
 An Improved Token Bucket Algorithm for Service Gateway Traffic

Limiting

Lang Li1, Xinming Tan1, Chao Deng1
1. School of Computer Science &Technology, Wuhan University of Technology

Wuhan, Hubei

Keywords: Micro-service, Zuul, Token bucket algorithm, URI configuration file.

Abstract: In the Spring Cloud micro-service system, the gateway Zuul, as the entrance to all internal services,

must carry out the traffic limiting operation to guarantee the stability of the service in the case of

high concurrency. The traditional token bucket traffic shaping algorithm cannot guarantee the

stability of core services. In order to solve this problem, this paper designed an overload protection

strategy based on URI configuration file in combination with gateway Zuul, which can filter the

request before acquiring the tokens. It improved the token bucket algorithm, realized the traffic

limiting function and guaranteed the stability and immediacy of the core service process.

1 INTRODUCTION

With the development of computer technology, the

traditional single application architecture has been

unable to meet the rapidly growing customer

demand. Componentization based on micro-service
has gradually become a new choice for system

design, and has been rapidly developed and applied

(Zhang Jing, et al, 2016). In the micro-service

architecture, service consumers and service
providers interact through a service gateway between

the two middle tiers. The API gateway is the entry

point of external services, hiding the implementation

of the internal architecture. Therefore, when all API
calls are routed through the service gateway, the

gateway must guarantee the stability of the service in

the case of high concurrency. At the upper limit of

the service gateway, a certain traffic shaping strategy
must be in place to ensure the stability of the service.

Currently, in the Spring Cloud micro-service
architecture, the token bucket algorithm is used for
the current limiting operation mainly through the
gateway component Zuul. One of the problems is
that regardless of the current request URI, as long as
the load threshold set by the system is exceeded, the
request will be directly discarded or re-forwarded.
This flow control method is too simple and may
result in the core API like payment being discarded,
while other non-core API are frequently accessed.
This affects the user's sense of experience and affects
the interaction between core services in the overall

micro-service architecture.
Based on the traditional token bucket algorithm

and the gateway Zuul, this paper proposes an
overload protection strategy based on URI
configuration file. The basic idea is that when each
request arrives at the gateway, it intercepts and filters
the current URI before requesting the token, and
determines whether it needs to a current-limit
operation that processes the request. This strategy
can guarantee the stability of the micro-service
system under high concurrency. And the feasibility
and performance of the improved method are
verified by experiments.

2 RELATED WORK

2.1 Research on Gateway Zuul

The core component of the micro-service system's

current-limit operation is the gateway Zuul (Li

Conglei, 2017). Zuul is Netflix's open source

micro-service gateway, a server load balancing
device based on JVM routing (Zhou Yongsheng, et

al, 2018). The core of Zuul is a series of filters that

allow users to implement authentication, security,

scheduling, and traffic limiting functions through
custom filters (Zhang Jie, et al, 2018).

In the literature (Zhu Rongxin, 2017) the Zuul

component is used to implement the API gateway

system of the game mall server based on the

222
Li, L., Tan, X. and Deng, C.
An Improved Token Bucket Algorithm for Service Gateway Traffic Limiting.
DOI: 10.5220/0008098802220226
In Proceedings of the International Conference on Advances in Computer Technology, Information Science and Communications (CTISC 2019), pages 222-226
ISBN: 978-989-758-357-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

micro-service architecture. In the literature (Zhao

Qing, 2018), the Zuul gateway is applied to the
design of the news data service platform, and they

customize each stage filter to implement the

interception and filtering of requests through the

service gateway. Thus providing functions such as
service routing, service filtering, and rights

management. But they don't consider the stability of

the gateway component Zuul in the case of high

concurrent access.

