
Pipelined Implementation of a Parallel Streaming Method for Time
Series Correlation Discovery on Sliding Windows

Boyan Kolev1, Reza Akbarinia1, Ricardo Jimenez-Peris2, Oleksandra Levchenko1,
Florent Masseglia1, Marta Patino3 and Patrick Valduriez1

1Inria and LIRMM, Montpellier, France
2LeanXcale, Madrid, Spain

3Universidad Politecnica de Madrid (UPM), Madrid, Spain

Keywords: Time Series Correlation, Data Stream Processing, Distributed Computing.

Abstract: This paper addresses the problem of continuously finding highly correlated pairs of time series over the most
recent time window. The solution builds upon the ParCorr parallel method for online correlation discovery
and is designed to run continuously on top of the UPM-CEP data streaming engine through efficient streaming
operators. The implementation takes advantage of the flexible API of the streaming engine that provides low
level primitives for developing custom operators. Thus, each operator is implemented to process incoming
tuples on-the-fly and hence emit resulting tuples as early as possible. This guarantees a real pipelined flow of
data that allows for outputting early results, as the experimental evaluation shows.

1 INTRODUCTION

Consider a big number of streams of time series data
(e.g. stock trading quotes), where we need to find
highly correlated pairs for the latest window of time
(say, one hour), and then continuously slide this
window to repeat the same search (say, every
minute). Doing this efficiently and in parallel could
help gather important insights from the data in real
time (Figure 1). This has been recently addressed by
the ParCorr parallel incremental sketching approach
(Yagoubi et al., 2018), which scales to 100s of
millions of parallel time series, and achieves 95%
recall and 100% precision. An interesting aspect of
the method is the discovery of time series that are
highly correlated to a certain subset of the time series,

Figure 1: Example of a pair of time series that the method
found to be highly correlated over the first several sliding
windows of 500 time points, but not thereafter.

which we call targets (Figure 2). This concept has
many applications in different domains (finance,
retail, etc.), where we would like to use the correlates
of a target as predictors to forecast the value of the
target for the next time window.

Such challenges have been identified by use case
scenarios, defined in the scope of the
CloudDBAppliance project (CDBA, 2019), which
aims to provide a database-as-a-service appliance
integrating several data management technologies,
designed to scale vertically on many-core
architectures. These include an operational database,
an analytical database, a data lake, and a data
streaming engine. To face these requirements, the
ParCorr method was implemented as a continuous
query for the highly scalable streaming engine.

Figure 2: Example of a target time series (red) and its top
correlates (green) discovered by the method.

Kolev, B., Akbarinia, R., Jimenez-Peris, R., Levchenko, O., Masseglia, F., Patino, M. and Valduriez, P.
Pipelined Implementation of a Parallel Streaming Method for Time Series Correlation Discovery on Sliding Windows.
DOI: 10.5220/0008191304310436
In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 431-436
ISBN: 978-989-758-377-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

431

In a previous paper (Kolev et al., 2019), we
presented details of the generic implementation of the
method. In this paper, we focus on a modification that
allows for efficient data pipelining, considering the
fact that, at each window, target time series can be
hashed as a first step and then all the others can be
correlated to the targets in a pipeline. The rest of the
paper gives a brief overview of the streaming engine
and the ParCorr method, followed by a description of
the pipelined implementation in comparison with a
naïve one, which are then experimentally evaluated.

2 UPM-CEP: STREAMING
ENGINE OVERVIEW

Stream Processing (SP) is a novel paradigm for
analyzing in real-time data captured from
heterogeneous data sources. Instead of storing the
data and then processing it, the data is processed on
the fly, as soon as it is received, or at most a window
of data is stored in memory. SP queries are
continuous queries run on a (infinite) stream of
events. Continuous queries are modeled as graphs
where nodes are SP operators and arrows are streams
of events. SP operators are computational boxes that
process events received over the incoming stream and
produce output events on the outgoing streams. SP
operators can be either stateless (such as projection,
filter) or stateful, depending on whether they operate
on the current event (tuple) or on a set of events (time
window or number of events window). Several
implementations went out to the consumer market
from both academy and industry, such as Borealis
(Ahmad et al., 2005), Infosphere (Pu et al., 2001),
Storm 1 , Flink 2 and StreamCloud (Gulisano et al.,
2012). Storm and Flink followed a similar approach
to the one of StreamCloud in which a continuous
query runs in a distributed and parallel way over
several machines, which in turn increases the system
throughput in terms of number of tuples processed per
second. The streaming engine UPM-CEP (Complex
Event Processing) adds efficiency to this parallel-
distributed processing being able to reach higher
throughput using less resources. It improves the
network management, reduces the inefficiency of the
garbage collection by implementing techniques such
as object reutilization and takes advantage of the
novel Non Uniform Memory Access (NUMA)
multicore architectures by minimizing the time spent
in context switching of SP threads/processes.

