is defined as a pair of sets G = (V, E) where V
is finite set of vertices and E, set of edges, is the set
of 2-element subset of V. In a graph data model, ver-
tices represent entities and edges between them rep-
resent the relationship between the entities. Edges
have direction in order to show the direction of the
relationship. Vertices and edges can be bundled with
properties that represent their features or roles. Data
manipulation is achieved via graph-centric operations
such as traversal.

Graph data model is suitable for modelling sev-
eral real life problems including social networks, col-
laboration networks, transportation networks, and bi-
ological networks. In (Hajian and White, 2011)
an e-commerce social network is modeled within a
graph structure where nodes represent individuals,
posts, and comments and edges indicate the interac-
tions between the nodes. In (Barber and Scherngell,
2013), R&D collaboration is analysed using graph
data model where nodes represent projects and or-
ganizations and edges indicate which organization is
involved in which project. In (Integrating, 2018),
nodes represent road intersections and edges repre-
sent road segments that connect road intersections.
Graph-based approaches have extensively been used
to analyse biological structures (Emmert-Streib et al.,
2016; Frainay and Jourdan, 2016), as well.

2.2 Hyper-graph Data Model

Hyper-graph is a generalization of simple graphs de-
noted as G = (V, E) where V is a finite set of vertices
and E is the set of k-element (k ≥ 0) subsets of V.

As hyper-edges enable modeling high order relations,
relations that include more than two entities, hyper-
graphs are advocated to better capture semantics of
complex data (Bu et al., 2010; Li and Li, 2013; Lung
et al., 2018). As an example, suppose there are two
chemicals, namely A and B, that make a bond of type
BT1. Further suppose that chemical A also makes a
bond of type BT1 with chemical C. If these two re-
lations are modeled using a graph model, Figure 1a
will be obtained. From Figure 1 one may also infer
that there is bond between chemicals B and C of type
BT1, which is not the case. If the same relations are
modeled using hyper-graphs, model presented in Fig-
ure 1b will be obtained. This model prevents the mis-
inference done in Figure 1a.
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Figure 1: Graph vs. Hyper-graph model representation.

In hyper-graph data modelling, hyper-edges are
user defined and this arises a challenge in hyper-graph
model construction. In (Bu et al., 2010), a unified
hyper-graph model is proposed for music recommen-
dation, such that, binary relations such as friendship,
as well as n-ary relations such as hyper-edges con-
necting all songs that belong to an album, or hyper-
edges that connect an artist and all of his/her albums
are defined. In (Li and Li, 2013), a news recommen-
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dation system based on hyper-graphs is presented.
In the study, hyper-edges that define different high-
order relationships among users (users that read about
the same topic), news articles (articles that belong to
the same topic), user-article-topic hyper-edges (users
that read articles about the same topic) are defined.
In (Lung et al., 2018) a hyper-graph model repre-
senting scientific research community is constructed,
such that, nodes represent publications and authors,
and hyper-edges that connect (i) an author and his/her
publications; (ii) a publication and authors that con-
tributed in that publication are defined.

2.3 Graph Databases

Graph databases have recently gained increasing pop-
ularity and have found several applications both in in-
dustry and scientific research. Below we list some of
the popular graph database systems.

• AllegroGraph3: It is implemented as an RDF
database and supports SPARQL, RDFS++, and
Prolog reasoning. It is primarily used for geo-
spatial reasoning and social network analysis.

• DEX4: It is a bitmaps-based graph database. Its
API provides several functionalities including link
analysis, pattern recognition, and keyword search.

• Neo4j: It is among the most popular graph
database systems and built upon a network model.
Its API provides efficient traversals.

• HypergraphDB: It provides high-order relation-
ships between nodes and relational-style queries.

In this work, we choose to use Neo4j as the graph
database due to its widespread use both in academy
and industry. Another important reason for this ra-
tionale is that our analysis is focused on comparing
graph vs. hyper-graph in the same environment by
using basic graph querying capabilities. Hence, the
analysis do not include specific functionalities such
as RDF modeling or analytics capabilities.

3 DATA SET AND MODELS

In this section we firstly introduce the data set used in
this study, and then explain the graph and hyper-graph
models constructed in order to represent the data.