2.2 Research on Related Traffic Limiting

Strategies

In order to ensure the stability of the service of the

gateway component in the case of high concurrent

access, a certain traffic limiting policy is needed. In

the literature (Liu Yitian, et al, 2018), it uses the
Zuul component to implement unified micro-service

access routing and forwarding, considering that the

single-node Zuul service will become a bottleneck of

the whole system operation, it is proposed that
multiple Zuul nodes can be deployed and registered

in the service registry. That is, the Zuul clustering

method is implemented to achieve high availability

of the gateway service, but this will result in more
scheduling and management capabilities of the

deployment architecture. In the design of service

security access control framework, literature (Lu

Liangwei, et al, 2018) is proposed that when the
request is high concurrency, the API gateway uses

the token bucket current limiting algorithm to limit

the traffic, ensure the availability and performance of

the system.
However, the traditional token bucket current

limiting algorithm is oriented to all requests to the

gateway, and cannot selectively carry out current

limiting operation according to different levels of
API requests. Therefore, combined with the gateway

component Zuul, this paper designs an overload

protection strategy based on URI configuration file,

which improves the token bucket algorithm. Under
high concurrency condition, it can guarantee the

stability of the core API service and limit the

operation of URI which is not included in the

configuration file.

3 IMPROVEMENT AND

IMPLEMENTATION OF TOKEN

BUCKET ALGORITHM BASED

ON SERVICE GATEWAY

3.1 Traditional Token Bucket Algorithm

At present, the classic traffic shaping algorithm

includes the leaky bucket algorithm and the token
bucket algorithm (Zhong Sihui, 2016). In Google's

open source toolkit Guava, a current limiting tool

class RateLimiter (Ali A, et al, 2013) is implemented

based on the token bucket algorithm. Since the
module is already integrated in the Spring Cloud, the

Zuul gateway can use the token bucket algorithm for

traffic limiting operations. The token bucket

algorithm is one of the most commonly used
algorithms for network traffic shaping and rate

limiting (Liu Yuanfeng, 2008). The basic idea of the

traditional token bucket algorithm is as follows:
1) Put the tokens into the bucket at an average

rate of r per second.
2) A maximum of b tokens can be stored in the

bucket. If the bucket is full, the newly
placed token will be discarded.

3) When an n-byte packet arrives, it consumes
n tokens and forwards the packet to the
network.

4) If the available tokens in the bucket are less
than the n tokens required by the packet, the
tokens in the bucket are not deleted, and the
packet is identified as being outside the
traffic restriction.

The idea of the traditional token bucket algorithm
is shown in Figure 1.

Bucket holds up
to b tokens

R tokens/sec

Token wait

N bytes
Packets

To network

Token<n
Reject packets

Figure 1: Traditional token bucket algorithm.

The traditional token bucket algorithm can also
allow a certain degree of burst transmission (Li Wei,

et al, 2011) in addition to limiting the data

transmission rate. As long as there is a token in the

bucket, it can burst data in the configured threshold,

An Improved Token Bucket Algorithm for Service Gateway Traffic Limiting

223

so it is suitable for the sudden traffic access in the

gateway (Liu Zhenyu, 2012).

3.2 Improved Token Bucket Algorithm

The traditional token bucket algorithm does not filter

the request when it allocates tokens on the request
packet. It just judges whether there are enough

tokens in the bucket for allocation. If the number of

tokens in the bucket is insufficient, all requests that

satisfy the condition are discarded, which will
include some core API such as order payment

requests, which will affect the quality and stability of

the service.

This paper improves the traditional token bucket
algorithm based on gateway Zuul. First, gateway

Zuul intercepts all requests, and inserts a URI

configuration file interception strategy in the step of

waiting for the tokens which intercepts the request
before blocking the token. The configuration file

contains all the core URIs. The improved token

bucket algorithm is as follows in Figure 2.

Bucket holds up
to b tokens

R tokens/sec

N bytes
Packets

To network

Token<n
Reject packets

Intercep
tion

strategy

Exists To
network

Not
exists

Token
Gateway
Zuul

Figure 2: Improved token bucket algorithm.

