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Abstract: The paper presents an optimal Bayesian transfer learning technique applied to a pair of linear state-space
processes driven by uniform state and observation noise processes. Contrary to conventional geometric ap-
proaches to boundedness in filtering problems, a fully Bayesian solution is adopted. This provides an approxi-
mate uniform filtering distribution and associated data predictor by processing the involved bounds via a local
uniform approximation. This Bayesian handling of boundedness provides the opportunity to achieve optimal
Bayesian knowledge transfer between bounded-error filtering nodes. The paper reports excellent rejection of
knowledge below threshold, and positive transfer above threshold. In particular, an informal variant achieves
strong transfer in this latter regime, and the paper discusses the factors which may influence the strength of
this transfer.

1 INTRODUCTION

The problem of data (also known as measurement or
information) fusion is now key in many areas of in-
dustry, driven by the IoT and Industry 4.0 agendas
(Diez-Olivan et al., 2019). Data fusion systems are
required in areas such as sensor networks, robotics,
and video and image processing systems (Khaleghi
et al., 2013). Applications range from health moni-
toring (Vitola et al., 2017) and environmental sensing
(Zou et al., 2017), to cooperative systems for indoor
tracking (Dardari et al., 2015) or urban vehicular lo-
calization (Nassreddine et al., 2010). In all cases, in-
formation about the same quantity of interest (or sev-
eral quantities of interest, related in a specified way)
is acquired by different types of detectors, under dif-
ferent conditions, via multiple experiments and mea-
surement devices. (Lahat et al., 2015) provides an
overview of the main challenges in multimodal data
fusion across various disciplines, while the survey in
(Gravina et al., 2017) discusses clear motivations and
advantages of multi-sensor data fusion.

Diverse approaches to solving data fusion prob-
lems have been proposed in the literature, very of-
ten driven by the specifics of the application, and
it is clear that no universal definition—much less
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a universal solution—has yet been accepted. Wiener-
type criteria for measurement vector fusion (Will-
ner et al., 1976) have long been available, while di-
rect variants of the Kalman filter have also been pro-
posed for fusion of measurements (Dou et al., 2016)
and states (Yang et al., 2019). Artificial intelligence
(Xiao, 2019), machine learning (Vitola et al., 2017;
Shamshirband et al., 2015; Vapnik and Izmailov,
2017) and expert system approaches (Majumder and
Pratihar, 2018) have all yielded progress in this area.

In the Bayesian framework which we adopt in this
paper, concepts of data, knowledge and information
are all unified via a probabilistic representation, being
typically the distribution of the unknown quantities of
interest, conditioned by data. Each measurement pro-
cess (node or sensor) constructs its local distribution
conditioned on its locally sensed data. The inferred
quantity may be globally shared by all the nodes, or
these may be distinct but related quantities (Azizi and
Quinn, 2018). The task is then one of optimal merg-
ing of these local distributions, a problem closely re-
lated to distributional pooling (Abbas, 2009). An-
other closely related problem is that of knowledge
transfer (Torrey and Shavlik, 2010). Again, in the
Bayesian context of this paper, the requirement is to
transfer probabilistic knowledge (a distribution) from
secondary (i.e. external or source) nodes to a pri-
mary node, to support its inference of the quantity
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of interest. Optimal Bayesian transfer learning via
Kullback-Leibler divergence (KLD) minimization—
known as fully probabilistic design (FPD) (Quinn
et al., 2016)—is developed in (Quinn et al., 2017),
and specialized to the case of data-predictive transfer
between Kalman filters in (Foley and Quinn, 2018),
(Papež and Quinn, 2018). In this approach, the sec-
ondary data predictor is transferred to the primary
filtering node via an optimal mean-field-type opera-
tor. This is shown to improve the primary state re-
construction in positive transfer cases, and rejects the
secondary knowledge otherwise. In addition to the
consistency and optimality properties of this Bayesian
transfer learning framework, a key practical advan-
tage here is that the relationship between the primary
and secondary processes does not have to be explicitly
modelled.