3https://franz.com/agraph/allegrograph/
4http://sparsity-technologies.com/

3.1 Data Set Description

The data set used in study is crawled from an on-
line bookstore. For each book its author(s), publi-
cation year, publisher, and category information are
retrieved. If the same book is published by multiple
publishers in different years, such books are treated
as different books. As indicated in Table 1, there are
71242 books, authored by 36647 authors.

Table 1: Data set properties.

Number of books 71242
Number of authors 36647
Number of categories 34
Number of publication years 57
Number of publishers 1922

3.2 Graph-based Model

In graph model for the book data set, 9 different types
of nodes are created. Nodes are created to store book
titles, author names, publisher names and publication
dates. However, these nodes are not bundled with
properties that indicate the type of the information
they store but instead are connected to special nodes
that indicate the type of information they store. Nodes
that are connected to the special node Writers store
author information. Similarly, nodes connected to
the special node BookCategory store book categories,
nodes connected to the special node Publisher store
publisher names, and nodes connected to special node
Dates store publication dates.

To indicate relationships between nodes, 5 types
of edges are created. In order to indicate authorship
relation, an edge of type WRITTEN BY is placed be-
tween a book and an author. Similarly, a HAS TYPE
type of edge is placed between a book and its cat-
egory, PUBLISHED BY type of edge is placed be-
tween a book and its publisher, and lastly PUB-
LISHED IN type of edge is placed between a book
and its publication year. Nodes are connected to spe-
cial nodes via IS A edges.

Figure 2 is a visualisation of model described
above for book entitled ”Korku’nun Butun Sesleri”.
Leftmost and rightmost nodes are the special nodes,
and the nodes in between represent the book informa-
tion.

3.3 Hyper-graph Model

Figure 3 includes a sample for the hyper-graph model
proposed to represent the book data set. Similar to
the graph model, hyper-graph model of the book data
set consists of nodes representing book titles, author
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Figure 2: Graph model to represent books.

names, categories, publishers, and publication years.
In order to establish relationships between a book and
its attributes, both binary edges and hyper-edges are
used, hence the hyper-graph model is not homoge-
neous. Bw edge in Figure 3 is binary and establishes
<author, book> relationship. Nodes labeled bpd203,
bcp15, bcd11, and bcpd203 indeed represents hyper-
edges. Node bpd203 is a hyper-edge that connects
node storing the book title, Korku’nun Butun Ses-
leri, its publisher, Metis Yayincilik, and its publication
year, 2010. Also, not all attributes are connected to
book in a similar way, i.e. <author, book> relation-
ship is directly established, while <book, category>,
<book, publication year>, and <book, publisher>
relations are established via hyper-edges.

The hyper-graph model has 12 types of hyper-
edges and 2 types of binary edges, as follows:

• Ebcd : This hyper-edge is created to capture
<category, publication year, book> relationships.
While creating such type of hyper-edges, each cat-
egory is paired with every publication year.

• Ebdc: This hyper-edge is similar to Ebcd in a sense
but this time each publication year is paired with
every category. Although these hyper-edges seem
very similar in structure, they serve for different
purposes. If one is interested in listing all books
that belong to a specific category, say Novel (Ro-
man in Figure 2.2), the list of the books will be
obtained by traversing Ebcd type of hyper-edges
where category is Novel. However, if one is in-
terested in listing the books published in a spe-
cific year, say 2012, this time hyper-edges of type
Ebdc where publication date is 2012, would be tra-
versed.

• Ebcp: This hyper-edge is created to capture
<category, publisher, book> relationships. While

creating this type of hyper-edges each category is
paired with every publisher.

• Ebpc: This hyper-edge is created to capture
<publisher, category, book> relationships. Dis-
tinction between Ebcp and Ebpc is similar to that
of Ebcd and Ebdc.

• Ebpd : This hyper-edge is created to capture
<publisher, publication year, book> relation-
ships. Creation of such type of hyper-edges is
similar to the ones mentioned above.

• Ebd p: This hyper-edge is created to capture
<publication year, publisher, book> relation-
ships. Creation of such type of hyper-edges is
similar to the ones mentioned above and distinc-
tion between Ebpd and Ebd p type of hyper-edges
is similar to that of Ebcd and Ebdc.

