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Abstract: This paper addresses the problem of continuously finding highly correlated pairs of time series over the most 
recent time window. The solution builds upon the ParCorr parallel method for online correlation discovery 
and is designed to run continuously on top of the UPM-CEP data streaming engine through efficient streaming 
operators. The implementation takes advantage of the flexible API of the streaming engine that provides low 
level primitives for developing custom operators. Thus, each operator is implemented to process incoming 
tuples on-the-fly and hence emit resulting tuples as early as possible. This guarantees a real pipelined flow of 
data that allows for outputting early results, as the experimental evaluation shows.

1 INTRODUCTION 

Consider a big number of streams of time series data 
(e.g. stock trading quotes), where we need to find 
highly correlated pairs for the latest window of time 
(say, one hour), and then continuously slide this 
window to repeat the same search (say, every 
minute). Doing this efficiently and in parallel could 
help gather important insights from the data in real 
time (Figure 1). This has been recently addressed by 
the ParCorr parallel incremental sketching approach 
(Yagoubi et al., 2018), which scales to 100s of 
millions of parallel time series, and achieves 95% 
recall and 100% precision. An interesting aspect of 
the method is the discovery of time series that are 
highly correlated to a certain subset of the time series, 

 

Figure 1: Example of a pair of time series that the method 
found to be highly correlated over the first several sliding 
windows of 500 time points, but not thereafter. 

which we call targets (Figure 2). This concept has 
many applications in different domains (finance, 
retail, etc.), where we would like to use the correlates 
of a target as predictors to forecast the value of the 
target for the next time window. 

Such challenges have been identified by use case 
scenarios, defined in the scope of the 
CloudDBAppliance project (CDBA, 2019), which 
aims to provide a database-as-a-service appliance 
integrating several data management technologies, 
designed to scale vertically on many-core 
architectures. These include an operational database, 
an analytical database, a data lake, and a data 
streaming engine. To face these requirements, the 
ParCorr method was implemented as a continuous 
query for the highly scalable streaming engine. 

 

Figure 2: Example of a target time series (red) and its top 
correlates (green) discovered by the method. 
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In a previous paper (Kolev et al., 2019), we 
presented details of the generic implementation of the 
method. In this paper, we focus on a modification that 
allows for efficient data pipelining, considering the 
fact that, at each window, target time series can be 
hashed as a first step and then all the others can be 
correlated to the targets in a pipeline. The rest of the 
paper gives a brief overview of the streaming engine 
and the ParCorr method, followed by a description of 
the pipelined implementation in comparison with a 
naïve one, which are then experimentally evaluated. 

2 UPM-CEP: STREAMING 
ENGINE OVERVIEW 

Stream Processing (SP) is a novel paradigm for 
analyzing in real-time data captured from 
heterogeneous data sources. Instead of storing the 
data and then processing it, the data is processed on 
the fly, as soon as it is received, or at most a window 
of data is stored in memory. SP queries are 
continuous queries run on a (infinite) stream of 
events. Continuous queries are modeled as graphs 
where nodes are SP operators and arrows are streams 
of events. SP operators are computational boxes that 
process events received over the incoming stream and 
produce output events on the outgoing streams. SP 
operators can be either stateless (such as projection, 
filter) or stateful, depending on whether they operate 
on the current event (tuple) or on a set of events (time 
window or number of events window). Several 
implementations went out to the consumer market 
from both academy and industry, such as Borealis 
(Ahmad et al., 2005), Infosphere (Pu et al., 2001), 
Storm 1 , Flink 2  and StreamCloud (Gulisano et al., 
2012). Storm and Flink followed a similar approach 
to the one of StreamCloud in which a continuous 
query runs in a distributed and parallel way over 
several machines, which in turn increases the system 
throughput in terms of number of tuples processed per 
second. The streaming engine UPM-CEP (Complex 
Event Processing) adds efficiency to this parallel-
distributed processing being able to reach higher 
throughput using less resources. It improves the 
network management, reduces the inefficiency of the 
garbage collection by implementing techniques such 
as object reutilization and takes advantage of the 
novel Non Uniform Memory Access (NUMA) 
multicore architectures by minimizing the time spent 
in context switching of SP threads/processes. 