In this paper, we address the important prac-
tical context where the involved uncertainties are
bounded. Contemporary examples of sensor networks
with bounded innovations and/or observation pro-
cesses are studied in (Goudjil et al., 2017; He et al.,
2017; Vargas-Melendez et al., 2017). Specifically,
we extend the Bayesian transfer learning technique in
(Quinn et al., 2017) to a pair of linear state-space pro-
cesses driven by uniform state and observation noise
processes. Boundedness in filtering problems is han-
dled via several approaches. Within the Kalman fil-
tering set-up, the state estimates are projected onto
the constraint surface (Fletcher, 2000) or the Gaussian
distribution is truncated (Simon and Simon, 2010).
Using sequential Monte-Carlo sampling methods, the
constraints are respected within the accept/reject steps
of the algorithm, see e.g. (Lang et al., 2007). The
non-probabilistic techniques dealing with “unknown-
but-bounded error” provide an approximate set con-
taining the estimates (Chisci et al., 1996), (Becis-
Aubry et al., 2008). Recently, a fully Bayesian so-
lution has yielded a sequentially uniform filtering dis-
tribution (Pavelková and Jirsa, 2018) and associated
data predictor (Jirsa et al., 2019) by processing the
involved bounds via a local uniform approximation
of the state predictor at each filtering step, achiev-
ing a recursive, tractable algorithm. This Bayesian
handling of boundedness now provides the opportu-
nity for optimal Bayesian knowledge transfer between
bounded-error filtering nodes, as set out below.

Throughout the paper, zt is the value of a column
vector z at a discrete time instant t ∈ t? ≡ {1,2, . . . , t};
zt;i is the i-th entry of zt ; z(t)≡ {zt ,zt−1, . . . ,z1,z0}; z
and z are lower and upper bounds on z, respectively;
≡ means equality by definition, ∝ means equality up
to a constant factor. The symbol f (·|·) denotes a con-
ditional probability density function (pdf); names of

arguments distinguish respective pdfs; no formal dis-
tinction is made between a random variable, its real-
isation and an argument of the pdf. Uz(z,z) denotes
the uniform pdf of z with the orthotopic support [z,z].
Also, χ(x ∈ x?) is the indicator function, i.e. if x ∈ x?,
then χ(x ∈ x?) = 1, otherwise χ(x ∈ x?) = 0.

2 UNIFORMLY MODELLED
BAYESIAN FILTERS:
KNOWLEDGE
REPRESENTATION AND
TRANSFER

We consider a pair of Bayesian filters, and distinguish
between the primary filter (called the target node in
transfer learning (Torrey and Shavlik, 2010) and the
secondary filter (sometimes called the source node),
with all sequences and distributions subscripted by
“s” in the latter case. Each filter processes its local
observation sequence, yt and ys,t , t ∈ t?, respectively,
informative of their local, hidden (state) process, xt
and xs,t , respectively.

In this paper, we adopt linear stochastic state-
space models with known parameters for all four pro-
cesses, each driven by an independent, uniformly-
distributed white noise process of known parameters.
We summarize (isolated) Bayesian filtering for this
class of model in Section 2.1. We briefly review prob-
abilistic knowledge transfer between a pair of general
Bayesian filters in Section 2.2, using the axiomati-
cally optimal FPD principle. Then, in Section 2.3,
we instantiate this FPD-optimal transfer in the current
context of uniformly driven Bayesian filters, recover-
ing a tractable, recursive flow via a local uniform ap-
proximation at each step.

2.1 Bayesian Filtering with Uniformly
Distributed Noise Processes

In the considered Bayesian set up (Kárný et al., 2005),
the system is described by the following pdfs:

prior pdf: f (x0) (1)
observation model: f (yt |xt)

time evolution model: f (xt |xt−1,ut−1)

where yt is a scalar observable output, ut is a known
system input (optional, for generality), and xt is an
`-dimensional unobservable system state, t ∈ t?.