As can be seen from the above figure, after the
request packet arrives at the gateway Zuul, the

interception policy determines whether the request

URI is in a customized configuration file. If it exists,

it does not need to obtain a token for traffic limiting,
and directly allows access to the service. If it does

not exist, it needs to request the tokens. When the

threshold is exceeded, the current limiting operation

is performed.

3.3 Gateway Zuul Implements An Improved

Token Bucket Algorithm

In this paper, the interception strategy based on URI

configuration file is designed in the token bucket

algorithm. The custom URI configuration file is

needed to read the core API. At the same time, in the
gateway Zuul, the ZuulFilter abstract class is

implemented by the custom filter class which

contains four abstract functions defined by ZuulFilter.
The four abstract functions in the ZuulFilter abstract

class and the concrete implementation are as

follows:

1) filterType: Returns a string representing the
type of the filter. Since the current-limit

operation processes the request before it is

routed, the LimitFilter class is of type "pre".

2) filterOrder: Defines the execution order of
the filter by the integer value. The

LimitFilter class is defined as the first

executed filter, so it returns 0.

3) shouldFilter: Returns a Boolean type to
determine whether the filter is to be

executed, so this function can be used to

implement the filter switch. Because the

LimitFilter class must be executed, so it
returns true.

4) Run: The specific logic of the filter, the

custom code logic is implemented within

this method.
The specific flow chart is shown in Figure 3.

Start

Turn on
RateLimit？

Request
enable

In the
configuration

？

Exceed QPS？

End

Reject
request

Yes

No

Yes

No

Yes

No

Figure 3: Zuul traffic limiting flow chart.

1) Create a RateLimiter object and set the
initial rate value.

2) Obtain the current request URI, read the

configuration file, and determine whether it

is in the URI configuration list.
3) If it is in the configuration file, it is not

subject to the rate value and allows direct

access.

4) If not, you need to be bound by the rate
value. And obtain the tokens from RateLimit.

If the tokens are not obtained within the

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

224

10ms timeout period, the threshold has been

exceeded, so the request is discarded.
5) If the tokens are obtained within the 10ms

timeout period, the current rate value is still

within the security range, so the request is

allowed to access.

4. EXPERIMENTS AND RESULTS

In order to verify the feasibility of the improved

design of the token bucket algorithm, this paper
conducts experiments to verify whether the

improvement measures are successful and effective

by performing functional tests and performance tests

in the micro-service system.

4.1. Functional Test

First, the whole project is divided into four modules:

service registry module EurekaServer, service
gateway module Eureka-Zuul, service consumer

EurekaClient, the path of service external interface is

/eurekaclient/test1, service consumer EurekaClient1,

service external interface path is /eurekaclient1/test2.
After the four modules are started, the results of

service registration are shown in Figure 4.

Figure 4: Service Registry Center Diagram.

It can be seen from Figure 4 that the four

modules are successfully started and registered. At

the same time, through the analysis of the log output,
it proves that the /eurekaclient/test1 interface path

exists in the URI configuration file, and

/eurekaclient1/test2 does not exist. This verifies the

request URI was successfully intercepted and filtered
by the custom gateway filter LimitFilter.

4.2. Performance Test

This article uses the Apache ab command to simulate
multi-threaded concurrent requests. The token

bucket algorithm's current-limit threshold is set to 10.

The test scenario simulates the same number of

requests and the amount of concurrently. The two
interfaces are tested by the traditional token bucket

algorithm and the improved token bucket algorithm

respectively. In the case of the different algorithm, a

stress test is performed to obtain the response time of

each interface path under different conditions, and
the result is recorded in following Table 1.

Table 1: Response time of each interface.

