A Comparison of Multi-cloud Provisioning Platforms

Domenico Calcaterra, Vincenzo Cartelli, Giuseppe Di Modica and Orazio Tomarchio

Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy

Keywords:

Abstract:

Cloud Service Provisioning, Multicloud, Cloud orchestration, TOSCA, BPMN

Although cloud computing has been around for over a decade now, many issues of the first hour still persist.

Vendor lock-in, poor interoperability and portability hinder users from taking full advantage of main cloud
features. On the industry side, the big players often adopt proprietary solutions to guarantee a seamless man-
agement and orchestration of cloud applications; on the research side, the TOSCA specification has emerged
as the most authoritative effort for the interoperable description of cloud services. In this paper, we discuss the
design and implementation of a TOSCA-based orchestration framework for the automated service provision-
ing. We also compare this approach to two open-source orchestration tools (Heat, Cloudify) with respect to the
deployment of a two-tier application on an OpenStack environment. Test results show our method performs
comparably to the aforementioned tools, while maintaining full compliance with TOSCA.

1 INTRODUCTION

The adoption of the cloud computing paradigm is
nowadays very common in many companies and or-
ganizations. A very recent technological trend within
the cloud computing scenario is the use of services
and resources from multiple clouds, the so-called
multi-cloud paradigm (Grozev and Buyya, 2014;
Ferry et al., 2013). However, in order to enable an
effective multi-cloud paradigm, it is essential to guar-
antee an easy portability of a cloud application from
a cloud provider to another one (Petcu and Vasilakos,
2014; Ferry and Rossini, 2018).

Cloud orchestration frameworks have emerged as
systems to address this need as well: their goal is to
manage cloud resources through the lifecycle phases,
respectively to select, describe, configure, deploy,
monitor and control them (Weerasiri et al., 2017; Ran-
jan et al., 2015; Baur et al., 2015).

Most of the cloud providers offer their own or-
chestration platform (Weerasiri et al., 2017; Bous-
selmi et al., 2014): however, none of these com-
mercial products are open, neither their solutions
are portable on different providers. Moreover, since
cloud applications may have varying resource re-
quirements during different phases of their lifecy-
cle, the need to partition or migrate parts of a cloud
application to different platforms arises. Therefore,
designing effective cloud orchestration techniques to
cope with large-scale multi-cloud environments re-

Calcaterra, D., Cartelli, V., Di Modica, G. and Tomarchio, O.
A Comparison of Multi-cloud Provisioning Platforms.
DOI: 10.5220/0007765005070514

mains a deeply challenging problem.

Several efforts have been made in the last few
years to overcome these issues: as a notable exam-
ple, TOSCA (Topology and Orchestration Specifica-
tion for Cloud Applications) has been proposed as
an open standard for representing and orchestrating
cloud resources (OASIS, 2013). It describes a com-
posite cloud service using a service template, which
captures the topology of component resources and
sets a plan for orchestrating them (Binz et al., 2014).

In a previous paper we proposed the design and
implementation of TORCH, a TOSCA-based orches-
tration framework for automated cloud service pro-
visioning (Calcaterra et al., 2018). In this paper
we compare this approach with two open-source or-
chestration tools such as Heat (OpenStack, 2016)
and Cloudify (GigaSpaces, 2016), showing that our
solution achieves the automated provisioning over
multi-cloud environments, while maintaining a full
TOSCA compliance. Other benefits include substan-
tial model reusability and abstraction, allowing to
avoid provider-specific customisation.

The remainder of the paper is organised as fol-
lows. In Section 2 we present the related work. Sec-
tion 3 briefly presents the fundamentals of our sys-
tem TORCH. Section 4 describes the reference sce-
nario used to compare TORCH with Heat and Cloud-
ify. Details on comparative tests and systems perfor-
mance are provided in Sections 5 and 6, respectively.
Finally, the work is concluded in Section 7.

507

In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 507-514

ISBN: 978-989-758-365-0

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

2 RELATED WORK

Many IT organizations and DevOps adopters look at
the cloud orchestration as a way to speed up the de-
livery of services to end users and reduce costs. All
the big cloud industry players use their own orches-
tration platform to manage the provisioning of cloud
services (e.g. Amazon CloudFormation!, Rightscale
Cloud Management Platform?, RedHat CloudForms? s
IBM Cloud Orchestrator*). Such platforms, to vary-
ing degrees, promise to provide automation in three
fundamental steps: cloud configuration, cloud provi-
sioning and cloud deployment. The most advanced
also offer services and tools for the management of
the cloud applications’ lifecycle. None of these com-
mercial products are open to the community, and the
solutions they offer are not portable across third-party
providers either.

