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Abstract: In this paper, a hp pseudospectral sequential convex programming (hp-PSCP) method is proposed to solve 
the entry trajectory optimization problem. The hp flipped Radau pseudospectral method (FRPM) is utilized 
to discretize the nonlinear dynamics. By successive linearization technology and introducing new variables, 
the optimization problem is converted into a series of convex problems and solved by primal-dual interior-
point method. Numerical results show that the proposed method provides a good compromise between 
computational accuracy and speed compared to existing convex methods. 

1 INTRODUCTION 

Entry phase, which is from space to atmosphere, is 
the key stage for the flight of entry vehicles, including 
reusable launch vehicles and hypersonic gliding 
vehicles. Entry guidance is always a difficult issue of 
the research of entry vehicles (Lu, 2014). With the 
development of onboard entry guidance, 
requirements for online trajectory optimization 
methods are increasing. Generally, trajectory 
optimization methods can be divided into two groups: 
direct methods and indirect methods (Betts, 1998). 
Indirect methods use Pontryagin’s minimum 
principle to transform optimal control problem into a 
boundary-value problem. Indirect methods guarantee 
the optimality of the solution, while the boundary-
value problem is hard to solve and sensitive to initial 
guess. In contrast, direct methods discretize the 
original optimal control problem into a parameter 
optimization problem and solve the parameter 
optimization problem by nonlinear programming 
(NLP) algorithms. With the development of NLP 
algorithms, large-scale NLP problems can be solved 
precisely. However, the solving process is rather 
time-consuming for complicated trajectory 
optimization problems. Consequently, traditional 
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approaches may be not suitable for onboard 
applications.  

Recently, convex optimization has attracted wide 
attention due to its application in aerospace guidance 
and control, such as Mars powered landing 
(Acikmese et al., 2005; Acikmese et al., 2007; 
Blackmore et al., 2010), low-thrust orbit transfers 
(Wang and Grant, 20171), spacecraft rendezvous (Lu 
and Liu, 2013), path planning for unmanned aerial 
vehicles (Wang and Liu, 2017) and constrained 
missile guidance (Liu et al., 2016). Convex 
optimization can be divided into several subclasses, 
including linear programming (LP), quadratic 
programming (QP), second-order cone programming 
(SOCP), and semidefinite programming (SDP). If the 
optimization problem is formulated as one of them, it 
can be solved in polynomial time (Boyd et al., 2004). 
Mature primal-dual interior-point method (IPM) has 
been investigated to solve the convex optimization 
problem (Wright, 1997). With IPM, the globally 
optimal solution can be found in a number of 
iterations with deterministic upper bound. Besides, 
initial guesses are not required in IPM. With these 
advantages, convex optimization is a very promising 
approach for onboard trajectory optimization. 
However, highly nonlinear dynamics and constraints 
are the main difficulties for the application of convex 
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optimization. A SOCP method was developed for 
entry trajectory optimization problem where the 
dynamics equations with respect to the variable of 
energy were used (Liu et al., 20151). The original 
dynamics was relaxed into a SOCP form via 
successive linearization. On the base of this work, the 
smooth entry problem and maximum-crossrange 
entry problem were investigated using similar way 
(Liu et al., 20152; Liu and Shen, 2016). Distinguish 
from (Liu et al., 20151), a sequential convex 
programming (SCP) algorithm was designed (Wang 
and Grant, 20172), where the original dynamics with 
respect to time were used and the rate of bank angle 
was extended to a new control variable. Then this 
algorithm was used to design an autonomous entry 
guidance method (Wang and Grant, 2018). 

The approaches mentioned above employ 
trapezoidal rule with uniform distributions of nodes 
as the discretization method, leading to low 
discretization precision (Sagliano, 2017). Moreover, 
only fixed-flight-time problem is considered, and the 
final flight time cannot be optimized, which is 
obviously not suitable for practical flight. 
Pseudospectral (PS) method, which discretizes the 
state and control variables on orthogonal collocation 
points, may be an alternative approach for entry 
trajectory optimization (Fahroo and Ross, 2008). The 
state and control variables are approximated by global 
Lagrange interpolations, resulting in higher 
discretization precision and smoother results. The 
total time domain is transformed to [−1,1], making PS 
method suitable for free-time problem. To solve 
powered landing problems, convex optimization has 
been combined with PS method. Acikmese et al. 
firstly used Chebyshev polynomials to interpolate the 
controls (Acikmese et al., 2005). Sagliano proposed 
the pseudospectral convex optimization for powered 
descent guidance with more precise results than 
standard convex methods (Sagliano, 2017; Sagliano, 
2018). The pseudospectral sequential convex 
optimization is embedded into the model predictive 
control framework for rocket vertical landing 
guidance (Wang et al., 2019).  