                                                                                                 
1 http://storm.apache.org/ 

The UPM-CEP JCEPC (Java CEP Connectivity) 
driver hides from the applications the complexity of 
the underlying cluster. Applications can create and 
deploy continuous queries using the JCEPC driver as 
well as register to the source streams and subscribe to 
output streams of these queries. During the 
deployment the JCEPC driver takes care of splitting a 
query into sub-queries and deploys them in the CEP 
cluster. Some of those sub-queries can be 
parallelized. 

3 ParCorr: METHOD OVERVIEW 

The ParCorr time series correlation discovery 
algorithm (Yagoubi et al., 2018) is based on a work 
on fast window correlations over time series of 
numerical data (Cole et al., 2005), and concentrates 
on adapting the approach for the context of a big 
number of parallel data streams. The analysis is done 
on sliding windows of time series data, so that recent 
correlations are being continuously discovered in 
nearly real-time. At each move of the sliding window, 
the latest elements of the time series are taken as 
multi-dimensional vectors. As a similarity measure 
between such vectors, we take the Euclidean distance, 
since it is related to the Pearson correlation 
coefficient if applied to normalized vectors. 

Since the sliding window can result in a very high 
number of dimensions of time series vectors, which 
makes them very expensive to be compared to each 
other, a major challenge the algorithm addresses is the 
reduction of the dimensionality in a way that nearly 
preserves the Euclidean distances. For this purpose, 
random projection approach is adopted, where each 
high-dimensional vector is transformed into a low-
dimensional one (called “sketch” of the vector), by 
applying a product with a specific transformation 
matrix, the elements of which are randomly selected 
from the values of either -1 or 1. This approach 
guarantees with high probability that the distance 
between any pair of original vectors correspond to the 
distance between their sketches. 

Furthermore, to simplify the comparing across 
sketches, each sketch vector is partitioned into 
subvectors (e.g. two-dimensional), so that for 
example a 30-dimensional sketch vector is broken 
into 15 two-dimensional subvectors. Then, discrete 
grid structures (in the example, 15 two-dimensional 
grids) are built and subvectors are assigned to  
grid cells, so that close subvectors are grouped in the 
same grid cells. This process essentially performs a

2 https://flink.apache.org/ 
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Figure 3: Streaming operators architecture with pipelined data flow within the operators Collocation, Correlation, and 
Verification. 

locality-sensitive hashing of high-dimensional time 
series vectors, where close vectors are discovered by 
searching for pairs of vectors, which are represented 
together in a high number of grid cells. Since this can 
output false positives, the candidate pairs are 
explicitly verified by computing the actual distance 
between them. 

This outlines four main steps of the algorithm: 
 Sketching: computation and partitioning of 

sketches; 
 Collocation: grouping together all time series 

assigned to the same grid cell; 
 Correlation: finding frequently collocated pairs 

as candidates for correlation; 
 Verification: computing the actual correlation of 

each candidate pair to filter out false positives. 

To provide prediction capabilities, the method 
takes into account the correlates of time series that are 
considered of interest for prediction and called 
“targets”. Only correlated pairs that involve at least 
one target time series are considered for discovery. 

4 PIPELINED 
IMPLEMENTATION 

The generic implementation involves four stateful 
streaming operators (Kolev et al., 2019), each 
processing incoming tuples in the context of the 
current window, taking into account the current state 
of the window. Thanks to the flexible API of the 
UPM-CEP streaming engine that provides low level 
primitives for implementing custom operators, each 
operator can process incoming tuples on-the-fly and 
hence emit resulting tuples as early as possible. This 
guarantees a real pipelined flow of data that allows 
for outputting early results. This section includes 
descriptions of the operators with focus on the 
improvements enabled through the custom design. 

The current modification presented hereby 
concentrates on extensions of the method, guided by 
the requirements of the CloudDBAppliance project’s 
use cases, which include a filtering that enables the 
discovery of time series that are highly correlated 
only with a certain subset of all the time series, called 
“targets”. The rest of the series are called “features” 
and the objective is to output the most relevant 
features for each target. 

