
Leveraging Cloud-based Tools to Talk with Robots

Enas Altarawneh and Michael Jenkin
Electrical Engineering and Computer Science, York University, Toronto, ON, Canada

Keywords: Human-robot Interaction, Cloud-based AI, Realistic Human Avatar.

Abstract: Although there has been significant advances in human-machine interaction systems in recent years, cloud-
based advances are not easily integrated in autonomous machines. Here we describe a toolkit that supports
interactive avatar animation and modeling for human-computer interaction. The avatar toolkit utilizes cloud-
based speech-to-text software that provides active listening by detecting sound and reducing noise, a cloud-
based AI to generate appropriate textual responses to user queries, and a cloud-based text-to-speech generation
engine to generate utterances for this text. This output is combined with a cloud-based 3D avatar animation
synchronized to the spoken response. Generated text responses are embedded within an XML structure that
allows for tuning the nature of the avatar animation to simulate different emotional states. An expression pack-
age controls the avatar’s facial expressions. Latency is minimized and obscured through parallel processing in
the cloud and an idle loop process that animates the avatar between utterances.

1 INTRODUCTION

This work describes the development of an animated
and programmable interactive avatar. The cloud-
based Extensible Avatar toolkit (or the EA toolkit for
short) is a rendered 3D visual puppet (avatar) through
which humans can interact with a robot (see Figure
1). The toolkit relies on a number of components:
a speech-to-text module that converts utterances cap-
tured by a microphone in proximity to the robot into
text, a generic text-to-utterance module that generates
natural language speech, and on-robot speaker and
display hardware. Augmenting these utterances with
a visual avatar requires rendering complex and de-
tailed animations in real time and synchronizing these
animations to the utterance. Such rendering typically
requires specific and/or resource intensive hardware
which may not be available embedded within an au-
tonomous robot. In order to overcome this constraint,
this work explores utterance recognition and the ren-
dering of the avatar using cloud-based computational
resources. A high level view of this process is shown
in Figure 2.

The work described here leverages a number of
cloud-based software components. It relies on a
speech-to-text recognition module, a knowledge en-
gine, a text-to-speech engine, a 3D character design
system, a 3D animation toolkit, and a lip-syncing
plugin for the animation program that extracts the

(a) The avatar (b) Components
Figure 1: Talking with an interactive avatar-enabled robot.
Cloud-based systems are used to augment limited on-board
computational and rendering resources.

sounds in words, maps them to mouth shapes and
plots them according to duration and occurrence in
the text in real time. An expression package con-
trols the animated character’s mood and facial ex-
pressions. Rather than seeking to advance our un-
derstanding in terms of these aspects, this work con-
siders how to integrate these modules to provide an
animated cloud-based avatar. Recognizing that the
use of cloud-based resources will introduce unwanted
delays in the recognition and rendering process, key
technical contributions in this work include (i) the de-
velopment of an adaptive parallelization strategy to

360
Altarawneh, E. and Jenkin, M.
Leveraging Cloud-based Tools to Talk with Robots.
DOI: 10.5220/0007947003600367
In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), pages 360-367
ISBN: 978-989-758-380-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 2: Extensible Avatar (EA) toolkit. The avatar can
be customized for language, appearance and tenor of the
conversation. Responses can be reflected through the avatar
or through commanded instruction to the vehicle.

leverage cloud-based rendering resources to minimize
the latency itself, and (ii) the development of an “idle
loop” process to obscure any resulting latency in the
recognition, response and rendering processes. This
“idle loop” process animates the avatar puppet be-
tween utterances so that the character being rendered
is not still but rather appears to interact with external
users even when not being spoken to directly.