However, in standard PS method, the state 
variable on each node is associated with all state 
variables, since the Lagrange interpolation is a global 
interpolation method, leading to a less sparse 
structure of the underlying matrices. Thus the CPU 
time after discretization is quite longer than other 
methods, such as Euler method and trapezoidal rule. 
In this paper, the hp PS method and the sequential 
convex programming are united in one framework to 
alleviate this effect for the entry trajectory 
optimization problem. In hp PS method, which has 

been implemented successfully in other optimization 
packages (Patterson and Rao, 2014), the whole time 
domain is broken into several subdomains and the 
state variable is only associated with the state 
variables of each subdomain. Therefore, compared 
with standard PS method, faster results with similar 
accuracy can be obtained. 

This paper is organized as follows: In Section 2, 
the entry trajectory optimization problem is 
described. Section 3 presents the whole hp 
pseudospectral sequential convex programming (hp-
PSCP) method. The numerical results are shown in 
Section 4 and the work is summarized in Section 5. 

2 PROBLEM FORMULATION 

In this section, we formulate the optimal control 
problem derived from the entry trajectory 
optimization problem. 

2.1 Entry Dynamics 

This paper considers Earth as a non-rotating spherical 
model. Instead of the energy-based equations for 
entry vehicles, we use the original equations of 
motion. The dimensionless three degree of freedom 
equations of motion of an entry vehicle are (Lu, 2014) 
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where r is the dimensionless radius from the Earth 
center to the vehicle, which is normalized by 

0 6371kmR  .  and  denotes the longitude and 

latitude, respectively. V denotes the dimensionless 

flight velocity, which is normalized by 0 0g R with 
2

0 9.81m/sg  .   denotes the flight path angle and

  denotes the heading angle.  is the bank angle. 

The dimensionless time t in the differentiation of the 

equations (1) is normalized by 0 0/R g . L and D 

denote the dimensionless lift and drag accelerations, 
respectively, which is normalized by 0g .  
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where m is the mass, refS is the reference area, LC

and DC are the lift and drag coefficients, respectively, 

which are functions of angle of attack  and velocity,
 is the atmospheric density calculated by 

 

  0/
0

h hh e    (3)

 
where h is the altitude, 0 is the atmospheric density 

at sea level and 0h is an altitude constant.  

In this paper, the angle of attack   is assumed as 
a function of velocity. The bank angle   is the only 
control variable for trajectory optimization. 
Furthermore, following the way in [16], we choose 
the bank angle rate,  , as the new control variable to 
constrain the change rate of bank angle and eliminate 
the potential high-frequency oscillations, that is, 

 
u   (4)

 
where u is new control variable. By adding equations 
(4) to the original equations of motion (1), the 
augmented equations of motion can be transformed 
into an affine form: 
 

( ) Bu x f x  (5)
 
where [ ; ; ; ; ; ; ]r V    x is state vector with seven 

elements. The function ( )f x  and matrix B are given 

by 
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= [0;0;0;0;0;0;1]B  (7)

 
In this new model, the control variable is 

decoupled from the sates, which will potentially 
benefit the convergence of the follow-up hp-PSCP 
algorithms. 

2.2 Trajectory Optimization Problem 

For an entry flight, the initial and terminal state 
vectors are predefined: 
 

0 0( ) ,   ( )f ft t x x x x  (8)

 
where 0x is the initial state and fx  is the given 

terminal state. 0t  is the initial flight time and ft is the 

free final flight time. During the entry flight, both the 
states and control are bounded: 
 

min max[ , ]x x x  (9)

maxu u  (10)

 
where maxu  is the upper bound of the bank angle rate, 

and min max,x x  are the lower and upper bounds of the 

states, respectively. Besides, the typical path 
constraints, including heat rate, dynamic pressure and 
normal load, are considered 
 

0.5 3.15
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2
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2 2
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where Qk is a constant, and Q , q , n are the heating 

rate, the dynamic pressure and the normal load, 
respectively. maxQ , maxq , maxn are the upper bounds 

of them, respectively.  
In this paper, a general cost function is considered 

as follows: 
 

0
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ft

f t
J t l dt  x x u  (14)

 
Based on above discussion, the entry trajectory 

optimization can be defined as a nonlinear optimal 
control problem as follows: 

 
Problem 0: 

Minimize: (14) 

Subject to: (5), (8)-(13) 

P0 is a free-time optimal control problem, and the 
terminal flight time can be optimized (instead of fixed 
offline) which is a significant difference from (Liu et 
al., 20151; Wang and Grant, 20172) and more 
accordant with practical flight.  