We assume that (i) hidden process xt satisfies the
Markov property, (ii) no direct relationship between
input and output exists in the observation model,
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and (iii) the inputs consist of a known sequence
u0,u1, . . . ,ut−1.

Bayesian sequential state estimation (known as
filtering) consists of the evolution of the posterior
pdf f (xt |d(t)) where d(t) is a sequence of observed
data records dt = (yt ,ut), t ∈ t?. The evolution of
f (xt |d(t)) is described by a two-steps recursion that
starts from the prior pdf f (x0):

Time Update: f (xt |d(t−1)) =

=
∫

x?t−1

f (xt |ut−1,xt−1) f (xt−1|d(t−1))dxt−1, (2)

Data Update: f (xt |d(t)) =

f (yt |xt) f (xt |d(t−1))∫
x?t

f (yt |xt) f (xt |d(t−1))dxt
=

f (yt |xt) f (xt |d(t−1))
f (yt |d(t−1))

.

(3)

We introduce a linear state space model with a uni-
form noise (LSU model) in the form

f (xt |ut−1,xt−1) = Ux(x̃t −ρ, x̃t +ρ)

f (yt |xt) = Uy(ỹt − r, ỹt + r). (4)

where x̃t = Axt−1 +But−1, ỹt = Cxt , A, B, C are the
known model matrices/vectors of appropriate dimen-
sions, νt ∈ (−ρ,ρ) is the uniform state noise with
known parameter ρ, nt ∈ (−r,r) is the uniform ob-
servation noise with known parameter r.

State estimation of LSU model (4) according to
(2) and (3) leads to a very complex form of poste-
rior pdf. In (Pavelková and Jirsa, 2018)1, an approxi-
mate Bayesian state estimation of this model (based
on a minimising of Kullback-Leibler divergence of
two pdfs) is proposed. The presented algorithm pro-
vides the evolution of the approximate posterior pdf
f (xt |d(t)) that is uniformly distributed on a parallelo-
topic support.

Approximate Time Update. The time update starts
at the time t = 1 with f (xt−1|d(t − 1)) = f (x0) =
Ux0 (x0,x0). Being χ the indicator function, it holds

f (xt |d(t−1))≈
`

∏
i=1

χ(mt;i−ρi ≤ xt;i ≤ mt;i +ρi)

mt;i−mt;i +2ρi
=

=
`

∏
i=1

Uxt;i(mt;i−ρi,mt;i +ρi) = Uxt (mt −ρ,mt +ρ),

(5)

1Note that the paper (Pavelková and Jirsa, 2018) con-
tains the typo in the formula (3): the relevant integration
variable should be xt instead of xt−1.

where mt = [mt;1, . . . , mt;`]
′, mt = [mt;1, . . . , mt;`]

′,

mt;i =
`

∑
j=1

min(Ai jxt−1; j +Biut−1,Ai jxt−1; j +Biut−1),

(6)

mt;i =
`

∑
j=1

max(Ai jxt−1; j +Biut−1,Ai jxt−1; j +Biut−1),

Ai j means the term on the i-th row and the j-th column
of A.

Approximate Data Update. According to (3), we
process the observation yt as yt−r≤Cxt ≤ yt +r (see
(4)) by the Bayes rule together with the prior (5) from
the time update. The approximate posterior pdf is uni-
formly distributed on a parallelotopic support

f (xt |d(t))≈ Ktχ(xt
≤Mtxt ≤ xt), (7)

where Kt is a normalising constant.
However, the time update (5) in the next step as-

sumes pdf with an orthotopic support. Therefore, the
parallelotope x

t
≤Mtxt ≤ xt in (7) is circumscribed by

an orthotope xt ≤ xt ≤ xt . In this way, we obtain an
approximate “orthotopic” posterior pdf

f (xt |d(t))≈Uxt (xt , xt). (8)
The orthotopic bounds xt and xt are used in the next
time update step (5) for the computation of the terms
m and m (6) and for the computation of point esti-
mates of states x̂t

x̂t =
xt + xt

2
. (9)