4.1 Architecture 

Figure 3 shows the architecture of the streaming 
operators and the data flow within the pipelined 
implementation. Although these operators are 
stateful, large part of their inputs are processed in a 
pipelined way, allowing to emit resulting tuples as 
early as possible. Therefore, compared to a naïve 
implementation based on high-level streaming 
operators with custom transformation functions, our 
implementation gives much lower latency of the first 
output tuples at each window slide. 

The parallelization of the algorithm is quite 
straightforward – sketches of time series vectors on 
parallel data streams are computed in parallel, which 
is followed by an additional shuffle step that groups 
together the identifiers of time series that fit in the 
same grid cell; then groups are explored for 
discovering frequent pairs. Since the streaming 
engine operates in a distributed environment, 
operators have multiple instances, handling different 
partitions of data in parallel. This requires shuffles of 
intermediate data across operator instances and the 
partitioning is based on a key from the schema of the 
intermediate dataset. In Figure 3, we use the 
Key=>Value notation to show which fields are used 
as partition keys. 
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4.2 Streaming Operators 

The Sketching operator computes a hashing of all 
time series within the current window by assigning 
each time series item (only the identifier, without the 
data) to a grid cell in a number of grids. As a first step, 
it emits the cell assignment of only the target time 
series and then emits the rest of the items (features).  

Then, the Collocation operator first memorizes for 
each cell a set of all assigned targets, and at the next 
step processes on-the-fly each of the features by 
emitting directly the set of targets collocated in the 
same cell with the feature. Conceptually, this operator 
efficiently combines the functionality of a group-by 
followed by a hash join, by constructing the hashed 
side of the join during the group-by step. 

The Correlation operator counts the number of 
occurrences of each (feature, target) pair and as soon 
as it exceeds a certain threshold, the pair is considered 
a candidate for correlation. To perform this counting, 
each instance of the operator maintains incrementally, 
for each of the features, a counter map that keeps the 
current count for each target. When a new tuple 
arrives (recall that an incoming tuple is a feature id 
mapped to a set of target ids), the counter map for the 
feature gets updated by incrementing the counts of the 
targets present in the tuple. If some of these counts is 
already equal to the threshold, the corresponding 
(feature, target) pair is immediately promoted as 
candidate. Conceptually, this step of the operator is 
equivalent to a counting aggregate on a keyed stream 
followed by a filter on the counted value. Hence, the 
candidate selection with standard streaming operators 
would first fully process the aggregate in order to 
compute the counts for filtering. 

As soon as a candidate is selected, the Correlation 
operator immediately retrieves the time series data of 
the feature from a local copy of the current window, 
partitioned by time series identifier. This lookup is 
done using a non-blocking symmetric hash join 
between the candidate pairs stream and the raw time 
series repeater stream. Thus, the custom 
implementation of this operator combines two 
stateful operations (grouping with counting and then 
join) into a single one in a way that allows resulting 
tuples to be emitted as soon as possible. 

The same symmetric hash join strategy is applied 
at the Verification operator to retrieve the time series 
data of the target, compute the actual correlation of 
the candidate (target, feature) pair, and, if it exceeds 
the desired correlation threshold, output it. Note that 
these joins also benefit from a long-term state within 
the operator that keeps in a buffer the data for 
previous windows, so that the repeater streams need 

to incrementally stream only the newest basic 
window for the consuming operator to update the 
current window data. This long-term state is yet 
another improvement that benefits from the custom 
design, compared to standard implementations of 
symmetric hash joins. 

So, except for the first operator, which has 
anyway to wait for the entire window to be collected 
in order to compute the hashing, all the other 
operators process the “features” part of the stream in 
a pipeline, so that a target-feature association be 
output as early as possible. 

4.3 Comparison with a Naïve 
Implementation 

We compare the benefits of the pipelined 
implementation with a naïve one, where some of the 
operators must wait for the entire window data to be 
collected before shuffling resulting tuples to the next 
operator. This can be easily achieved through the use 
of standard operators, but results in emitting all 
candidates for correlations at almost the same time, as 
opposed to the pipelining approach, where early 
results can be observed shortly after each window 
slide. 