2 PREVIOUS WORK

An artificially intelligent agent is an autonomous en-
tity that observes the environment through sensors
and acts upon it using actuators, directing its activ-
ity towards achieving a specific set of goals (see Rus-
sell and Norvig 2003). A virtual agent or intelligent
avatar has applications in almost every field. For ex-
ample, avatars and virtual agents have been used as an
interface for home care monitoring and companion-
ship (see (Shaked, 2017)). There have been a number
of previous attempts to create realistic 3D expressive
talking heads for intelligent agents and avatars and
some have shown encouraging results (e.g. (Brem-
ner et al., 2016), (Wan et al., 2013), (Anderson et al.,
2013a), (Anderson et al., 2013b)); however existing
systems have not yet achieved the level of realism as-
sociated with their 2D counterparts ((Anderson et al.,
2013a)). 2D talking heads presently look more real-
istic than their 3D counterparts, but they are limited
in the variety of poses and in the lighting conditions
that can be simulated ((Anderson et al., 2013a)). En-

Figure 3: A film strip of an animated character. The avatar
is controlled by control points. These controls are of two
types, facial controls and the body rig. Examples of a facial
controls include mouth-open, left-brow-right-up, left-brow-
mid-down and mouth-right-corner-up. Examples of body
rigs include neck, left-eye-lid, jaw and spine.

abling a talking head to express emotion along with
a synchronized utterance is a challenging problem.
Model-based approaches have shown some potential
in solving this problem. For example, the avatar de-
scribed by (Anderson et al., 2013a) is driven by text
and emotion inputs and generates expressive speech
with corresponding facial movements. It uses a Hid-
den Markov Model (HMM)-based text-to-speech syn-
thesis system ((Zen et al., 2007)) with an active ap-
pearance model (AAM)-based facial animation sys-
tem ((Cootes et al., 2001)). The system utilizes a
cluster adaptive training framework to train both the
speech and facial parameters which allows for the
creation of expressions of different intensity and the
combining of different expressions together to create
new ones. Results on an emotion-recognition task
show that recognition rates given the synthetic output
are comparable to those given the original videos of
the speaker. (Anderson et al., 2013b) present a simi-
lar study that produced a talking head given an input
text and a set of continuous expression weights. The
face is modeled using an active appearance model,
and several extensions that enhance the face. The
model allows for normalization with respect to both
pose and blink state which significantly reduces arti-
facts in the resulting synthesized sequences ((Ander-
son et al., 2013b)).

A central problem in avatar generation involves
synchronizing the animated avatar to audio responses
generated by the avatar. There exist software sys-
tems and human aided approaches that can be used
to partially or completely automate the creation of
facial and speech animation. One example of such
work is the framework for synthesizing a 3D lip-sync
speech animation to a given speech sequence and its
corresponding text described by (Chen et al., 2012).
The first step in this process identifies the key-lip-
shapes from a training video that guides the creation
of corresponding 3D key-faces. These 3D key-faces

Leveraging Cloud-based Tools to Talk with Robots

361

Figure 4: Examples of developed avatars.

are used to construct Dominated Animeme Models
(DAM) for each kind of phoneme. Considering the
coarticulation effects, which is the articulation of two
or more speech sounds together so that one influences
or dominates over the other, the DAM computes the
polynomial-fitted animeme shape for each key-face
and its corresponding dominance weight ((Chen et al.,
2012; Huang et al., 2009)). Other approaches exist in
the literature. For example, (Wang et al., 2012) de-
scribes a statistical, multi-streamed Hidden Markov
Model (HMM) trained using super feature vectors
consisting of 3D geometry, texture and speech. The
HMM is then used to synthesize both the trajectories
of head motion animation and the corresponding dy-
namics of texture. In yet another example, the speech
signal, which is represented by Mel-Frequency Cep-
stral Coefficient vectors, is classified into visemes us-
ing a neural network ((Zoric and Pandzic, 2005)). Us-
ing genetic algorithms the topology of the neural net-
work is configured automatically. This eliminates the
need for manual neural network design and consider-
ably improves viseme classification results.

There exists a range of software tools, plugins and
add-on solutions that aid animators with lip-syncing
and facial animations. One example is CrazyTalk
(CrazyTalk, 2018). Crazy Talk is a 2D real-time fa-
cial animation software that uses voice and text to an-
imate facial images. It allows an animator to use their
own voice to create their animations in real-time us-
ing an automatic motion engine. Another example is
Faceshift (Faceshift, 2018), which is a software so-
lution that can capture the user’s facial expressions
in real time and generate an avatar that mimics the
user. Faceshift technology uses off-the-shelf RGBD
cameras. Faceshift is compatible with most available
3D software packages via plugins and data export.
A Blender (Mullen (2012)) plugin called Quicktalk
(Quicktalk, 2017) can semi-automatically lipsync any

Figure 5: The process of lip-syncing the spoken words.

selected audio using the MakeHuman MxH2 charac-
ter (MXH2, 2017). To use this plugin the user man-
ually exports a Makehuman’s MXH2 character, adds
the sound track, adds the word-sound dictionary, adds
the text script to be lip-synced, and then uses the plu-
gin to automatically plot the lip-sync. The word plot
markers then need to be manually adjusted to match
the audio of each word so that the lip-sync is not out
of place.

