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Abstract: Much research has been undertaken to facilitate the construction of SPARQL queries, while other research 
has attempted to facilitate the construction of the RDF dataset schema to understand the structure of RDF 
datasets. However, there is no effective approach that brings together these two complementary objectives. 
This work is an effort in this direction. We propose an approach that allows assisted SPARQL query 
composition. Linked data interrogation is not only difficult because it requires mastering a query language 
such as SPARQL, but mainly because RDF datasets do not have an explicit schema as what you can expect 
in relational databases. This paper provides two complimentary solutions: synthesis of an interrogation-
oriented schema and a form-based RDF Query construction tool, name EXPLO-RDF. 

1 INTRODUCTION 

An increasing number of RDF datasets is available on 
the Web for users and their applications. A key 
challenge for the users to reuse these data is in 
exploring, querying and understanding the large and 
unfamiliar RDF sources. 

Today, the SPARQL query language is almost  the 
de facto tool for RDF data queries and exploration. 
However, the formulation of SPARQL queries is a 
complex task. Indeed, the user should know the 
syntax of SPARQL and requires technical knowledge 
and some understanding of RDF, RDFS and URIs, 
among others. Moreover, RDF data is not only 
intended for the Semantic Web community, but also 
for non-expert users and experts of other fields who 
are not necessairly familiar with the different 
technologies used. Subsequently, it becomes very 
difficult for these users to query and explore an RDF 
dataset with SPARQL. 

Before an RDF dataset can be reused and in order 
to write a SPARQL query, the user must understand 
the data and must have information about the RDF 
dataset schema to locate the relevant information for 
their specific needs and to determine whether such 
data can be easily reused.  
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Users currently face the problem that schema 
information for RDF data is often not available or 
even missing. Even when it is available, it tends to be 
incomplete or does not adequately represent the RDF 
data because the latter does not have to conform to a 
constraining schema. It can therefore be hard for users 
to obtain the big picture when handling a large and 
complex RDF dataset. 

The lack of schema can limit the interrogation of 
RDF linked data: for example, writing a query 
without knowing of the existing classes and their 
properties (known as predicates) is not 
straightforward. In this case, the user must first 
submit multiple queries and manually browse the 
results in order to collect all the relevant classes and 
properties, which will be used to formulate the main 
query that will provide the final result.  

In recent years, some work has been done to 
provide the user with exploration approaches of RDF 
schema. Thus, the user will build a global view of the 
RDF source and can select relevant classes and their 
properties. The user must use a query language like 
SPARQL or data exploration tools to explore and get 
more details about the data.  

There is also work to explore directly RDF data 
sources. These works help users to query and 
understand RDF data without needing to know the 
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query language.  To query a dataset, the user needs a 
minimum of knowledge about the data structure. 
However, this information is often not available. 

To the best of our knowledge, no approach allows 
the exploration of the schema on the one hand and 
data on the other, although these two types of 
exploration are complementary and depend on each 
other. In this context, we propose EXPLO-RDF, a 
tool for assisted composition of SPARQL queries. 
This tool offers two complementary approaches: 
schema construction and form-based query 
composition. The two approaches together allow a 
user to understand the content of an RDF source as 
quickly as possible and to better fulfil their needs of 
RDF dataset interrogation. 

The reminder of this paper is organized as 
follows. Section 2 reviews related work. Section 3 
describes how to extract and visualize schema 
information from RDF dataset, based on a number of 
SPARQL queries. The visualisation will use UML 
class diagram extended with some statistics to better 
understand the profile of the RDF dataset. Section 4 
describes our approach for form-based query 
composition featuring keyword search and 
completion suggestions, a simple and intuitive way to 
RDF dataset interrogation. Section 5 presents and 
reports our experimental results. 

2 PRELIMINARIES AND 
RELATED WORK 

RDF 1  (Ressource Description Framework) is a 
standard data model that represents the spinal cord of 
the semantic web. An RDF dataset is composed of 
triples in the form (subject, predicate, object), 
representing statements, example (<Bill> <name> 
”Bill Gates”.) The predicate is a property 
representing a relationship between the subject (a 
resource) and the object (either a resource or a literal). 
Resources and predicates are identified with URIs 
(Uniform Resource Identifier). An RDF dataset is a 
directed graph where subjects and objects are the 
nodes, connected with directed edges representing the 
predicates. 