We have implemented the same algorithm on 
Apache Spark, using standard operators (such as 
reduceByKey and join), in order to compare the 
response times of the first and the last emitted tuples 
per each sliding window. The major impact on the 
latency of the first results, compared to the pipelined 
implementation, has the candidate selection step, 
where counting is done per candidate through a 
stateful operation that requires the entire window to 
be processed. 

5 EXPERIMENTS 

We consider two implementations of the ParCorr 
method as follows: 
 CDBA: the pipelined implementation on top of 

the UPM-CEP streaming engine for the 
CloudDBAppliance platform. It leverages 
custom streaming operators to minimize the 
amount of exchanged intermediate data and 
output resulting tuples as early as possible. 

 Naïve: the baseline implementation with 
standard streaming operators for Apache Spark 
(version 2.3.3), with custom transformation 
functions. 

The experiments were carried out on a many-core 
architecture platform, provided for the integration of 
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Figure 4: Experimental evaluation of the response times for the pipelined (CDBA) implementation and the naïve one. The 
dataset contains 1 million random walk time series, each of length 510 points. The number of target time series is varied 
between 1k, 5k, 10k, and 20k. Response times were measured for each window of size 250, sliding with a step of 20 points 
(14 windows in total). Average latency to emit the first and the last tuple after the beginning of each window is displayed. 

the CloudDBAppliance components. The platform 
utilizes a configurable number of Intel Xeon Platinum 
8153 @2GHz processors, with 3TB of main memory. 
In our experiments, we have used a level of 
parallelism of 48 workers, for both implementations. 
Datasets were loaded in memory, so I/O cost is not 
considered for either of the solutions. 

The two implementations of the method were 
evaluated on a synthetic random walk dataset of 1 
million time series, each consisting of 510 values. At 
each time point, the random walk generator draws a 
random number from a Gaussian distribution N(0,1), 
then adds the value of the last number to the new 
number. Sliding windows of size 250 with a step of 
20 points (14 windows in total) have been taken into 
account to measure the response times of the first and 
the last emitted tuple after the beginning of each 
window. 

Figure 4 shows the results of the experimental 
evaluation, comparing the two implementations, with 
respect to latency of the first results emitted after the 
beginning of a window and the response time of the 
entire window result. CDBA shows an advantage in 

the total window processing time, thanks to its 
optimized data flow and customized allocation of 
local (to the operator instances) long-term memory 
storage. In addition to the overall performance, 
CDBA also shows a significant advantage in the 
latency of the first results, thanks to the pipelining 
approach provided by the custom operator logic. 

Raising the number of targets, as expected, raises 
the total execution time, as the number of candidates 
is proportional. However, with respect to the first 
results latency, the number of targets shows no 
particular impact on the pipelined approach. An 
interesting observation is that the latency even 
decreases as the number of targets increases. This can 
be explained by the higher number of targets 
associated to each feature (at the Correlation step), 
which results in a higher probability for early 
presence of a frequent feature/target pair. This effect, 
however, cannot be observed with the naïve 
implementation, due to its inability to detect early 
candidates. 
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6 CONCLUSIONS 

We presented a parallel streaming implementation of 
the ParCorr method for window correlation discovery 
on time series data, in the context of the 
CloudDBAppliance project, adapted to discover 
correlations with respect to a particular subset of the 
input series, called “targets”. The implementation 
leverages the development of custom streaming 
operators that boosts the performance and minimizes 
the response time by optimizing intra-operator 
communication and utilizing pipelining of 
intermediate data. The experimental study evaluates 
the performance benefits of this implementation, 
compared to a naïve streaming setup, with respect to 
latency of the first results and response time of the 
entire output at each time window. Our 
implementation shows a significant advantage in 
starting to emit results very shortly after a window 
slides, thanks to the pipelining approach provided by 
the custom operator logic. In addition, the overall 
response time per window gets also improved. 
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