1 http://storm.apache.org/

The UPM-CEP JCEPC (Java CEP Connectivity)
driver hides from the applications the complexity of
the underlying cluster. Applications can create and
deploy continuous queries using the JCEPC driver as
well as register to the source streams and subscribe to
output streams of these queries. During the
deployment the JCEPC driver takes care of splitting a
query into sub-queries and deploys them in the CEP
cluster. Some of those sub-queries can be
parallelized.

3 ParCorr: METHOD OVERVIEW

The ParCorr time series correlation discovery
algorithm (Yagoubi et al., 2018) is based on a work
on fast window correlations over time series of
numerical data (Cole et al., 2005), and concentrates
on adapting the approach for the context of a big
number of parallel data streams. The analysis is done
on sliding windows of time series data, so that recent
correlations are being continuously discovered in
nearly real-time. At each move of the sliding window,
the latest elements of the time series are taken as
multi-dimensional vectors. As a similarity measure
between such vectors, we take the Euclidean distance,
since it is related to the Pearson correlation
coefficient if applied to normalized vectors.

Since the sliding window can result in a very high
number of dimensions of time series vectors, which
makes them very expensive to be compared to each
other, a major challenge the algorithm addresses is the
reduction of the dimensionality in a way that nearly
preserves the Euclidean distances. For this purpose,
random projection approach is adopted, where each
high-dimensional vector is transformed into a low-
dimensional one (called “sketch” of the vector), by
applying a product with a specific transformation
matrix, the elements of which are randomly selected
from the values of either -1 or 1. This approach
guarantees with high probability that the distance
between any pair of original vectors correspond to the
distance between their sketches.

Furthermore, to simplify the comparing across
sketches, each sketch vector is partitioned into
subvectors (e.g. two-dimensional), so that for
example a 30-dimensional sketch vector is broken
into 15 two-dimensional subvectors. Then, discrete
grid structures (in the example, 15 two-dimensional
grids) are built and subvectors are assigned to
grid cells, so that close subvectors are grouped in the
same grid cells. This process essentially performs a

2 https://flink.apache.org/

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

432

Figure 3: Streaming operators architecture with pipelined data flow within the operators Collocation, Correlation, and
Verification.

locality-sensitive hashing of high-dimensional time
series vectors, where close vectors are discovered by
searching for pairs of vectors, which are represented
together in a high number of grid cells. Since this can
output false positives, the candidate pairs are
explicitly verified by computing the actual distance
between them.

This outlines four main steps of the algorithm:
 Sketching: computation and partitioning of

sketches;
 Collocation: grouping together all time series

assigned to the same grid cell;
 Correlation: finding frequently collocated pairs

as candidates for correlation;
 Verification: computing the actual correlation of

each candidate pair to filter out false positives.

To provide prediction capabilities, the method
takes into account the correlates of time series that are
considered of interest for prediction and called
“targets”. Only correlated pairs that involve at least
one target time series are considered for discovery.

4 PIPELINED
IMPLEMENTATION

The generic implementation involves four stateful
streaming operators (Kolev et al., 2019), each
processing incoming tuples in the context of the
current window, taking into account the current state
of the window. Thanks to the flexible API of the
UPM-CEP streaming engine that provides low level
primitives for implementing custom operators, each
operator can process incoming tuples on-the-fly and
hence emit resulting tuples as early as possible. This
guarantees a real pipelined flow of data that allows
for outputting early results. This section includes
descriptions of the operators with focus on the
improvements enabled through the custom design.

The current modification presented hereby
concentrates on extensions of the method, guided by
the requirements of the CloudDBAppliance project’s
use cases, which include a filtering that enables the
discovery of time series that are highly correlated
only with a certain subset of all the time series, called
“targets”. The rest of the series are called “features”
and the objective is to output the most relevant
features for each target.

4.1 Architecture

Figure 3 shows the architecture of the streaming
operators and the data flow within the pipelined
implementation. Although these operators are
stateful, large part of their inputs are processed in a
pipelined way, allowing to emit resulting tuples as
early as possible. Therefore, compared to a naïve
implementation based on high-level streaming
operators with custom transformation functions, our
implementation gives much lower latency of the first
output tuples at each window slide.

The parallelization of the algorithm is quite
straightforward – sketches of time series vectors on
parallel data streams are computed in parallel, which
is followed by an additional shuffle step that groups
together the identifiers of time series that fit in the
same grid cell; then groups are explored for
discovering frequent pairs. Since the streaming
engine operates in a distributed environment,
operators have multiple instances, handling different
partitions of data in parallel. This requires shuffles of
intermediate data across operator instances and the
partitioning is based on a key from the schema of the
intermediate dataset. In Figure 3, we use the
Key=>Value notation to show which fields are used
as partition keys.