Predictive pdf for LSU Model. The data predic-
tor of a linear state-space model is the denominator
of (3), where f (yt |xt) is given by (4) and f (xt |d(t −
1)) is the result of the approximate time update (5).
The approximate uniform predictor as proposed in
(Jirsa et al., 2019) is

f (yt |d(t−1))≈
(

yt − yt

)−1
χ

(
yt ≤ yt ≤ yt

)
, (10)

where
yt = Cs− r (11)
yt = Cs+ r (12)

for s and s defined so that
si = mt;i−ρi, si = mt;i +ρi, if Ci ≥ 0,
si = mt;i +ρi, si = mt;i−ρi, if Ci < 0, (13)

This predictive pdf is conditioned by mt and mt
considered as statistics, provided the parameters A
and B be known.

Mean value ŷt ≡ E [yt |d(t−1)] of (10) is

E [yt |d(t−1)] =
yt + yt

2
=C

(
mt +mt

2

)
︸ ︷︷ ︸

E[xt |d(t−1)]

. (14)
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2.2 FPD-optimal Knowledge Transfer
between Bayesian Filters

If knowledge transfer from the secondary to the pri-
mary filter is to be effective (the case known as pos-
itive transfer (Torrey and Shavlik, 2010)), then we
must assume that ys(t) is informative of x(t). The core
technical problems to be addressed are (i) that there is
no complete model relating x(t) and xs(t), and, there-
fore, (ii) probability calculus (i.e. standard Bayesian
conditioning) does not prescribe the required primary
distribution conditioned on the transferred knowl-
edge. Note that standard Bayesian conditioning yields
the solution only in the case of complete modelling
(Karbalayghareh et al., 2018). However, an insistence
on specification of a complete model of inter-filter de-
pendence may be highly restrictive, and incur model
sensitivity in applications.

Instead, we acknowledge that the required condi-
tional primary state predictor, f̆ (xt |d(t−1), fs), after
transfer of the secondary data predictor, fs(ys,t |ds(t−
1)) (10), is non-unique. Therefore, we solve the in-
curred decision problem optimally via the fully prob-
abilistic design (FPD) principle (Quinn et al., 2016),
choosing between all cases of f̆ (xt |d(t− 1), fs) con-
sistent with the knowledge constraint introduced by
the transfer of fs(ys,t |ds(t− 1)) (Quinn et al., 2017).
FPD axiomatically prescribes an optimal choice, f o,
as a minimizer of the Kullback-Leibler divergence
(KLD) from f̆ to an ideal distribution, f I , chosen by
the designer (Kárný and Kroupa, 2012):

f o(xt |d(t−1), fs)≡ arg
f̆∈F

minD( f̆ || fI). (15)

Here, the KLD is defined as

D( f̆ || fI) = E f̆

[
ln

f̆
fI

]
, (16)

and F denotes the set of f̆ constrained by fs (Quinn
et al., 2016),(Quinn et al., 2017). The ideal distribu-
tion is consistently defined as

fI(xt |d(t−1))≡ f (xt |d(t−1)),

being the state predictor of the isolated primary fil-
ter (5) (i.e. in the absence of any transfer from a sec-
ondary filter). In (Foley and Quinn, 2018), the follow-
ing mean-field operator was shown to satisfy (15), and
so to constitute the FPD-optimal primary state pre-
dictor after the (static) knowledge transfer specified
above:

f o(xt |d(t−1), fs) ∝ f (xt |d(t−1))×

×exp

∫
yt

fs(yt |ds(t−1)) ln f (yt |xt)dyt

 . (17)

Note that the optional input ut is known and con-
stant. Here, it is not a part of FPD and plays only the
role of a conditioning quantity in d(t−1).