3 BUILDING THE AVATAR

There exist a number of different suppliers of cloud-
based speech recognition and text-to-speech audio
generation systems. Here we use an abstract model
of these processes. This abstract process has been im-
plemented utilizing a number of different cloud-based
and local engines, although the work has concentrated
on the Google Engine (Speech Recognition, 2017).
The development of this abstract toolkit builds upon
substantive previous efforts in this domain. A stan-
dard toolkit for local speech recognition can be found
online (Speech Recognition, 2017) and can be easily
integrated into any ROS robot system. Google pro-
vides a toolkit to integrate their recognizer with 3rd
party software. The output of this process is a natu-
ral language expression as a sequence of words in the
recognition language. Similar tools exist for utterance
generation. This work uses Google’s textto- speech
cloud-based engine (Krishnan and Gonzalez (2015))
to generate the audio layer of the utterance and blend
it with an animated avatar to match the response.

The Avatar Utterance Markup Language
(AUML). Rather than transmitting straight
English text, the text to be rendered by the avatar is
placed within a structured framework that provides
rendering hints for both audio generation and avatar
rendering through the Avatar Utterance Markup
Language (AUML), a formal language for avatar
utterances created in this work. This language is
a XML representation; it defines a set of rules for
encoding a desired output using a textual data format.

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

362

Figure 6: Generating a path in the ADG. To generate a
path for the utterance a start and end node are selected in
the ADG, the utterance is then inserted into the graph and
rendered to allow smooth transition from and to the utter-
ance.

Every utterance includes an avatar’s detailed descrip-
tion, language, spoken words, expression associated
with sub phrases and general mood. The goal of this
language is to standardize and facilitate the use of
available avatars, languages and expressions. It also
allows for extensibility by the simple inclusion of
new tags or values.

The Avatars. Avatars are 3D puppets properly
rigged for animation. This work utilizes an open
source realistic 3D human character design software
called MakeHuman(J. Russell and Cohn (2012)).
MakeHuman provides the ability to manipulate age,
weight, length, gender, and race of the avatar. The
software also allows for changes in facial details, hair,
eyes, skin and clothes. Users can select from a variety
of 3D meshes and bone structures for each character.
Characters are exported using the MHX2 rig (MHX2,
2017) which enables MakeHuman structures to be im-
ported into the Blender renderer (Mullen (2012)). Ex-
amples of implemented avatars are shown in Figure 4.

Lip-syncing Spoken Words. Spoken words in the
utterance are lip-synced with the audio to provide a
realistic utterance. A key requirement here is under-
standing the time indexing of individual events in the
utterance. As we know the text used to generate the
audio we use the text to help animate the lips. We
utilize a dictionary of the sounds in words and use
this to compute the timing of events in the utterance.
Having prior knowledge of the duration of every pos-
sible word (or at least most common words) helps to
automate realistic lip-syncing and more generally al-
lows us to predict how long the resulting audio and
video sequences will be. In order to obtain the ex-
pected duration of utterances we trained our system
on the duration of every word in a dictionary using
the text-to-speech engine. We assume that the du-
ration t(x) of the spoken word x is independent of
its context within which x was used. This simplifies
the process of estimating the duration of the spoken
phrases. Audio strips generated by a text to audio en-
gine are typically embedded within a quiet clip. The

Figure 7: Realistic utterance state transitions.