TOSCA is a standard proposed by OASIS to en-
able the portability of cloud applications and the re-
lated IT services (OASIS, 2013). This specification
permits to describe the structure of a cloud application
as a service template, that is in turn composed of a
topology_template and the types needed to build such
a template. The TOSCA Simple Profile is an isomor-
phic rendering of a subset of the TOSCA v1.0 XML
specification in the YAML language. It provides a
more accessible syntax as well as a more concise and
incremental expressiveness of the TOSCA language
in order to speed up the adoption of TOSCA to de-
scribe portable cloud applications.

Cloudify (GigaSpaces, 2016) is an open-source
orchestration framework based on TOSCA. It pro-
vides services to model applications and automate
their entire lifecycle through a set of built-in work-
flows. Alien4Cloud (Application LIfecycle ENabler
for Cloud) (Alien4Cloud, 2018) is a TOSCA-based
designer and cloud application lifecycle management
platform. It is natively integrated with Cloudify for
runtime orchestration. Ubicity (Corporation, 2018) is
yet another TOSCA-based solution, which proposes
a model-driven approach to simplify service manage-
ment by providing a path towards a unified view of ap-
plications and services, independent of the underlying
cloud platform. The OpenStack platform® includes
an orchestration service which provides a template-
based way to describe cloud applications.

Thttps://aws.amazon.com/cloudformation/

Zhttps://www.rightscale.com/

3https://www.redhat.com/en/technologies/management/
cloudforms/

“https://www.ibm.com/us-en/marketplace/deployment-
automation/

Shttps://www.openstack.org/

508

In the literature some minor research initiatives
propose open-source cloud provisioning platforms
which are not based on TOSCA. Roboconf (Pham
et al., 2015) is a hybrid cloud orchestrator for ap-
plication deployment. It proposes a Domain Specific
Language (DSL) for fine-grain definition of applica-
tions and execution environments. In (Giannakopou-
los et al., 2017) authors formulates the application de-
ployment problem as a directed acyclic graph traver-
sal and re-execution. The proposed tool is intended
for deploying applications over providers that tend to
present transient failures.

3 TORCH: A TOSCA-BASED
PROVISIONING SYSTEM

This section briefly describes TORCH, a Tosca-
inspired ORCHestration framework introduced in
(Calcaterra et al., 2018). The framework orchestrates
the provision of cloud services separating the orches-
tration of the provisioning tasks from the invocation
of the provisioning services themselves. Provisioning
services are supplied by third-party service providers,
while the provisioning tasks orchestrated by the work-
flow engine draw on those services in a SOA (Service
Oriented Architecture) fashion. Figure 1 depicts the
framework’s architecture.

The core component is the Cloud Orchestrator
which takes a TOSCA service template (in the YAML
format) as input, translates it into a collection of
proper BPMN data objects, and feeds such a collec-
tion as BPMN data inputs of a new instance of the
top-level process (see Figure 2) running in the BPMN
Engine, which eventually orchestrates all the provi-
sioning tasks. Provisioning tasks, in turn, have their
data inputs populated with a collection of data objects
describing both the demanded resources and the state
of each component, and do nothing but send service
requests to the Service Broker and receive back the
new state of the invoked provisioning services.

Two categories of provisioning services are con-
templated: Cloud Services and Packet-based Ser-
vices. The former comprise the resources offered
through any of the Cloud delivery models (IaaS, PaaS,
SaaS), whereas the latter include all the download-
able software “packets” requiring a pre-configured
runtime environment to run. An intermediate Service
Connectors Layer is populated with REST services
called Service Connectors (advertised in a Service
Registry), which provide a unified interface model for
the invocation of the provisioning services. When
it comes to Cloud Services, additional configuration
is usually required for Service Connectors to ac-

cess the cloud environment. Since TOSCA abstracts
application-specific data away from templates for
portability reasons, extra configuration properties can
be fed into TORCH as a separate input (Application
Properties in Figure 1). The framework is respon-
sible to properly inject this information into service
requests. Service requests issued by the BPMN plans
are directed to the Service Broker, which browses the
Service Registry for the most appropriate Connectors
meeting the specified requirements.