• Ebcpd : This hyper-edge is created to capture
<category, publisher, publication year, book> re-
lationships. While creating such hyper-edges each
Ebcp hyper-edge is extended to include nodes rep-
resenting year information. Hyper-edges that rep-
resent all combinations of <category, publisher,
publication year> are created in a similar fashion
to Ebcpd and purposes similar to the creation of
Ebcd and Ebdc types of hyper-edges.

• eBw: This is a binary edge to indicate <book,
author> relationship. If a book is authored by
multiple authors, several author nodes are con-
nected to the book node.

• eWb: This is a binary edge to indicate <author,
book> relationship.

In the proposed hyper-graph model, hyper-edges
are not created for every combination of the attributes.
As an example <author, publication year, book> type
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Figure 3: Hyper-graph data model to represent books.

of hyper-edges, which will connect author, publica-
tion year, and book, are not created. Based on the
statistics given in Table 1, for the worst case, 36647
× 57 = 2088879 such type of hyper-edges will be cre-
ated and probably each hyper-edge will connect dis-
tinct <author, publication year, book> triples. How-
ever, for the worst case, only 34×57 = 1938 dis-
tinct Ebcd type of hyper-edges are created and such
<category, publication year> tuple is associated with
37 distinct books on average.

4 EVALUATION OF THE
MODELS

In this section, we firstly discuss the storage required
to represent the graph and hyper-graph models. Later,
we provide certain queries and analyse their running
times. Moreover, we also investigate the number of
nodes and relations that form valid paths that connect
starting node of a query to the nodes that represent the
result set 5.

In Table 2, we report the number of nodes, the
number of relations needed to represent each model
and also the required storage. As the table indicates,

5One should realize that these numbers are not the total
number of nodes/relations traversed to obtain the result set.
Nodes traversed but failed to reach an element of the result
set are discarded.

the hyper-graph model has larger number of nodes,
relations and requires more storage. This is due to
the fact that Neo4j does not have direct support for
hyper-edges but represents such structures using extra
nodes. To represent a hyper-edge that connects three
nodes, say nodes A, B, and C, Neo4j creates an extra
node, say node D, and places relationships between
A and D, B and D and between C and D. Node D is
then treated as a hyper-edge that connects A, B, and
C. The number of relations is also large due to way
Neo4j manages hyper-edges.

Table 2: Graph properties.

Model Storage #Nodes #Relations
Graph 21.71 MB 109906 329346
Hyper-graph 28.13MB 155959 480373

To evaluate how the different representations ef-
fect the running time of queries, we devised 12
queries, some of which are more suitable for the
graph representation and some more suitable for the
hyper-graph representation, and compared their run-
ning time. These queries are listed in Table 3. Queries
with ids 3 to 8 are more suitable for the hyper-graph
representation.
• Query 3 can be processed by traversing Eddc type

of hyper-edges where publication date is fixed to
2017 and category varies.

• Query 4 and Query 5 can be processed by travers-
ing either Ebcd or Ebdc type of hyper-edges as both
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Table 3: Queries to evaluate performance.

Query ID Query
1 Group name of the authors by their book categories who authored books published by Is

Bankasi Yayinlari.
2 Group name of the authors by their publishers who published a book in category Novel.
3 Group name of authors by their book categories who published a book in 2017.
4 List name of the authors who published a book in category Novel in 2017.
5 List name of the authors who published a book in 2017 in category Novel.
6 List name of the authors who authored books published by Is Bankasi Yayinlari in category

Novel.
7 List name of the authors who authored books published by Is Bankasi Yayinlari in 2017.
8 Group name of the authors by their book categories who published a book by Is Bankasi

Yayinlari in 2017.
9 List name of the books which are published either in 2016 or 2017 or 2018.
10 List name of the books which are published by either Is Bankasi Yayinlari or Cinius or

DoganEgmont Yayincilik
11 List name of the books that belong to either of the following categories, Novel or Poem or

School Age or Children’s Books.
12 List name of the books which are authored either by Kolektif or Stefan Zweig or Franz Kafka.

Table 4: Query evaluation results (time in ms.).