result audio duration usually includes empty audio at
the beginning and the end of the audio strip. An au-
dio clip consists of a constant number of frames (f)
per second (typically 24) and the pre- and post-clip
residue have proven to be of constant duration. In-
order to accommodate these effects, the duration of
each word is used as a weight for the actual plot time
of the word in the lip-sync animation of the sentence.
The time marker of each word is calculated using
w(x) = t(x)/∑

n
i=1(t(xi)). The duration of the word

x in the actual sentence Ts(x) is approximated by the
weight of the word multiplied by the actual duration
of the sentence ts(x)=w(x)∗t(x). The marker of each
word in the actual sentence m(xs) is the marker for the
first frame (f0) plus the number of frames (NF(d)) in
the duration space (d) of every word that comes be-
fore it. The frame marker for each word is calculated
using m(x) = f0 +NF(∑J<i

j=1(w(x j)∗ t(x j)).
The vismes in every word are mapped to mouth

and lip key-frame shapes. These key-frame shapes
are used to plot the vismes associated with each word.
We utilize key-frame shapes that are part of the MHx2
facial rig exported from MakeHuman ((Russell and
Cohn, 2012)) and imported into Blender ((Mullen,
2012)). This automated lip-sync process is based on
a manual process that uses a blender plugin called
QuickTalk ((Quicktalk, 2017)). We automated this
process and optimized the word markers based on the
actual duration of the word instead of using equally
divided markers. The QuickTalk plugin creates an
indexed dictionary of all of the words in the vismes
dictionary for every lip-synced phrase. This work op-
timizes the vismes retrieval mechanism by using one
pass for the words. The sounds plotted using key-
frame shapes were based initially on the originally
hard coded values for each visme found in MHX2.
The original values create exaggerated mouth move-
ments for each visme which did not seem to produce a
realistic outcome. These default values were adjusted
to create a more desired effect. The lip-syncing pro-
cess is summarized in Figure 5.

Building a Realistic Utterance State Transition.
Between utterances we do not want the avatar to be
still. Rather we wish the avatar to engage in ap-
parently normal motion. Furthermore, we wish the

Leveraging Cloud-based Tools to Talk with Robots

363

Figure 8: Multiple edge state transition. Four idle loops
x1 through x4 are illustrated with transitions between x1
and x2, x2 and x3, and x3 and x4. Potential idle loops in
each of x1 through x4 shown in different colors an a possi-
ble stochastic path is shown as a dotted line.

avatar to transit from this delay behavior to utter-
ance behavior seamlessly. We accomplish this by
pre-rendering and pre-loading to the robot a collec-
tion of renderings that can be played when the avatar
is idle and which are designed to be combined to-
gether to make arbitrarily long sequences of idle be-
havior. The Avatar Delay Graph (ADG) provides a
structure within which to encode short locally cached
video sequences that can be played so as to provide
an animation of the avatar between utterances. This
structure also provides a mechanism within which to
obscure rendering and transmission latencies which
are unavoidable given the cloud-based rendering of
the avatar. We model the ADG as a labeled di-
rected graph G = (V,E), where V = {x1,x2, ...,xn}
and E = {e1,e2, ...,en}. Nodes correspond to points
at which specific video sequences can be stitched to-
gether smoothly and edges model individual video se-
quences. Each edge e = (xa,xb) is labeled with τ(e),
how long it takes the play the sequence corresponding
to e. When the avatar plays the video sequence corre-
sponding to edge e the avatar’s representation within
the ADG transits from xa to xb. Also associated with
edge e is an “expressive state” es = (s1,s2, ...,sp) an
encoding of the nature of the avatar as it is perceived
by a user. The dimensionality of es is avatar depen-
dent.

Initially the avatar is in some node x0 and has some
avatar state S. When the avatar is not uttering an ex-
pression it walks the ADG in a stochastic manner as
described below. When in node x it chooses from the
edges departing from x. For each candidate edge ei
the avatar delay engine computes the difference from
S to es(ei), di = |S− es(ei)|. The avatar then chooses
randomly from each of the incident edges with a prob-
ability inversely proportional to this distance. Specif-
ically, with a probability proportional to 1/(di + ε)
where ε is a small positive constant to avoid overflow.
Once a best edge ebest is chosen the avatar’s state S
is updated using S′ = λS+(1−λ)es(ebest). Vertices
in the ADG are optionally labeled as being a starting
or terminating node to aid in terms of merging ADG

Figure 9: An example ADG, representing two different
emotional states.

transitions and renderings with renderings associated
with utterances. A node can be both a starting and ter-
minating node. When an utterance is to be generated
an appropriate terminating node in the ADG is iden-
tified based on the length of the path and to this node
the similarity of the chosen transitioning node to the
current avatar state as described below.