RDF is very flexible as it accepts any triple 
respecting its syntax. RDFS which stands for RDF 
Schema is an extension of RDF that allows the 
definition the vocabulary to be used in an RDF 
dataset. RDFS defines rdfs:Class, rdfs:range etc, 
but are not used in most published RDF datasets. An 
important feature in RDF is declaring the type of 
                                                                                                 
1 https://www.w3.org/TR/rdf11-primer/ 

resources (eg. <Bill> rdf:type  <Person>.) which 
allows to easily  construction the schema of the RDF 
dataset. This schema is similar to the schema of 
relational databases. Resources for which type 
declarations are missing are untyped resources. 
Inferring the schema of an RDF dataset with untyped 
resources is a challenging task. The schema is very 
important for RDF dataset query because it provides 
a summary of the RDF dataset that reveals it 
structure.  

SPARQL2 represents for RDF datasets what SQL 
is for relational databases. A SPARQL query is 
mainly composed of triple patterns in which the three 
components subject, predicate and object are either 
variables or closed constants (i.e. URIs or literals). 
The SPARQL engine executes the query by matching 
its triple patterns with the triples of the RDF graph. 
Each match can be part of the query response. 

Related work to RDF dataset querying concerns 
two tasks: schema exploration and construction, and 
RDF dataset interrogation. We also discuss their 
limitations.  

2.1 RDF Schema Construction 

Visualization of the RDF dataset schema can help get 
a better overview of the data structure and may be a 
useful starting point for queries and further analysis. 
There are two main methods for constructing the 
schema of an RDF dataset: graph-based model, and 
UML class diagram based. 

2.1.1 Graph based Model 

Several approaches allow the graph-based schema 
construction, such as: LD-VOWL (Weise, Lohmann, 
& Haag, 2016), LODSight (Dudáš, Svátek, & 
Mynarz, 2015)  and LODeX (Benedetti, Bergamaschi, 
& Po, 2014).  

LD-VOWL is a web-based tool that extracts and 
visualizes schema information of Linked Data 
sources based on the VOWL notation. SPARQL 
queries are used to infer the schema information from 
the RDF data which is then gradually added to an 
interactive VOWL graph visualization (Weise, 
Lohmann, & Haag, 2016). 

LODSight  is a dataset summary visualization tool. 
It uses also SPARQL to find all type-property and 
datatype-property paths in the dataset. The RDF 
schema will be represented as a graph and visualized 
in a format allowing the user to see the generalized 
structure of the dataset. The visualization is 

2 https://www.w3.org/TR/sparql11-query/ 
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interactive, and the user can also filter the displayed 
paths to show only those with lower or higher 
frequency (Dudáš, Svátek, & Mynarz, 2015). 

LODeX summaries the schema as a graph where 
the vertices are the classes. An undirected non-tagged 
edge relates two classes if there exists a property 
linking at least two of their respective instances. 
LODeX provides also the average number of a 
property or an attribute in the instances of a given 
class. It offers a visual query editor where the user can 
add/remove filters.  

The schema summary relies on RDF schema, 
meaning that it assumes all instances are linked to 
their classes in the dataset. This assumption is not true 
for most existing RDF datasets, where the type 
declaration is often missing. Thus, the data source 
sometimes does not follow an explicit schema and, in 
this case, the tool does not really support such RDF 
datasets. In addition, we could not see the properties 
that link two classes directly from the graph, because 
we have to select one class at a time to display its 
properties. 

LODSight, LD-VOWL, and LODeX do not 
handle untyped resources. Subsequently, the schema 
of the dataset is not complete. Then, these tools would 
only show a schema composed of typed resources 
only, which provides a better understanding of the 
data structure covering typed resources only. 
However, they do not cover all RDF data in the 
dataset. Finally, with the exception of LOdDeX, most 
of these tools do not offer the possibility to 
manipulate SPARQL queries. 

2.1.2 UML Class Diagram based Schema 

There is surprisingly few work on extracting and 
visualizing schema information from linked data as a 
UML diagram, principally (Li & Zhang, 2013) and 
(Jin-Sung & Mi-Kyung, 2005). 