T-R C-C

eurekaclient/

test1

eurekaclient1/

test2

T-A I-A T-A I-A

100 3 9.024s 0.511s 9.656s 8.966s

100 10 15.458s 2.139s 14.658s 15.602s

200 10 20.416s 0.392s 22.215s 22.012s

In the table, T-R represents the total number of

requests, C-C represents the current concurrency,

T-A represents the traditional token bucket algorithm,
and I-A represents the improved token bucket

algorithm. As can be seen from the above table, in

the case of the same concurrent request and current

limiting parameters, the /eurekaclient/test1 interface
acts as the core API, and the response time in the

improved token bucket algorithm is much smaller

than in the traditional token bucket algorithm. And

the interface /eurekaclient1/test2 is not the core API,
so the traffic limit operation has to be performed

under both algorithms, so the response time is very

close. It can be seen from the above results that with

the improved token bucket algorithm, the
traffic-limit interception strategy based on the URI

configuration file can effectively process the core

interface, ensure the stability of the core service, and

ensure the current limit operation of the non-core
API at the time of high concurrent request.

5 CONCLUSION

The traditional token bucket current limiting
algorithm does not implement filtering of requests

when assigning tokens. Through the core filter of the

custom gateway Zuul, this paper designs and

implements a traffic limiting interception strategy
based on URI configuration file. At the same time,

the experimental results show that compared with

the traditional token bucket algorithm, the improved

token bucket algorithm can guarantee the stability
and immediacy of the core interface and service in

the high concurrency situation of the micro-service

system, as well as the traffic limiting operation for

the non-core API. It is important to avoid abnormal
traffic and malicious attacks.

An Improved Token Bucket Algorithm for Service Gateway Traffic Limiting

225

REFERENCES

Zhang Jing, Huang Xiaofeng. An application framework
based on micro-services [j]. Computer System
Application, 2016, 25(09): 265-270.

Li Conglei. Design and implementation of an open
platform for public service information services for
microservices [d]. Southwest University of Science
and Technology, 2017.

Zhou Yongsheng, Hou Fengyu, Sun Wen, Yang Lei,
Zhang Xiaobei, Design and Implementation of
Invoicing Management System Based on Spring
Cloud micro-services Architecture[J]. Industrial
Control Computer,2018,31(11):129-130+133.

Zhang Jie, Si Weichao, Wang Lina, Shi Chunling. Design
and application of a general assessment system for
micro-services [j]. Computer and Digital Engineering,
2018, 46(12): 2463-2467+2533.

Zhu Rongxin. Design and implementation of game mall
server based on micro-service architecture [d].
Nanjing University, 2017.

Zhao Qing. Application of micro-service architecture in
news data platform [a]. China Federation of
Journalists and Technicians, Xinjiang Radio and
Television Bureau. Proceedings of the 2018
Academic Annual Meeting of the China Association
of Journalists and Technicians (Academic Papers) [c].
China Federation of Journalists and Technicians,

Xinjiang Radio and Television Bureau: China
Federation of Journalists and Technicians, 2018: 6.

Liu Yitian, Lin Tingjun, Liu Shijin. Flexible Microservice
Security Access Control Framework [j]. Computer
System Application, 2018, 27(10): 70-74.

Lu Liangwei, Huang Xiaofang.Design of Open Platfor
m Framework for Secure and Scalable SaaS Serv
ices[J]. Computer measurement and Control,2018,
26(12):244-248.

Zhong Sihui. Design and implementation of flow control
service based on token bucket algorithm [d]. Dalian
University of Technology, 2016.

Ali A, Hutchison D, Angelov P, et al. Towards an au
tonomous resilience strategy for the implementatio
n of a self-evolving rate limiter[C]//Computational
 Intelligence(UKCI)，2013 13th UK Workshop o
n. Guildford: IEEE, 2013:275-279.

Liu Yuanfeng. Research and implementation of network
traffic shaping strategy based on leaky bucket theory
and token bucket algorithm [d]. Northeast Normal
University, 2008.

Li Wei. Research on key technologies of multimedia cloud
computing platform [D]. University of Science and
Technology of China, 2011s.

Liu Zhenyu. Research and implementation of network
flow control technology based on token bucket
algorithm [d]. Inner Mongolia University, 2012.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

226