When the avatar is to render some utterance with
state S, a new temporary edge E = (xstart ,xend) is con-
structed. Here the xstart and xend nodes are chosen
from the set of starting and terminating nodes in the
ADG. The utterance is rendered between node xstart
and xend of the ADG. To accomplish this, we first
identify xstart and xend in the ADG. The xend node
is chosen such that (i) is a terminating node, and (ii)
the mean of |es((xend ,xk))− S| is minimized. That
is, when the utterance is generated it terminates in a
state where there is a good exiting edge in the ADG
from xend .The choice of start node is similar, but it
is also necessary to identify a node that can be ac-
cessed quickly in terms of transitions in the ADT in
order to avoid delaying the utterance (Figure 6). The
xstart node is chosen such that (i) xstart has a starting
label, and (ii) the cost of ∑ατ(e)+(1−α)|es(e)−S|
is minimized, where here the sum is over the path in
the ADG from the avatar’s current state to the xstart
node. This chooses a nearby start node such that the
es values are similar to the current state of the avatar S.
Note that the process of selecting the xstart node also
enables the computation of the expected delay before
it is necessary to start rendering the utterance.

Once the xstart and xend nodes have been identified
the avatar begins to move deterministically through
the ADG to the xstart node following the sequence
identified in the process of identifying this node.
When it reaches xstart it then executes the rendered
utterance and re-enters the ADG at the xend node.
The value of S is unchanged by this process although
clearly it would be possible to associate a change in S
with each utterance. Once at xend the stochastic walk
through the ADG continues until the next utterance is

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

364

Figure 10: An example transition sequence. Initially the
avatar is bored in the bored state. At t2 an utterance is
scheduled for after t4. The only start node is in the engaged
state, so the avatar transits to the engaged node and ex-
ecutes the utterance at t5. After the utterance the avatar
returns to the engaged state where it continues to walk the
graph.

Figure 11: The multi-process rendering system. A clip
to be rendered is split into non-uniform length pieces and
distributed to the rendering farm. The rendered sections
are pieced together in the correct display sequence.

available and the process continues.
When not generating utterances the avatar contin-

ues to animate through one of a number of waiting
states to simulate a non-engaged but nevertheless an-
imated speaker. We can structure such waiting states
to simulate emotion or mood (Figure 7). Figure 7
also shows how common connectors allow for real-
istic transition. Figure 8 illustrates how these idle
loops are combined stochastically in order to gen-
erate smooth idle sequences. The idle loops cross
path to form a graph of nodes and edges. To illus-
trate this point more clearly consider Figure 9. Here
the Bored and Engaged state is structured as two idle
loops. Suppose that the starting and ending nodes ex-
ist only in the “engaged” portion of the ADG. Then
it would need a bridge for an utterance while it is in
the “bored” portion of the ADG. Figure 10 presents
an example of the transition from bored to engaged.

In addition to a simulated general mood in the
waiting state the avatar supports automated facial ex-
pressions manipulation. We can automate expression
based on predefined rotation and translation values
for our facial rig or a given set of values at any time.
The importance of this automation is that expression
manipulation and animation can be done on demand
without the need for 3D GUI manipulation which can
be extremely time consuming.

Figure 12: An overview of the parallel multiprocess gener-
ation of the utterance to reduce latency and how its result is
connected to the display.

4 RENDERING THE AVATAR

We utilize the Google cloud platform to render the
avatar. This platform provides a compute engine that
allows for the creation of virtual machines with var-
ious levels of computation power (number of virtual
CPUs, the inclusion of a GPU, size of RAM and disk
space) and different choics of operating systems. The
virtual machines can be customized based on the user
needs. This work requires the creation of K identical
virtual machines for multiprocessing and transform-
ing these headless virtual machines into rendering en-
gines. By default the instances created in a project
on the Google cloud platform do not include a GUI,
graphics display device or an audio playback device.
Individual instances are headless servers with compu-
tational power and are described as compute engines.
This work requires rendering engines. Rendering an-
imations with Blender requires an X server, display
screen and audio sink. To create a rendering engine
from a compute engine a dummy audio sink needs
to be created and activated and an X server needs to
be started using a virtual display screen and assigning
it values for resolution and color. Unfortunately off
screen rendering can not make use of OpenGL which
allows for the use of hardware acceleration. In or-
der to enable rendering each instance is provided with
VirtualGL (VirtualGL, 2018). VirtualGL is a software
that can forward off-screen rending requests to the
GPU for hardware acceleration. VirtualGL requires
two displays (a 3D display to render from and a 2D
display to render to) and a real X server. So, in ad-
dition to the previously mentioned virtual display and
audio dummy sink, each instance requires a real X
server running and a virtual 3D display linked to the
GPU driver.