Entry Trajectory Optimization via hp Pseudospectral Convex Programming

63



3 TRAJECTORY OPTIMIZATION 
ALGORITHM 

3.1 Flipped Radau Pseudospectral 
Method 

For solving optimal control problem, numerical 
methods are usually divided into two classes: direct 
methods and indirect methods. In direct methods, the 
dynamics equations are discretized and the optimal 
control problem is transformed into a finite 
dimensional NLP problem. Among direct methods, 
pseudospectral (PS) methods discretize the state and 
control variables on orthogonal collocation points 
simultaneously. PS methods have high discretization 
precision and converge faster for smooth problems. 
Among a variety of PS methods, in this paper, we 
choose the flipped Radau pseudospectral method 
(FRPM). It has been proved that FRPM owns a 
smoother convergence with respect to other PS 
methods. 

FRPM is an asymmetric PS method. First, we 
introduce the flipped Legendre-Gauss-Radau (LGR) 
polynomial 

 

1( ) ( ) ( )  [ 1,1]n n nR L L        (15)
 

where ( )nR  denotes the flipped Legendre-Gauss-

Radau polynomial of order n and ( )nL   denotes the 

Legendre polynomial of order n. n LGR points  are 
the roots of ( )nR  on (−1,1] and are chosen as the 

collocation nodes of FRPM. Besides, −1 is chosen as 
the first discretization node. Then there are n+1 
discretization nodes on [−1,1] in FRPM.  

In FRPM, the state and control variables are 
represented by orthogonal polynomials defined on 
[−1, 1]. The time domain of the optimal control 
problem is normalized by the affine transformation 
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The state and control variables are approximated 

by Lagrange interpolations 
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where ( )iP  and ( )iP  are the Lagrange interpolation 

polynomials. Though Lagrange interpolation, the 

derivative of ( )x can be approximated by the linear 

summation of ( )ix . Then the flipped Radau 

pseudospectral differentiation matrix D is introduced 
(Patterson and Rao, 2014). 
 

0

( )
( ),   1,...,

n
k

ki i
i

d
k n

d




 

 x
D x  (18)

 
At n LGR points, the dynamics equations are 

transformed into algebraic constraints by using (18) 
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where ( , )F x u is the right-hand side of the dynamics 

equation. 
Similarly, the cost function (14) can be replaced 

by 
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where kw is the corresponding weight at the LGR 

points. 

3.2 hp Flipped Radau Pseudospectral 
Method 

In the basic FRPM, which is introduced in the last 
section, the whole time domain 0[ ], ft t is mapped 

against the pseudospectral time [−1, 1]. Thus, it is 
also called the global FRPM. With the increase of 
collocation nodes in this interval, the obtained 
solution becomes more accurate. It also means that 
the degree of the interpolation polynomials is 
increased to approximate the state and control 
variables, for example, by using p nodes. The global 
FRPM is called a p-method, since p is the only 
parameter that is used to control. However, in global 
FRPM, the state variable on each collocation node is 
associated with all state variables owing to the 
algebraic constraint (19), since the Lagrange 
interpolation is a global interpolation method. This 
characteristic leads to a less sparse structure of the 
underlying matrices, and the CPU time after 
discretization is much larger than common methods, 
such as Euler method and trapezoidal method.  

On the other hand, we can break the whole time 
domain into a number of sub-domains, and the state 
variables are approximated by Lagrange interpolation 
locally on each sub-domain. In this way, the number 
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of segments h, and the number of nodes p for each 
segment, are the two parameters we define. This is the 
primary idea of so-called hp  method, which has been 

introduced from computational fluid dynamics to 
discretization methods for optimal control (Patterson 
and Rao, 2014). Moreover, adaptive mesh 
refinements technology can be adopted to improve 
the discretization accuracy by updating the size of h 
and p. However, in this paper, we just use constant 
values of h and p, and the same number of nodes for 
each segment, for simplification. In hp FRPM, the 
state variable on each collocation node is only 
associated with the state variables of each segment, 
and the CPU time is significantly reduced. 