Query Graph based Model Hyper-graph based Model
ID Exec. Time # Nodes # Relations Exec. Time # Nodes # Relations
1 1520 - - 1661 - -
2 8818 - - 9413 - -
3 40922 - - 38533 - -
4 17793 - - 18138 - -
5 595 - - 2490 - -
6 233 - - 248 - -
7 476 - - 187 - -
8 119 - - 49 - -
9 51 283644 252128 67 187218 156015
10 12 44649 39688 16 28962 24135
11 50 283869 252328 69 188316 156930
12 49 55404 49248 47 36648 30540

publication year and category values are fixed.
• Query 6 can be processed by traversing Ebpc or

Ebcp type of hyper-edges as both publisher and
category values are fixed.

• Query 7 and Query 8 can be processed by travers-
ing Ebpd or Ebd p type of hyper-edges as publisher
and publication year values are fixed.
The remaining queries are more suitable for graph

representation as there are direct relationship between
the search criteria and attributes sought for. As an ex-
ample, considering Query 1, in graph model there is
a direct edge between a book and its publisher how-
ever in the hyper-graph model, such a relationship is
established via hyper-edges which contain publisher
information.

The running times of the queries are listed in Ta-
ble 4. Running times are calculated by averaging

five runs of every query, without caching the queries.
When the running times are examined, it can be seen
that queries have similar running times on both mod-
els but they always have shorter running time for
the graph model, with exception for Query 4. Ob-
taining such results was surprising as we expected
queries suitable for the hyper-graph model to have
shorter running times when executed on the hyper-
graph model compared to graph model. Similarly,
it was unexpected for queries suitable for the graph
model to have shorter running times when run on the
graph model compared to the hyper-graph model. We
believe that obtaining seemingly poor performance
for queries designed for hyper-graph model is due to
the indirect support of Neo4j for hyper-graphs. This
indirect support requires creation of more nodes and
edges and increases the search space.
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For queries 9 to 12 number of nodes and rela-
tions that form valid paths from the starting nodes
to the nodes that represent the result set are given.
From these numbers, one can see that the hyper-graph
model builds shorter paths when compared to the
graph model. These statistics are not provided for the
first 8 queries as these these queries are initiated with
more than one node and the search is not a traversal.

5 CONCLUSION

In this paper, we study the querying performance on
graph modeling in graph databases. More specifically,
given the same data, we compare the querying perfor-
mance under simple graph and hyper-graph models
on Neo4j graph database. The querying performance
is analyzed for 12 different queries. While selecting
the queries, we included both those involve hyper-
edges and those binary edges.

As expected, hyper-graph model leads to higher
storage cost due to the inclusion of additional nodes
to model hyper-edges, which also leads to increase in
number of edges on the overall. However, this brings
an advantage for queries involving multiple type of
nodes. This advantage is most obvious for Query 7
and Query 8 (in Table 4), where the execution time
is considerably reduced, such as to half or quarter.
On the other hand, there are surprising results where
simple graphs perform better for such type of queries,
such as Query 5. For this query, the traversal cost pos-
sibly dominates the execution time for hyper-graph
model due to higher number of nodes.

As a future work, we plan to test the models on
more complex data sets such as news and biological
data sets. These data set contain higher order rela-
tionships compared to the book data set. We also plan
to implement and evaluate the performance of hyper-
graph model on graph database systems that have di-
rect support for hyper-edge construction.
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Lung, R. I., Gaskó, N., and Suciu, M. A. (2018). A hyper-
graph model for representing scientific output. Scien-
tometrics, 117(3):1361–1379.

Patil, N., Kiran, P., Kiran, N., and KM, N. P. (2018). A
survey on graph database management techniques for
huge unstructured data. International Journal of Elec-
trical and Computer Engineering, 8(2):1140.

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., and
Wilkins, D. (2010). A comparison of a graph database
and a relational database: a data provenance perspec-
tive. In Proceedings of the 48th annual Southeast re-
gional conference, page 42. ACM.

Yan, X., Yu, P. S., and Han, J. (2005). Substructure sim-
ilarity search in graph databases. In Proceedings of
the 2005 ACM SIGMOD international conference on
Management of data, pages 766–777. ACM.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

404