(Li & Zhang, 2013) proposes a SPARQL-based 
tool that, given an RDF dataset, it builds a data 
inferred schema represented as a UML class diagram, 
extended with a collection of statistics. The number 
of instances per class and the number of instances of 
each property allow users to better understand the 
RDF dataset. 

This type of exploration makes it possible to 
present the schema in a visual way that we judge to 
be the best for understanding the data structure. 
However, it does not provide the means to write 
effective queries and to explore the data locally in the 
RDF graph. The authors mentioned the problem of 
processing untyped instances but did not propose a 
well-explained solution. 

 

Figure 1: Graph pattern builder (Auer, et al., 2007). 

2.2 Query Construction 

We can classify SPARQL query construction tools 
into three main categories according to their 
approaches: semantic browsers based, forms based 
and visual composition based query. 

2.2.1 Semantic Browsers based Query 

Semantic browsers provide a GUI that implicitly 
supports query composition in a text editor while the 
user is navigating the RDF dataset.  

As a tree-based semantic browser, Tabulator (Tim 
Berners-Lee & Sheets, 2016) displays an increasing 
level of refinement as the user navigates the tree 
structure. It features assisted SPARQL query 
composition and editing, supporting simple and 
complex queries as well.  

Query composition based on semantic browser is 
designed to be easy and fast to learn for new users and 
for developers who would like to expand their own 
ideas about a dataset. However, before exploring the 
RDF dataset and formulating queries, the user needs 
to understand the structure of the dataset to determine 
the different links. 

The user needs to explore an entire tree, which can 
be a tedious task and expensive in time and effort. On 
the other hand, if the user needs a specific 
property/resource, he has to navigate through the 
entire data tree every time in order to select what he 
needs; a non-simple task since RDF data can be large 
and eventually the path may be too long. Having a 
schema of the RDF dataset would have made things 
easier for users. 
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2.2.2 Form-based Query 

This is a popular approach where queries are created 
from the elements of a form such as text fields, drop-
down lists, etc. Examples of this approach are 
SPARQL Viz (Jethro, 2006), Konduit VQB (Ambrus, 
Möller, & Handschuh, 2010) and Graph Pattern 
Builder (Auer, et al., 2007). Graph Pattern Builder 
(Figure 1) was developed specifically to query 
Wikipedia data. Users query the knowledge base 
through a basic graph that consists of a set of triple 
patterns where each one is composed three form 
fields. These fields represent the subject, predicate 
and object of a triple pattern. Each field can receive 
either a variable, an identifier or a filter. 

Form based query is an effective approach for data 
exploration and for SPARQL query composition. 
However, the user must first understand the structure 
of the RDF dataset: the classes and their 
optional/mandatory properties. Such information, 
that represents the schema of the dataset, is generally 
not easily grasped with these methods of data 
exploration. Therefore, the user will be forced to try 
to understand and collect the schema pieces 
manually, a task not easy and not obvious for the user 
as the schema is not fixed, as recourses may be 
untyped and have optional properties.  

2.2.3 Visual Query Construction 

A visual query construction tool, such as 
NITELIGHT (Smart, Russell, & Braines, 2008), 
RDF-GL (Hogenboom, Milea, Frasincar, & Uzay, 
2010) and LUPOSDATE (Groppe, Groppe, & 
Schleifer, 2011), defines a visual language in which a 
query is represented with a graph that the tool 
translate into a SPARQL query. 

Visual query construction can cover most of the 
expressiveness of SPARQL while maintaining an 
intuitive simplicity. However, the same problem 
persists, since the user has no idea about the schema 
nor links between different classes, he will be forced 
at first to understand the structure of RDF dataset by 
making SPARQL queries. A tedious and repetitive 
task. 

In this section, we have pointed out several 
limitations of the presented approaches. The main 
limitation common to all these approaches, regardless 
of the category to which they belong, is the fact that 
no one combines the RDF schema construct and the 
RDF data query composition, although they are 
                                                                                                 
3 Calling schema this model is inspired by relational DB 

and should not be confused with RDFS (RDF Schema) 
by W3C. 

complementary and dependent on one another. Their 
complementarity is a consequence of the flexibility of 
RDF that does not impose a fixed schema, which 
makes it difficult to query RDF datasets. 