Application.(YAML Cloud Orchestrator BPMN
properties [¥| 0 BPMN Engine

Service
Broker

Service
Registry

o

,,,,,, y ————————— | [

Orchestration Layer
3
8
&
)
®
g
-/
2y
)

Service BUS

/‘:

‘B
g 1L 1L 1L 1L 1L 1
D O OO D OO
£ CreateNetwork Create VM Create Storage Deploy DB Deploy App Container Deploy ...
& Service Service Service Package Service Package Service
8
: ry s \)
b 5 webservices m <) edna*\
b 5 PostgreSQL Lifitik)
- Google Cloud Platf
3 0ogle Cloud Platform n MHSQL .
= X ub
g < ubuntu
< 'WORDPRESS
Figure 1: TORCH architecture.
= Instantiate Node
node feeee3 T
s B—®
[cloud resource] cloud resource>| esg";’(m

£z ,@

cloud resource any error cloud resource
error

begin complete

package

=Y B

deploy

<package>
node o

[package]

anyerror package
error

Figure 2: Cloud Orchestrator BPMN process model.

The YAML-TO-BPMN component (see Figure 1) is
responsible for the conversion of the TOSCA YAML
template into the BPMN data object collection used as
data inputs in the provisioning process. The orches-
tration of the provisioning tasks is realised by three
BPMN process models. More precisely, a new top-
level process (see Figure 2) is instantiated with the
output of YAML-TO-BPMN as its “node” data in-
put collection. Since nodes comprise both cloud re-
sources and software packages, the top-level process
feeds each node of the input collection to a new in-
stance of either the create cloud resource or the de-
ploy package sub-processes. The orchestration of the
provisioning tasks is carried out by many instances of
these last two processes, which delegate the execution

A Comparison of Multi-cloud Provisioning Platforms

of the provisioning services to the Service Broker, and
globally collect the status data that it returns.

4 REFERENCE SCENARIO

The application model taken into consideration de-
ploys a WordPress web application on an Apache web
server, with a MySQL DBMS hosting the application
content on a separate server. Figure 3 shows the over-
all TOSCA-compliant architecture (wordpress, php
and apache node types are non-normative, though).

mysql_database

—— Database
wordpress

Properties
+ name

WebApplication

- user

Requirements
Properties + password

Container
« context_root - port

Capabilities
Endpoint Database

_ iy
mysql_dbms H

DBMS

Requramens) -

Endpoint Datab: >

L/

PHPModule

Properties
SoftwareComponent

* root_password

Capabilities

PHPModule

Requirements

Capabilities

Container

Requirements

@
mysql_server :

Compute

Container

apache

WebServer

Properties

« document_root

Capabilities

Requirements

Capabiliti

Container

Capabilities

Container

y
OperatingSystem

Figure 3: WordPress Deploy - TOSCA Template.

There are two separate servers: app_server for the
web server hosting and mysgl_ server for the DBMS
hosting. Both servers are configurable on hardware
capacity (e.g., disk size, number of cpus, memory
size and CPU frequency) and operating system en-
vironment (e.g., OS architecture, OS type, OS dis-
tribution and OS version). The apache node fea-
tures port and document_root properties, and is de-
pendent upon the app_server via a HostedOn relation-
ship as well. Likewise, the php node is dependent
upon the app_server via a HostedOn relationship. The
mysql_dbms node features port and root_password
properties, and a HostedOn dependency relationship
upon the mysql_server. The mysql_database node fea-
tures name, username, password and port properties,

509

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

and a HostedOn dependency relationship upon the
mysql-dbms. The wordpress node features the con-
text_root property, and depends on mysql_database
and php via two ConnectsTo relationships and on
apache via a HostedOn relationship, respectively.

S COMPARISON OF
PROVISIONING STRATEGIES

In this section the focus is put on the provision-
ing strategies of the aforementioned reference sce-
nario enforced by Heat, Cloudify and TORCH, re-
spectively, highlighting the main similarities and dif-
ferences among the three methods.

5.1 Heat

Heat orchestrates composite cloud applications us-
ing either a CloudFormation compatible template for-
mat (CFN) or the native OpenStack Heat Orchestra-
tion Template format (HOT). A Heat template de-
scribes the infrastructure of a cloud application in
a declarative fashion. The resources, once created,
are referred to as stacks. HOT templates are de-
fined in YAML and require to include at least the
heat_template_version key and the resources section.
Bearing in mind the use case in Section 4, Listing 1
shows how the “mysql_server” node was described.