In this paper we give the following notations: 
subscripts i denotes the ith node in a certain segment, 
and superscripts j define the jth segment, such as 

 

    , , 1,..., ;   1,...,j j
i i i p j h x u  (21)

 

,j j
i ix u represent the state and control variables at the 

ith node on the jth segment. Correspondingly, the 
time domain for each segment is defined as 
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Then in the hp FRPM, the algebraic constraints 

(19) on the jth segment can be rewritten in the hp  
form: 
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And the cost function is formulated as 
 

0

1 1

[ ( ) [ , ]
2

]
ph

fh j j
p i i i

j i

t t
J w

h
l

 


  x x x u  (24)

 
Moreover, the state variable on the last time node 

in the previous segment must equal to the one on the 
first time node in the latter segment, which is called 
the linking condition: 
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3.3 hp Pseudospectral Sequential 
Convex Programming 

With the hp FRPM, the dynamics equation (5) can be 
formulated as 
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where ft is a special control variable and 0t  is zero 

or other constant. Obviously, nonlinear terms exist in 
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variables. Using first-order Taylor-series expansion, 
nonlinear terms can be linearized and become  
convex. 
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where the ( , , )k k k
fu tx represents the reference 

trajectory and is the solution at kth iteration.
/A   f x , / fT t  f . Rearranging equation (27) 

obtains 
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Then equation (28) is linear and convex about 

state and control variables. A trust-region constraint 
is added to ensure the validity of linearization as 
follows 

 

| |k x x δ  (29)

 
where δ  is the constant radius of the trust region. 
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Note that path constraints (11-13) are the 
functions of r and V. First-order Taylor-series 
expansion is also used to linearize nonlinear path 
constraints. 
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where ( , ), ( , ), ( , )q nQf r V f r V f r V denote the heating 

rate, dynamic pressure and normal load constraints, 
respectively.  

As for the cost function (14), in this paper, we 
choose the following form 
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In this cost function, the first term is to make the 
descent rate of the vehicle close to a constant and 
smooth the trajectory. The second term is to avoid the 
high-frequency oscillations in bank angle. ck is the 

desired descent rate and 1k is the weight coefficient. 

Obviously, this cost function has a nonlinear 
integrand and must be linearized. Combing with the 
hp form (24), it becomes 
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Introducing two slack variables 1 2,  , the cost 

function is equivalently converted into 
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subjects to additional constraints 
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Linearizing 

1Jf and
2Jf  around the reference 

trajectory gives 
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Then cost function (33)  is a linear function 

about 1 2,  subject to linear constraints (35). All the 

nonlinear constraints have been linearized. 

Problem 1: 
Minimize: (33) 

Subject to: (8),(9),(10),(28),(29),(30),(35) 

Assuming that the hp pseudospectral 
discretization is sufficiently precise and the real 
trajectory ( , , )fu tx  is close enough to the reference 

trajectory ( , , )k k k
fu tx  so that the problem P1 is a 

good approximation of the original problem P0. In 
this paper, we solve problem 0 equivalently by 
solving a sequence of convex optimal control 
problems formulated by problem 1 using the solution 
from the previous iteration. The solution process is 
summarized as follows: 

1) Set 0k  . Propagate the equations of motion 
(1) with initial conditions and a certain control profile 
to provide an initial trajectory 0 0 0( , , )fu tx  for the 

solution procedure. 

2) At the kth iteration ( 1k  ), set up problem P1 

by using 1 1 1( , , )k k k
fu t  x . Then, solve problem P1 to 

find the solution ( , , )k k k
fu tx by the primal-dual 

interior-point method. 

3) Check whether the convergence condition is 
satisfied 
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1max
f

k k

t t t



 
 x x   (36)

 
where  is predefined tolerance vector for 
convergence. If this condition is satisfied, go to Step 
4; otherwise set k = k + 1 and go back to Step 2. 