2.3 FPD-optimal Uniform Knowledge
Transfer

Here, we express the KLD minimiser (17) in the case
of uniform pdfs. The functions appearing in (17) are

f (xt |d(t−1)) ∝ χ(mt −ρ≤ xt ≤ mt +ρ) (18)

fs(yt |ds(t−1)) ∝ χ

(
y

s,t
≤ yt ≤ ys,t

)
(19)

f (yt |xt) ∝ χ(Cxt − r ≤ yt ≤Cxt + r) , (20)

see (5), (10) and (4). Then, the form of (17) is

f o(xt |d(t−1), fs) ∝ χ(mt −ρ≤ xt ≤ mt +ρ)×

×exp

∫
yt

χ

(
y

s,t
≤ yt ≤ ys,t

)
×

× lnχ(Cxt − r ≤ yt ≤Cxt + r) dyt

 (21)

The first term in the integral indicates the integration
limits are y

s,t
and ys,t . The characteristic function in

the logarithm must equal one, which zeroes the expo-
nent and generates an additional constraint for xt .

Imposing yt ∈ (Cxt − r,Cxt + r)∩ (y
s,t
,ys,t) with

nonempty intersection, we get the constraint for xt :

y
s,t
− r ≤Cxt ≤ ys,t + r. (22)

The constraining inequalities in (22) represent a strip
in the state space. Time update of the target filter
yields an orthotope domain in the state space (Fig-
ure 2). The strip, containing information from the
source filter, and the orthotope then intersect (left side
of Figure 2). This constrained set is the form of the
knowledge transfer between the filters.

However, the data update step requires the prior
pdf to be on the orthotope domain. Therefore, the
constrained set must be circumscribed by another or-
thotope. The orthotope is an intersection of ` per-
pendicular strips. According to (Vicino and Zappa,
1996), all the `+ 1 strips are tightened, i.e. shifted
and/or narrowed, so that distance of their planes is
minimal while their intersection is unchanged (re-
moved redundancy). Then, the tightened ortho-
tope is the domain of the approximate expression of
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f o(xt |d(t−1), fs) as the constrained prior entering the
data update.

Note: The similarity of (22) with the observa-
tion model (4) and their similar processing indicates
similarity of the constraint step and the data update
step. The difference is that the knowledge trans-
fer (22) accepts the interval, i.e. the uniform distri-
bution Uy(ys,t

,ys,t), whereas the data update is sup-
plied with the observed point, yt . This point can be
interpreted as the Dirac distribution δy(y−yt). In this
distributional sense, both the steps are equivalent.

2.4 Algorithmic Summary

The source and target filters run their state estimation
tasks in parallel. The source filter is run in isolation,
and the data predictor (10) is computed between the
time update and data update steps. Processing of the
source predictor is placed between time update and
data update step in the target filter.
Initialisation:
• Choose final time t > 0, set initial time t = 0
• Set values x0, x0, u0, noises ρ, r, rs

On-line:
1. Set t = t +1
2. Compute mt , mt according to (6) for each filter
3. Time update: compute (5) for each filter
4. Compute data predictor of the source filter (10)
5. Knowledge transfer: get the constraining strip

(22) from the source data predictor and process
it to time updated pdf of the target filter ((22)
and below) to transfer knowledge between the
filters (alternatively, use the informal transfer
described later)

6. Get new data ut , yt , ys,t
7. Data update: add the data strip (4) and approx-

imate the obtained support by a parallelotope
(for details see Appendix A.2 in (Pavelková and
Jirsa, 2018)) to obtain the resulting form (7)
(alternatively, skip the parallelotope stage and
only tighten the strips, as described in 5.) for
each filter

8. Compute xt , xt (8) for each filter
9. Compute the point estimate x̂t (9) for the target

filter
10. If t < t, go to 1.