Listing 1: MySQL Server for Heat.

mysql_server:
type: OS:Nova:Server
properties:
name: mysqlserver
image: { get_param: image }
flavor: { get_param: flavor }
key-name: { get_param: key_pair-name }
security_groups:
- { get_param: security_group_name }
networks:
- network: { get_param: network_name}
subnet: { get.param: subnet-name}
user_data_format: RAW
user_data:
str_replace:
template: { get_file: scripts/db_install.sh }
params:

$db_root_password: { get_param: db_root_password }
$db_port: { get_param: db_port }
$db_name: { get_param: db_name }

$db_user: { get-param: db_user }
$db_password: { get_param: db_password }

The OS::Nova::Server allows to create a Compute in-
stance. The flavor property is the only mandatory one,
but a boot source needs to be defined using one of
the image or block_device_mapping properties. The
key_name property defines the key-pair to enable re-
mote access via SSH. The security_groups property

510

associates a security group to an instance. The net-
works property indicates which networks an instance
should connect to. Each network contains one of
the following keys: port, network. The network key
refers to the name or ID of an existing network. The
subnet key specifies the name or the ID of an existing
subnet for the provided network. The user_data prop-
erty enables to configure the software running on the
server instance. A shell script (e.g. db_install.sh) can
be executed by the server during boot.

Heat templates are consumed by the OpenStack-
Client, which provides a command-line interface to
OpenStack APIs. Before any Heat commands can be
run, credentials need to be supplied as options on the
command-line or as environment variables. As for the
latter, Listing 2 shows typical credential information.

Listing 2: Credential info for Heat.

export OS_USERNAME=<username>>

export OS_PASSWORD=<password>

export OS_PROJECT NAME=<project —name>

export OS_USER.DOMAIN.NAME=<user—domain—name>

export OS_PROJECT_.DOMAIN.NAME=<project —domain—name>
export OS_AUTH.URL=<url —to—openstack—identity >

export OS_IDENTITY_API_VERSION=<identity —api—version>
export OS_IMAGE_API_.VERSION=<image—api—version>

5.2 Cloudify

Cloudify, based on TOSCA, automates the entire life-
cycle of applications, including deployment on any
cloud environment. Templates are referred to as
blueprints, which are YAML documents written in
Cloudify’s DSL (Domain Specific Language). Cloud
services are supported through built-in plugins. In re-
lation to the use case in Section 4, Listing 3 shows
how the “mysql_server” node was described.

The cloudify.openstack.nodes.Server type, defined
in the OpenStack plugin, allows to create a Compute
instance featuring image and flavor specified in the
server property. The openstack_config property de-
clares OpenStack credentials. In contrast to Heat,
they are stored as secrets and accessed via an alias
referencing a named anchor in the dsl_definitions sec-
tion. The agent_config property defines how to con-
figure the “host agent”, which executes orchestration
operations locally and collects metrics. Configuration
properties for host agents installed via SSH include:
user, key and port. The relationships property de-
fines how nodes relate to one another. Three “con-
nected_to” relationships describe the key-pair, secu-
rity group and network which the server instance
should be connected to, and one “depends_on” rela-
tionship delineates the subnet which it should depend
on. Conversely to Heat, Cloudify allows to model
software components running on a server instance as

separate nodes. Listing 4 displays the description for
the mysql_dbms node.

Listing 3: MySQL Server for Cloudify.

dsl.definitions:

openstack_-config: &openstack_config

username: { get.secret: keystone_username }
password: { get.secret: keystone_password }
tenant_name: { get.secret: keystone_tenant.name }
auth_url: { get_secret: keystone_url

region: { get.secret: keystone.region }

node_templates:

mysql_server:

type: cloudify.openstack.nodes. Server

properties:

openstack_config: xopenstack_config

agent.config:

user: { get_input: agent_user_name }

key: { get_property: [keypair, private_key_-path] }
install_method: remote

port: 22

server:

name: mysqlserver

image: { get_input: image }

flavor: { get-input: flavor }

relationships:

- type: cloudify.openstack.server_connected_-to_keypair
target: keypair

- type: cloudify.openstack.server.connected.-to_security_group
target: security_group

- type: cloudify.relationships.connected_to
target: network

- type: cloudify.relationships.depends_on
target: subnet

Listing 4: MySQL DBMS for Cloudify.