Leveraging Cloud-based Tools to Talk with Robots

365

4.1 Distributed Rendering in the Cloud

First, we observe that we can parallelize the render-
ing process of the avatar. We can break the rendering
sequence into smaller pieces, render those pieces in
parallel in the cloud, and then present the rendered
clips in sequence to the user. If we approximate the
relationship between playing time Tp and rendering
and network latency time Tr as a multiplicative fac-
tor (k), then Tp = kTr and if we have a pre-defined
acceptable rendering latency (T), then we he have
T seconds to render the first clip. This latency will
result in kT seconds of played video. The second
rendering stream also starts at time 0, and has the
initial latency plus the time of the first clip’s play-
ing time within to render, resulting in T + kT sec-
onds of rendering time and k(T +kT) seconds of ren-
dered video from the second processor. Or more gen-
erally, T n

r = T +∑
n−1
i T i

p and under the assumption
that Tp = kTr then T n

r = T + k ∑
n−1
i T i

r . Figure 11 il-
lustrates the multi-process rendering system. Second,
we observe that delays in the cloud are estimable, but
are stochastic. So there is some small probability that
the next clip to play may not be available when it is
needed. Furthermore, we wish to simplify the prob-
lem of stitching the clips together when playing them
so arbitrary clip points are to be avoided. So instead
of using the break points as identified above we treat
the break points as maximum values and seek the next
earliest point in the utterance that corresponds to a
word break or punctuation. This gives us more nat-
ural break points in the rendering. More rigorously,
suppose we have a break point Tp identified through
the process described above. Then rather than break-
ing the input at this point we scan backwards looking
for the first break in the input, either the first punctu-
ation or space between words. Call the time moving
backwards in the clip until the first word break TB and
the time unit the first punctuation TP. We weight each
by kB and kP respectively and choose the minimum of
TB,kB, TPkp and Vmax as the break point. Here Vmax is
a maximum weighted distance to backup. Note that –
especially for very short duration clips – one or more
of TB and TP may not exist. Third, we observe that
we can ‘stall’ the video being generated should it be
necessary by rocking the video to be played back and
forward a small amount to avoid the avatar becoming
‘stuck’ or ‘stuttering’. Rolling the video backwards
and forwards will always be consistent with the video
being played and can be used to ‘hide’ unexpected la-
tency. Figure 12 provides an illustration of the overall
rendering and display process. The figure shows how
the rendering and display process are connected and
the data flow required to achieve a seamless display

of introduced response utterances.

5 EXPERIMENTAL SYSTEM

A customized version of the cloud-based avatar for
human-robot interaction was used to navigate the
robot using a simple chatbox layer that can iden-
tify targeted navigational words and numbers in the
user’s speech within context. This customized ver-
sion allows for sending navigational commands us-
ing speech. These commands include “go left”, “go
right”, “move forward” and “stop”. Using these com-
mands the robot moves continuously until given the
command “stop”. A specified distance can be sent to
these commands by adding a number at the end of
each command, such as “go forward two”. The avatar
would respond with an appropriate utterance by say-
ing “going left”, “going right”, “coming through” and
“stopping”. The utterances are cached locally on the
robot after the first utterance of a kind is sent to the
cloud for rendering and is received by the local de-
vice for display. An image of a user interacting with
this customized version of the interface is shown in
Figure 1.

6 ONGOING AND FUTURE
WORK

We are currently completing a user study exploring
the efficiency of the approach and the potential of ex-
ploring locally provided cloud resources specifically
tuned for avatar rendering. And we are working to
deploy the technology in a greeter robot application.

ACKNOWLEDGMENT

The financial support of CFREF VISTA projects, the
Google Cloud Platform and the NSERC’s NCFRN
and NCRN projects are gratefully acknowledged.