3 EXPERIMENTS

In this section, the simulation experiments demon-
strate the proposed algorithm properties.

3.1 Experiment Setup

We simulate the system studied in (Foley and Quinn,
2018), xt ∈ R2, yt ∈ R. The known model parameters

are A =

[
1 1
0 1

]
, C = [1 0], ρ = 1(2)×10−5, where

1(2) is the unit vector of length 2, r = 10−3. B =[
0
0

]
, ut = 0, i.e. a system without input/control.

The estimation was run for t = 50 time steps. We in-
vestigate the influence of the observation noise rs of
the source filter (20) on estimate precision of the tar-
get filter, quanitified by TNSE (total norm squared-

error) defined as TNSE =
t
∑

t=1
‖x̂t − xt‖2, where ‖ · ‖

is the Euclidean norm. For each combination of the
parameters, the computation was run 2000-times and
the TNSEs were averaged.

Simulated states xt , together with the state noise
ρ, are common for both the source and target filters,
whereas the observation noises r and rs, contributing
to observed values, differ. This simple setup is suffi-
cient for illustration of the described method.

3.2 Results
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Figure 1: TNSE of the target LSU filter as a function of
the observation noise variance rs of the source filter. FPD
transfer.

Figure 1 shows the influence of the source filter
observation noise rs on precision of the target filter
through the FPD knowledge transfer. The method re-
jects negative knowledge transfer (unlike in the Gaus-
sian transfer case (Foley and Quinn, 2018)). For
higher values of rs, estimate precision coincides with
the isolated target filter (despite fluctuations) and does
not increase. However, decrease of estimation error
for smaller rs is not very significant, compared to (Fo-
ley and Quinn, 2018).
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Figure 2: Domain of xt . Thick line: target filter, thin line:
transferred set. Left: FPD transfer. Right: informal transfer.

The probable reason for this last point can be il-
lustrated by the left part of Figure 2. The grey area
(the intersection) is to be circumscribed by an ortho-
tope (5). If the strip is too close to the diagonal, the
circumscribing orthotope is similar to the one given
by the time update (if the diagonal is contained in the
strip, the orthotopes are identical). This effect is prob-
ably caused by the fact that orthotopes are too conser-
vative as approximators.

The knowledge transfer acts as a constraint of the
target xt set by the source filter. This inspires an infor-
mal transfer, illustrated in the right part of Figure 2.
The idea is to use the intersection of the source and
target time-updated state sets. Although this approach
is not theoretically justified, it seems more suitable for
orthotopic sets. The results of the prediction errors
can be seen in Figure 3, in this informal case. The
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Figure 3: TNSE of the target LSU filter as a function of the
observation noise variance rs of the source filter. Informal
transfer.

behaviour is qualitatively the same as in the previous
case, but the influence on the target filter precision
is now much more significant in the positive transfer
regime.

It has also been observed that omitting the paral-
lelotope stage in the data update, i.e. involving only
strip tightening as in the FPD-based knowledge trans-
fer, makes no difference in the target state precision.

3.3 Discussion

The isolated LSU filter performance serves as a refer-
ence against which to assess the effect of the knowl-
edge transfer from a source LSU filter to a target one.
A key advantage of the FPD-transfer—apart from its
decision-theoretic optimality—is that the (stochastic)
relationship between the filters does not have to be
specified (in contrast to standard Bayesian transfer
learning techniques (Karbalayghareh et al., 2018)).
This confers robustness on the approach.