3 RDF DATASET SCHEMA 
CONSTRUCTION 

Our goal is to identify classes and their properties in 
an RDF graph in order to construct a model which 
summarises the RDF dataset. We call this summary a 
schema3 and its main purpose is query construction 
not dataset design.  

The identification of the classes in an RDF graph 
can be easy if its vocabulary was properly declared 
using RDFS. Each resource would have a class to 
which it belongs using rdf:type property. 

However, the specification of the class of a 
resource is not mandatory in the RDF model. 
Consequently, real world RDF dataset may show 
untyped resources, the ones that are without any 
rdf:type property. Untyped resources make it 
difficult to identify their classes to be represented in 
the schema summarizing the RDF dataset. That's why 
we’ll be talking about a group of a resource rather 
than the class of a resource. Of course, declared 
classes are groups of ressources. Other groups will be 
defined by clustering untyped resources. 

We can formulate the problem of identifying 
resource clustering as follows: Given an RDF graph, 
group identification is the discovery of resource 
groups, not necessarily disjoint, each representing a 
set of resources having at least a property in common. 
The set of properties of the resources of a group 
define the group’s properties.  A resource may have 
more than one type and subsequently may belong to 
more than one group, making groups not necessarily 
disjoint. 

To illustrate our approach, we consider 
throughout this section a small RDF graph  
(Figure 2), adapted from Jamendo RDF dataset 
(Raimond, 2016), which describes artists and their 
recordings. 

3.1 Groups of Typed Resources 

For typed resources, their groups are defined by their 
classes. The groups and their properties are 
determined using the following SPARQL query: 
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SELECT distinct ?class ?prop 
WHERE { 
  ?ressource  rdf:type  ?class .  
  OPTIONAL { ?ressource ?prop ?objet } .  
  Filter (?prop != rdf:type).  
} 

 

Figure 2: An RDF graph adapted from Jamendo dataset. 

Applied on the RDF graph in Figure 2, the former 
SPARQL query returns the results shown in Table 1. 
There are four classes (mo:MusicArtist, mo:Record, 
mo:Lyrics and mo:Signal) each one will represent a 
group. For example, mo:MusicArtist is a group 
having two resources (artist:1009 and 
artist:1044), and characterized with three optional 
properties (mo:biography, foaf:made and 
foaf:name.) 

Table 1: Typed resource groups and their properties. 

class prop 
mo:MusicArtist| mo:biography 
mo:MusicArtist foaf:made 
mo:MusicArtist foaf:name 
mo:Record dc:title 
mo:Record mo:image 
mo:Record foaf:maker 
mo:Lyrics  
mo:Signal    

3.2 Groups of Untyped Resources  

Assigning untyped resources to groups is not a 
straightforward task. The resources of a group should 
share a similarity from schema point of view. To 
solve this problem, we studied many alternatives. A 
simple solution would be to group all untyped 
resources in a single group. The group of untyped 
resource would be composed of heterogeneous 
unrelated resources. This basic representation does 
not help the user to understand the structure of the 
RDF graph.  

On the other extremum, another basic solution, 
would be to create a group for each property in 
untyped resources. In this case, a resource with many 
properties will be assigned to many groups. 
Consequently, it would lead to an explosion of the 
number of groups which is against the principle of 
constructing a schema, summarizing the RDF dataset. 

 
Figure 3: Example of an RDF graph with untyped 
resources. 

By avoiding the drawbacks of the two previous 
trials, the chosen solution is to group untyped resources 
based on their common properties. Two untyped 
instances belong to the same group if they have at least 
one property in common. In order to capture business 
domain groups in the RDF dataset, properties such as 
rdfs:label, rdfs:comment, etc are excluded.  

Using a binary relation R, we formalize the 
extraction of the groups of untyped resources in an 
RDF graph. Two instances i and j are R-related if and 
only if prop(i)∩prop(j)≠∅, where prop(i) represents 
the set of properties of resource i. A property p 
belongs to prop(i) if and only if there exists in the 
dataset an RDF triple having i as its subject and p as 
its property (i.e. predicate). 