Time
series
input

Sketching Collocation
2 cell → feature fj → [ti, …]

Correlation

raw time series (repeater)

raw time series (repeater)

candidate
(fj , ti)

Verification
correlations

ti → (fj, dataj) (ti, fj, corr)

(ti, fj, dataj)

1 cell → target

targets per cell

feature (fj)

dataj

datai

hash items to
grid cells

group by
grid cell

frequency
counting

actual
distance

Pipelined Implementation of a Parallel Streaming Method for Time Series Correlation Discovery on Sliding Windows

433

4.2 Streaming Operators

The Sketching operator computes a hashing of all
time series within the current window by assigning
each time series item (only the identifier, without the
data) to a grid cell in a number of grids. As a first step,
it emits the cell assignment of only the target time
series and then emits the rest of the items (features).

Then, the Collocation operator first memorizes for
each cell a set of all assigned targets, and at the next
step processes on-the-fly each of the features by
emitting directly the set of targets collocated in the
same cell with the feature. Conceptually, this operator
efficiently combines the functionality of a group-by
followed by a hash join, by constructing the hashed
side of the join during the group-by step.

The Correlation operator counts the number of
occurrences of each (feature, target) pair and as soon
as it exceeds a certain threshold, the pair is considered
a candidate for correlation. To perform this counting,
each instance of the operator maintains incrementally,
for each of the features, a counter map that keeps the
current count for each target. When a new tuple
arrives (recall that an incoming tuple is a feature id
mapped to a set of target ids), the counter map for the
feature gets updated by incrementing the counts of the
targets present in the tuple. If some of these counts is
already equal to the threshold, the corresponding
(feature, target) pair is immediately promoted as
candidate. Conceptually, this step of the operator is
equivalent to a counting aggregate on a keyed stream
followed by a filter on the counted value. Hence, the
candidate selection with standard streaming operators
would first fully process the aggregate in order to
compute the counts for filtering.

As soon as a candidate is selected, the Correlation
operator immediately retrieves the time series data of
the feature from a local copy of the current window,
partitioned by time series identifier. This lookup is
done using a non-blocking symmetric hash join
between the candidate pairs stream and the raw time
series repeater stream. Thus, the custom
implementation of this operator combines two
stateful operations (grouping with counting and then
join) into a single one in a way that allows resulting
tuples to be emitted as soon as possible.

The same symmetric hash join strategy is applied
at the Verification operator to retrieve the time series
data of the target, compute the actual correlation of
the candidate (target, feature) pair, and, if it exceeds
the desired correlation threshold, output it. Note that
these joins also benefit from a long-term state within
the operator that keeps in a buffer the data for
previous windows, so that the repeater streams need

to incrementally stream only the newest basic
window for the consuming operator to update the
current window data. This long-term state is yet
another improvement that benefits from the custom
design, compared to standard implementations of
symmetric hash joins.

So, except for the first operator, which has
anyway to wait for the entire window to be collected
in order to compute the hashing, all the other
operators process the “features” part of the stream in
a pipeline, so that a target-feature association be
output as early as possible.

4.3 Comparison with a Naïve
Implementation

We compare the benefits of the pipelined
implementation with a naïve one, where some of the
operators must wait for the entire window data to be
collected before shuffling resulting tuples to the next
operator. This can be easily achieved through the use
of standard operators, but results in emitting all
candidates for correlations at almost the same time, as
opposed to the pipelining approach, where early
results can be observed shortly after each window
slide.

We have implemented the same algorithm on
Apache Spark, using standard operators (such as
reduceByKey and join), in order to compare the
response times of the first and the last emitted tuples
per each sliding window. The major impact on the
latency of the first results, compared to the pipelined
implementation, has the candidate selection step,
where counting is done per candidate through a
stateful operation that requires the entire window to
be processed.

5 EXPERIMENTS

We consider two implementations of the ParCorr
method as follows:
 CDBA: the pipelined implementation on top of

the UPM-CEP streaming engine for the
CloudDBAppliance platform. It leverages
custom streaming operators to minimize the
amount of exchanged intermediate data and
output resulting tuples as early as possible.

 Naïve: the baseline implementation with
standard streaming operators for Apache Spark
(version 2.3.3), with custom transformation
functions.