4) The solution is found to be ( , , )k k k
fu tx . 
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4 NUMERICAL RESULTS 

In this section, numerical results are carried out to 
demonstrate the effectiveness of the algorithms 
proposed in this paper. The entry vehicle model 
adopted in the simulation is the CAV-H (Phillips, 
2003). The mass of CAV-H is 907.2 kg and the 
reference area is 0.4939m2. The path constraints and 
control constraints are set as follows: 
 

2
max max max1200 / ,    150 ,    3

 90 90  

Q kw m q kpa n



  

   


 (37)

 
The angle of attack profile is designed as 
 

 

20                               6500 /

9
5000 11    5000 / 6500 /

1500

11                                5000 /

V m s

V m s V m s

V m s



 

    

 








 
(38)

 
The entry mission is set as 

Table 1: Entry mission. 

States h(km)  (°)  (°) V(m/s)  (°)  (°) 

0x  80 10 -20 7100 -1 45 

fx  30 90 30 2500 - - 

 
To give convincing results, we solve the 

optimization problem with three methods, 
respectively. The first method is the standard 
sequential convex programming (SCP), which uses 
the trapezoidal discretization (Wang and Grant, 
20172). The second method is the pseudospectral 
sequential convex programming (PSCP), which use 
the Flipped Radau pseudospectral discretization 
(Wang et al., 2019). The third method is the proposed 
hp-PSCP. In these three methods, the total number of 
discretization nodes is set to 201. Especially, in hp-
PSCP, h=10 and p=20. The radius of the trust region 
is given as 

 

0

5000 5 5 500 5 5 10
[ , , , , , , ]

180 180 180 180 180
T

R V

    
δ  (39)

 
The convergence condition is given as 
 

0

200 0.1 0.1 1 0.1 0.1 1
[ , , , , , , ]

180 180 180 180 180
T

R V

       (40)

 

The optimization problems are modeled using 
YALMIP (Lofberg, 2004), and are solved by 
MOSEK (Andersen et al., 2003). All the simulations 
are performed in MATLAB 2016a on a PC with an 
Intel Core i5.  

 

Figure 1: The altitude-velocity profiles in three methods. 

 

Figure 2: The ground tracks in three methods. 

 

Figure 3: The bank angle profiles in three methods. 
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The solutions in three methods are shown in 
Fig.1-3. The altitude-velocity profiles and ground 
tracks basically coincide. The entry trajectory is very 
smooth. The bank angle profiles have similar trend 
with slight difference, which may result from 
different discretization methods.  

To verify the accuracy of the solutions, we 
compare the optimal trajectories and trajectories 
obtained by propagating the dynamics equations (1) 
with optimal controls in three methods. The classical 
Runge-Kutta method is used and the terminal 
condition of propagation is reaching the terminal 
velocity. The propagated and optimal trajectories are 
displayed in Fig.4-6. The errors between the optimal 
terminal states and the propagated terminal states are 
given in Tab.2. As we can see, in the Fig.4-6, the 
propagated trajectory does not coincide with the 
optimal trajectory in SCP, while the propagated and 
optimal trajectories match well in PSCP and hp-PSCP. 
In Tab.2, the terminal errors of SCP, especially the 
terminal longitude and latitude errors are quite large, 
which is unacceptable even though the CPU time is 
the shortest. As for PSCP, the terminal accuracy is 
very high. However, the CPU time is one order higher 
than the other two methods. By contrast, the proposed 
hp-PSCP reduces the terminal errors significantly 
with respect to SCP with little growth of CPU times. 
In other words, the hp-PSCP method achieves a good 
trade-off between computational accuracy and speed. 

Table 2: Comparison of Terminal errors and CPU times for 
each iteration. 

States eh(m)
 e (°) e (°) eV(m/) CPU time 

SCP -61.6 1.61 0.61 -1.34 0.12 

PSCP 20.3 -0.007 0.01 -1.42 2.45 

Hp-PSCP 25.3 -0.04 0.05 -1.71 0.21 

 

Figure 4: The propagated and optimal trajectories in SCP. 

 

Figure 5: The propagated and optimal trajectories in PSCP. 

 

Figure 6: The propagated and optimal trajectories in hp-
PSCP. 

5 CONCLUSION 

In this paper, the hp pseudospectral method and 
sequential convex programming are combined to 
solve the entry trajectory optimization problem. The 
hp flipped Radau pseudospectral method is employed 
to get more accurate results without much larger 
computational cost compared to standard convex 
approaches. Numerical results confirm that the 
proposed method results in a significant decline of 
computation time with limited impact on solution 
accuracy with respect to pseudospectral convex 
programming. Future work includes the intensive 
study of the influence of h and p on solution results, 
and we will apply hp-PSCP to onboard guidance. 
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