Figure 3 shows an RDF graph having five untyped 
resources. For this dataset, we draw in Table 2 a 
matrix presenting the binary relation R.  

We define the relation R* to be the transitive 
closure of R. The transitive closure R* is the smallest 
transitive binary relation that contains R. The binary 
relation R* is an equivalence relation by construction 
and its equivalence classes are exactly the groups of 
untyped resources in the RDF dataset and can be 
obtained by computed the transitive closure of R.    

In the case of R in Table 2, there are two 
equivalence classes {i1, i2} and {i3, i4, i5} in R*. 
These two classes represent the groups of untyped 
instances in the RDF graph. Since groups are 
equivalence classes, they are necessarily disjoint. 
This disjointness was not targeted, but it is a good 
feature resulted from our formalization of the 
clustering problem. We characterize each group by 
the properties of their respective untyped resources. 

Table 2: A matrix representation of the relation R based on 
the RDF graph in Figure 3. 

Ressources i1 i2 i3 i4 i5 
i1 1 1 0 0 0 
i2 1 1 0 0 0 
i3 0 0 1 1 0 
i4 0 0 1 1 1 
i5 0 0 0 1 1 
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The class diagram graphical representation enables 
visual exploration of the RDF dataset structure and 
facilitates query construction. 

Table 3 defines and illustrates our detailed 
translation rules for constructing the UML class 
diagram from the RDF dataset and the groups of 
typed and untyped resources. 

Table 3: Translation rules for constructing the UML class 
diagram from RDF data. 

Scenarios UML Mapping 

UML 
Classes: 
Groups of 
typed 
instances 

A UML class whose name is the type 
specified in the RDF source. 

Example 

 

 

artist:1044 rdf:type  

mo:MusicArtist . 

MusicArtist is a UML class 

 

UML 
Classes: 
Groups of 
untyped 
instances 

A UML class whose name will be 
Class 1 in which 1 is representing the 
group index. These classes will be 
represented with another color to 
distinguish them from the UML classes 
representing typed resource groups. 

Example 

 

 

performance:100252  

mo:recorded_as signal:100252. 

performance:100252  

belongs to group1 presented by Class1. 

 

UML 
Attributes: 
The object 
is a literal 

The property targeting this object will 
be an attribute in the UML class 
representing the subject of an RDF 
triple. 

Example 

 

 

artist:1044 rdf:type  

mo:MusicArtist . 

artist:1044 foaf:name  

"Stian" . 

As "Stian" is a literal, so  
foaf:name property will be an 
attribute in class MusicArtist. 

UML 
Association: 
The object 
is a 
resource 

The property targeting this object will 
be an association relating two classes. 

Example 

artist:1044 rdf:type  
mo:MusicArtist . 

artist:1044 foaf:maker  
record:1084 . 

record:1084 rdf:type  
mo:Record . 

 
As record:1084 is a resource then 
the class MusicArtist and Record 
are related with an association labeled 
with property foaf:maker. 
 

3.2.1 Extending the Class Diagram with 
Statistics 

We add statistics to the schema such as the number of 
resources in each group and the number of resources 
that are the subjects of a property. These statistics are 
computed through the following SPARQL queries:  
Query1 : 
SELECT  ?C, count (distinct ?i) as ?count   
WHERE { ?r rdf:type ?C . }  

Query2 :  
SELECT  ?C,?p, count(distinct ?r) as ?count 
WHERE { ?r ?p ?o .  
        ?r rdf:type ?C. 
        ?o rdf:type ?C1. }  
GROUP BY  ?C,?p 

It is obvious that Query1 and Query2 computes 
statistics for typed resource groups. However, a 
simple trick allowed us using the same queries for 
untyped resource groups as well. The trick consists of 
inserting in the RDF dataset fictive triples to make 
each untyped resource typed with its group. 

Statistics allow the user to have an idea about the 
structure of the RDF dataset. Since resources within 
the same group may not have the same properties, 
statistics may inform whether a property is optional 
by comparing the number of resources in a group with 
the number of participating resources in the property. 
If they are the same, all of the resources of the group 
participate in the property otherwise, the property is 
optional. SPARQL queries can be refined in case of 
optional properties using the OPTIONAL graph 
pattern, for example. 