The experiments were carried out on a many-core
architecture platform, provided for the integration of

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

434

Figure 4: Experimental evaluation of the response times for the pipelined (CDBA) implementation and the naïve one. The
dataset contains 1 million random walk time series, each of length 510 points. The number of target time series is varied
between 1k, 5k, 10k, and 20k. Response times were measured for each window of size 250, sliding with a step of 20 points
(14 windows in total). Average latency to emit the first and the last tuple after the beginning of each window is displayed.

the CloudDBAppliance components. The platform
utilizes a configurable number of Intel Xeon Platinum
8153 @2GHz processors, with 3TB of main memory.
In our experiments, we have used a level of
parallelism of 48 workers, for both implementations.
Datasets were loaded in memory, so I/O cost is not
considered for either of the solutions.

The two implementations of the method were
evaluated on a synthetic random walk dataset of 1
million time series, each consisting of 510 values. At
each time point, the random walk generator draws a
random number from a Gaussian distribution N(0,1),
then adds the value of the last number to the new
number. Sliding windows of size 250 with a step of
20 points (14 windows in total) have been taken into
account to measure the response times of the first and
the last emitted tuple after the beginning of each
window.

Figure 4 shows the results of the experimental
evaluation, comparing the two implementations, with
respect to latency of the first results emitted after the
beginning of a window and the response time of the
entire window result. CDBA shows an advantage in

the total window processing time, thanks to its
optimized data flow and customized allocation of
local (to the operator instances) long-term memory
storage. In addition to the overall performance,
CDBA also shows a significant advantage in the
latency of the first results, thanks to the pipelining
approach provided by the custom operator logic.

Raising the number of targets, as expected, raises
the total execution time, as the number of candidates
is proportional. However, with respect to the first
results latency, the number of targets shows no
particular impact on the pipelined approach. An
interesting observation is that the latency even
decreases as the number of targets increases. This can
be explained by the higher number of targets
associated to each feature (at the Correlation step),
which results in a higher probability for early
presence of a frequent feature/target pair. This effect,
however, cannot be observed with the naïve
implementation, due to its inability to detect early
candidates.

Pipelined Implementation of a Parallel Streaming Method for Time Series Correlation Discovery on Sliding Windows

435

6 CONCLUSIONS

We presented a parallel streaming implementation of
the ParCorr method for window correlation discovery
on time series data, in the context of the
CloudDBAppliance project, adapted to discover
correlations with respect to a particular subset of the
input series, called “targets”. The implementation
leverages the development of custom streaming
operators that boosts the performance and minimizes
the response time by optimizing intra-operator
communication and utilizing pipelining of
intermediate data. The experimental study evaluates
the performance benefits of this implementation,
compared to a naïve streaming setup, with respect to
latency of the first results and response time of the
entire output at each time window. Our
implementation shows a significant advantage in
starting to emit results very shortly after a window
slides, thanks to the pipelining approach provided by
the custom operator logic. In addition, the overall
response time per window gets also improved.

ACKNOWLEDGEMENTS

This work has received funding from the European
Union's Horizon 2020 research and innovation
programme under grant agreement No 732051.

REFERENCES

Ahmad, Y., Berg, B., Cetintemel, U., Humphrey, M.,
Hwang, J., Jhingran, A., Maskey, A., Papaemmanouil,
O., Rasin, A., Tatbul, N., Xing, W., Xing, Y., Zdonik,
S., 2005, Distributed Operation in the Borealis Stream
Processing Engine. ACM SIGMOD International
Conference on Management of Data (2005), pp 882–
884.

CDBA, 2019. The CloudDBAppliance Project.
http://clouddb.eu

Cole, R., Shasha, D., Zhao, X., 2005. Fast Window
Correlations over Uncooperative Time Series. In:
Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD).
ACM, pp 743–749.

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M, C.
Soriente, C., Valduriez, P., 2012. Streamcloud: An
Elastic and Scalable Data Streaming System. IEEE
Trans. Parallel Distrib. Syst. 23(12), pp 2351–2365.

Kolev, B., Akbarinia, R., Jimenez-Peris, R., Levchenko, O.,
Masseglia, F., Patino, M., Valduriez, P., 2019. Parallel
Streaming Implementation of Online Time Series
Correlation Discovery on Sliding Windows with

Regression Capabilities. Proceedings of the 9th
International Conference on Cloud Computing and
Services Science (CLOSER), pp 681–687.

Pu, C., Schwan, K., Walpole, J., 2001. Infosphere Project:
System Support for Information Flow Applications.
SIGMOD Record 30(1) (2001), pp 25–34.

Yagoubi, D.-E., Akbarinia, R., Kolev, B., Levchenko, O.,
Masseglia, F., Valduriez, P., Shasha, D., 2018. ParCorr:
Efficient Parallel Methods to Identify Similar Time
Series Pairs across Sliding Windows. Data Mining and
Knowledge Discovery, vol. 32(5), pp 1481-1507.
Springer.

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

436