REFERENCES

Anderson, R., Stenger, B., Wan, V., and Cipolla, R. (2013a).
An expressive text-driven 3d talking head. In ACM
SIGGRAPH 2013 Posters, pages 80:1–80:1, New
York, NY. ACM.

Anderson, R., Stenger, B., Wan, V., and Cipolla, R. (2013b).
Expressive visual text-to-speech using active appear-
ance models. In Proceedings of the 2013 IEEE Con-
ference on Computer Vision and Pattern Recognition

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

366

(CVPR), pages 3382–3389, Washington, DC. IEEE
Computer Society.

Bremner, P., Celiktutan, O., and Gunes, H. (2016). Person-
ality perception of robot avatar tele-operators. In Pro-
ceeding of the 11th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pages 141–
148, Christchurch, New Zealand.

Chen, Y. M., Huang, F. C., Guan, S. H., and Chen, B. Y.
(2012). Animating lip-sync characters with dominated
animeme models. IEEE Transactions on Circuits and
Systems for Video Technology, 22(9):1344–1353.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Ac-
tive appearance models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(6):681–
685.

CrazyTalk. (2018). Create 3D talking heads with
CrazyTalk. Retrieved from https://www.reallusion.
com/crazytalk/

Faceshit. (2018). Faceshift. Retrieved from http://openni.
ru/solutions/faceshift/index.html

Huang, F.-C., Chen, Y.-M., Wang, T.-H., Chen, B.-Y., and
Guan, S.-H. (2009). Animating lip-sync speech faces
by dominated animeme models. In SIGGRAPH ’09:
Posters, pages 2:1–2:1, New York, NY. ACM.

Krishnan, S. T. and Gonzalez, J. U. (2015). Building Your
Next Big Thing with Google Cloud Platform: A Guide
for Developers and Enterprise Architects. Apress,
Berkely, CA, USA, 1st edition.

MHX2. (2017). Mhx2 documentation. Retrieved from
https://thomasmakehuman.wordpress.com/mhx2-
documentation

Mullen, T. (2012). Mastering Blender. SYBEX Inc.,
Alameda, CA, USA, 2nd edition.

Quicktalk. (2017). Quicktalk lip synch addon. Retrieved
from Available: https://tentacles.org.uk/quicktalk

Russell, J., & Cohn, R. (2012). Makehuman. Book on De-
mand. Retrieved from https://books.google.ca/books?
id=TFeaMQEACAAJ

Quicktalk (2017). Quicktalk lip synch addon.
Russell, J. and Cohn, R. (2012). Makehuman. Book on

Demand.
Shaked, N. A. (2017). Avatars and virtual agents - relation-

ship interfaces for the elderly. Healthcare Technology
Letters 4.3, pages 83–87.

SpeechRecognition. (2017). Speechrecognition 3.8.1 :
Python package index - pypis. Retrieved from https://
pypi.python.org/pypi/SpeechRecognition/ (Accessed
30- April-2017)

VirtualGL. (2018). Virtualgl the virtualgl project. Retrieved
from https://www.virtualgl.org/

Wan, V., Anderson, R., Blokland, A., Braunschweiler, N.,
Chen, L., Kolluru, B., Latorre, J., Maia, R., Stenger,
B., Yanagisawa, K., Stylianou, Y., Akamine, M.,
Gales, M., and Cipolla, R. (2013). Photo-realistic ex-
pressive text to talking head synthesis. In Proceedings
of the Annual Conference of the International Speech
Communication Association (INTERSPEECH), Lyon,
France.

Wang, L., Han, W., and Soong, F. K. (2012). High quality
lip-sync animation for 3d photo-realistic talking head.
In Proceeding of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 4529–4532, Kyoto, Japan.

Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T.,
Black, A. W., and Tokuda, K. (2007). The HMM-
based speech synthesis system (HTS) version 2.0. In
Proceedings of the 7th ISCA Tutorial and Research
Workshop on Speech Synthesis (SSW), Kyoto, Japan.

Zoric, G. and Pandzic, I. S. (2005). A real-time lip sync
system using a genetic algorithm for automatic neural
network configuration. In Proceeding of IEEE Inter-
national Conference on Multimedia and Expo, pages
1366–1369, Amsterdam, Netherlands.

Leveraging Cloud-based Tools to Talk with Robots

367