3.2.2 Example of Application  

We have applied our approach for RDF dataset 
schema construction on Jamendo, an RDF dataset, as 
an example of application. After clustering typed and 
untyped  resources  into  groups,  we  constructed  the  

MusicArtist
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foaf:name
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Figure 4: Jamendo RDF dataset schema. 

dataset schema showed in Figure 4 by applying the 
transformation rules explained in Table 3. 

The schema contains 17 classes of which 11 
classes represent typed resource groups and 6 classes 

represent untyped resource groups, obtained using the 
equivalence relation R*. For each class, the number 
of instances is provided as well as the number of 
instances for each property of each class. This 
diagram is convenient for users since it allows to 
explore and understand the structure of the RDF 
dataset in a fast, intuitive, efficient and visual way 
which facilitates the formulation of appropriate 
SPARQL queries and the retrieval of interesting 
detailed information. 

4 GUI BASED SPARQL QUERY 
CONSTRUCTION 

Our approach to construct SPARQL queries is guided 
by the RDF dataset schema and uses two friendly GUI 
based features: keyword search and form-based query 
construction. Keyword search is an easy way to 
explore the neighbourhood of a resource in the RDF 
graph in order to assist the user in constructing 
SPARQL queries by filling triple patterns slots. 

The approach consists of three tasks: indexing the 
RDF dataset, searching RDF data by keywords and 
assisting in the construction of SPARQL queries. 

4.1 Indexing the RDF Dataset and 
Keyword Search 

The RDF dataset is composed of triples that the 
SPARQL engine try to match with triple patterns in a 
SPARQL query. A triple pattern in the WHERE clause 
has three slots, one for the subject, the property and 
the object. In Figure 5, landmark B pinpoints triple 
pattern slots in the GUI of our prototype, EXPLO-
RDF.  Each slot in a triple pattern can receive as input 
either a variable (when it starts with ‘?’), a URI or a 
literal. A literal in the triple pattern triggers a keyword 
search and retrieves relevant matching values in the 
position of its slot from the RDF dataset. For 
example, if there is a literal in the subject slot of the 
triple pattern, only information about subjects in the 
RDF dataset are looked into to retrieve a matching 
candidate list. The user can select from the retrieved 
list the value she wants, either a literal or a URI to 
build a triple pattern to add to the query under 
construction. 

Consequently, we built three indices: subject 
index, property index and object index.  Information 
from rdfs:label and rdfs:comment triples are also 
indexed with their resources and can be used to 
retrieve relevant resources in keyword search. 
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Figure 5: GUI of EXPLO-RDF, our prototype. 

4.2 SPARQL Query 

The GUI of EXPLO-RDF allows SPARQL query 
assisted composition. The WHERE clause (Figure 5:B) 
is constructed as the triplet patterns are filled. If the 
user indicates that a triple pattern is optional then this 
information will be added for this triple in the query. 
The select clause is constructed based on the list of 
user-defined variables. The "distinct" option can be 
activated to remove duplicates from the results. LIMIT, 
OFFSET and ORDER BY clauses (Figure 5:C) can also 
be added to the query. Triple patterns can be 
activated/deactivated (with radio buttons “Active” in 

 

Figure 6: Excerpt from Jamendo RDF dataset. 

Figure 5:B)  to allow the exploration a neighbourhood 
in the RDF graph.  

Once a SPARQL query is composed through the 
GUI, it is translated into a text format and showed in 
the editor text box. The user can eventually create and 
update SPARQL queries manually in the editor text 
box. EXPLO-RDF submits queries to the SPARQL 
engine and displays the results. 

5 VALIDATION AND 
DISCUSSION 

The EXPLO-RDF (Figure 5) supports two tasks. The 
first one is the automatic construction of the schema 
summarizing the RDF dataset under use, in the form 
of an extended UML class diagram (Figure 4). The 
second task consists of assisting the user in 
composing SPARQL queries based on triple pattern 
form GUI. The schema is very important for query 
construction as it provides the user with a blue print 
of the RDF dataset which inspires a first version of 
the query. When executed, the first version query may 
return no results. This is very common because of the 
flexibility of RDF. The user then studies the triple 
patterns of the first version using EXPLO-RDF forms 
and incrementally fine-tunes his query to make it 
right for extracting targeted information from the 
RDF dataset. Fine-tuning triple patterns uses 
keyword search and neighbourhood exploration 
within the RDF graph.  