Both the FPD and informal transfers of Section 3
exhibit an important property: the ability to reject
the source knowledge in the “below-threshold” case
of inferior-quality data-predictive knowledge transfer
(i.e. where rs ≥ r). This form of robustness is in con-
trast to FPD transfer between Kalman filters (Gaus-
sian transfer) reported in (Foley and Quinn, 2018),
where rs ≥ r induces “negative transfer”, decreasing
the target precision in comparison with the isolated
filter. The problem was overcome there by adjust-
ing the transfer to take account of the external pre-
dictive variance. The avoidance of negative trans-
fer in the LSU case is an important finding for the
FPD knowledge transfer mechanism in general, since
it supports a hypothesis—stated in (Foley and Quinn,
2018; Papež and Quinn, 2018)—that it is a moment-
loss pathology of the Gaussian forms in Kalman fil-
tering that incurred the negative FPD transfer in that
case, and not an intrinsic limitation of the FPD trans-
fer mechanism itself.

On the “above threshold” side (i.e. rs < r),
FPD knowledge transfer between LSU filters in-
creases the target precision (Fig. 1)—effecting “pos-
itive transfer”—but this is insignificant compared to
the improvement reported in (Foley and Quinn, 2018).
In contrast, the informal transfer, based on the inter-
section of orthotopes, improves the state estimate pre-
cision strongly (Fig. 3). At threshold (rs = r), note
that positive transfer is still achieved in this informal
case. This may be caused by a displacement between
source and target orthotopic domains of the same size
(see the right part of Figure 2).

The weakness of the FPD (i.e. formal) transfer in
the LSU case is probably caused by the fact that or-
thotopes are too conservative as set approximators,
i.e. they approximate the complex polytopic sets too
coarsely (see the diagonal problem described in Fig-
ure 2 (left)). The informal transfer approach (Sec-
tion 3.2) can be suitable for orthotopic approxima-
tions but is not optimal in a Bayesian (FPD) sense. It
may be that this solution does decrease the Kullback-
Leibler divergence (15), (16), but does not give the
minimum (being the FPD solution (17)). However,
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this requires theoretical validation.
In the orthotopically approximated data update

step, the parallelotope stage (7) can be omitted. If so,
the FPD knowledge transfer (Section 2.3) and the data
update involve the same algorithmic flows, as was the
case in (Foley and Quinn, 2018).

4 CONCLUDING REMARKS

The proposed FPD knowledge transfer between LSU
filters has achieved excellent performance, reject-
ing the source data predictor below threshold, while
achieving positive transfer above threshold (particu-
larly in the case of the informal variant). We have
noted in Section 3.3 that the technique is not condi-
tional on an explicit model of interaction between the
filters. It will be interesting in future work to vali-
date further the robustness reported here, by simulat-
ing a richer set of contexts than the one reported in
Section 3, particularly cases of distinct but correlated
state processes.

Future research will also focus on a search for
less conservative approximating sets for the geomet-
ric supports of the uniform approximations adopted
in the time and data update steps of LSU filtering.
The current variant starts with an orthotopic support
within the time update step that is transformed into a
parallelotopic one during the data update step. This is
then circumscribed by an orthotope, to achieve func-
tional closure—and, so, recursion—for the next time
update. It would be less conservative to avoid this
circumscribing approximation, and to recurse within
a parallelotopic support only. However, the compu-
tational overhead of this more complicated setting
needs to be assessed.

In the knowledge transfer step, again, it appears
that it is the conservative nature of the orthotopic ap-
proximation which induces the weakly positive FPD
transfer reported in this paper. Once again, more flex-
ible and so tighter approximating sets—such as par-
allelotopes and zonotopes—will be explored in fu-
ture work. Meanwhile, it will be interesting to find
a formal (FPD) interpretation of the informal pro-
posal which has achieved excellent positive transfer
between the LSU filters (Section 3.2).

In both contexts above, the uniform approxima-
tions on adapted geometric supports are applied lo-
cally at each step of the algorithm, and so it is theo-
retically difficult to assess it convergence after many
steps. In addition, the knowledge transfer is static in
nature (Foley and Quinn, 2018), involving the trans-
fer of the marginal source data predictor at each step.
Progress in this area will require the transfer of dy-

namic (i.e. joint) source knowledge, and a search for a
global approximation of the exact transfer-conditional
target filtering distribution.
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