In summary the schema provides a global view of 
the RDF dataset while the triple pattern form GUI in 
EXPLO-RDF compensates with local views for the 
construction of effective SPARQL queries. 

5.1 Validation 

To validate our schema construction, we converted a 
relational database into an RDF dataset and 
constructed its schema. Then we compared the RDF 
dataset schema we have constructed with EXPLO-
RDF with the relational database schema. It was a 
perfect match. 

In our approach, resource groups (Figure 4) can 
be compared to the classes in the UML class diagram 
by (Li & Zhang, 2013) modelling a schema for 
Jamendo RDF dataset. Their schema shows 18 
classes of which 7 are anonymous classes grouping 
untyped resources. EXPLO-RDF, our tool identified 
17 classes (Figure 4) of which 16 classes match 
perfectly the schema of (Li & Zhang, 2013). The only 
difference (red-circled classes in Figure 4) was the 
group of untyped class8 in which EXPLO-RDF 
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gathered the resources participating in properties 
mo:recorded_as and event:factors because there 
exists a resource having both properties as shown by 
the excerpt from Jamendo RDF dataset in Figure 6.  
In (Li & Zhang, 2013) schema there was two 
anonymous classes one for mo:recorded_as and the 
other for event:factor. The fact that EXPLO-RDF  
produces less untyped resource groups (i.e. 
anonymous classes) in its schemas than (Li & Zhang, 
2013), make our schemas more concise and 
consequently easier to grasp and comprehend for 
users. 

5.2 Complementarity of Form-based 
Query Construction and RDF 
Dataset Schema  

The final goal of a user is to formulate queries. On the 
one hand, with a tool that just provides an RDF 
dataset schema, the user will be forced to manually 
create queries, a tedious time-consuming task that 
requires expertise. In addition, these queries could 
return empty result because of optional properties. 
Our prototype EXPLO-RDF with its form-based 
query construction offers the possibility to explore 
data in detail that helps to check the RDF data 
structure and validate the class diagram as it is a 
valuable summary of the RDF graph.  

On the other hand, in the absence of the schema, 
the user will have to get an idea about the schema 
manually to understand the RDF data structure. A 
simple method is to explore the RDF dataset through 
simple queries using pattern triples in the form-based 
query construction GUI. In this case, the user will 
look for typed resources and their classes and explore 
their neighbourhood to determine their properties. 
The user is in fact unconsciously trying to build a 
schema for the RDF dataset. Providing the user with 
a well-constructed schema simplifies her task and 
saves him time and effort. 

6 CONCLUSION 

In this article, we’ve presented an approach that 
allows assisted SPARQL query composition. Our 
main contribution is to combine two approaches, 
namely the construction of a schema that summarises 
the structure of the RDF dataset, and a form-based 
query construction tool, supporting keyword search 
and neighbourhood exploration. Our experiments 
showed the relevance and the complementarity of the 
two tasks. 

We project the extension of work into three axes: 
implementation environment, usability and schema 
design. Although EXPLO-RDF can be used to build 
queries, the user has to install GraphViz and some 
Java libraries for the SPARQL engine. It would be 
more convenient if EXPLO-RDF could be used as a 
web application. Currently, EXPLO-RDF support 
only RDF dumps, an extension to support SPARQL 
endpoints will make other RDF data sources easily 
usable. 

On the usability axis, feedback from users is 
needed in order to improve EXPLO-RDF GUI and its 
features to meet their expectations. For example, it 
would be possible to rank keyword search completion 
list according to retrieval information metrics such as 
TF-IDF. 

EXPLO-RDF builds a schema for the RDF 
dataset under query. Such schema is constructed for 
the purpose of querying only and it is a useful 
summary of the RDF dataset. Reengineering the RDF 
dataset in order to create real RDF schema can start 
from EXPLO-RDF schema. The question would be: 
how to break down an untyped resource group to 
obtain real world classes? 
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