mysql-dbms:
type: MySqIDBMS
properties:
port: get.input: db_port }
root-password: { get-input: db_root.pwd }
interfaces:
cloudify.interfaces.lifecycle:
create:
implementation: scripts/mysqldbms/create .sh
executor: host_agent
inputs:
db_root_password: { get.property: [SELF, root.password] }
configure:
implementation: scripts/mysqldbms/configure.sh
executor: host.agent
inputs:
db_ip-address: { get.attribute: [mysql_-server, ip] }
db_port: { get_property: [SELF, port] }
relationships:
- type: cloudify.relationships.contained_.in
target: mysql_server

Two properties are defined: port and root_password.
A “contained_in” relationship relates the node to
mysql_server. Shell scripts are also specified for cre-
ate and configure lifecycle operations, whose execu-
tion (via the Script plugin) is the host agent’s respon-
sibility. Blueprints are normally consumed by the
Cloudify Command Line Interface (CLI), which in-
cludes all of the commands necessary to run any ac-
tions on Cloudify Manager.

5.3 TORCH

TORCH offers a standardised way to deploy and or-
chestrate the lifecycle of applications across multi-
ple cloud environments. Applications are modelled
in YAML - according to TOSCA language - as ser-
vice templates. Unlike Cloudify, the primary focus

A Comparison of Multi-cloud Provisioning Platforms

is only on design time aspects (i.e., the description
of services). Runtime aspects (such as orchestration,
service mapping and invocation) are addressed by the
TOSCA-based provisioning framework (see Section
3). With reference to the use case in Section 4, List-
ing 5 shows how the “mysql_server” node was de-
scribed.

Listing 5: MySQL Server for TORCH.

mysql_server:
type: tosca.nodes.Compute
properties:
keypair:
protocol: ssh
token_type: identifier
token: { get_input: keypair_id }
capabilities:
host:
properties:
disk_size: { get_input: ms_host_disk_size }
num_cpus: { get_input: ms_host_cpus }
mem_size: { get_input: ms_host_mem_size }
cpu_frequency: { get_input: ms_host_cpu_frequency }
os:
properties:
architecture: { get_input: ms_os_architecture }
type: { get_input: ms_os_type }
distribution: { get_input: ms_os_distribution }
version: { get_input: ms_os_version }

network:

type: tosca.nodes.network.Network
properties:

network_name: { get_input: network_name }

mysql_port:
type: tosca.nodes.network.Port
properties:
ip-range_start: { get_input: subnet_starting_ip }
ip-range_end: { get_input: subnet_ending_ip }
requirements:
- binding:
node: mysql_server
- link:
node: network

The tosca.nodes.Compute type allows to create a
Compute instance, which is configurable in terms
of both hosting and operating system capabili-
ties. The keypair property specifies the key-
pair for remote access via SSH. The “network”
node represents an existing logical network, which
the server instance should be connected to by
means of the “mysql_port” node. Unlike Heat
and Cloudify, no platform-dependent information
is provided. For instance, neither flavor nor im-
age concepts are specified. Service Connectors
infer them from tosca.capabilities.Container and
tosca.capabilities.OperatingSystem capability prop-
erties. The same considerations apply to keypair, net-
work and subnet concepts.

Similar to Cloudify, TORCH enables to describe
software components running on a server instance
as separate nodes. Listing 6 exhibits the description
for the mysql_-dbms node. Two properties are de-
fined in this case as well: port and root_password. A
“tosca.relationships.HostedOn” dependency relation-
ship relates the node to mysgl_server. Shell scripts

511

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

are also associated to create and configure lifecycle
operations, whose execution is delegated to Service
Connectors via the Service Broker.

Listing 6: MySQL DBMS for TORCH.

mysql.dbms:
type: tosca.nodes .DBMS
properties:
port: { get_input: db_port }
root_password: { get_input: db_root.pwd }
requirements:
- host: mysql_server
interfaces:
Standard:
create:
implementation: scripts/mysqldbms/create.sh
inputs:
db_root_password: { get.property: [SELF, root.password] }
configure:
implementation: scripts/mysqldbms/configure.sh
inputs:
db_addr: { get-attribute: [mysql-server, private_address] }
db_port: { get_property: [SELF, port | }

Conversely to Heat and Cloudify, TORCH supple-
ments templates with application-specific information
when Service Connectors require additional configu-
ration (see Section 3). By way of example, Listing 7
shows a JSON excerpt with extra configuration prop-
erties for accessing an OpenStack environment.

Listing 7: Configuration info for TORCH.

“compute. url”: <url-to—openstack —compute>,
“identity .url”: <url—to—openstack—identity >,
“image.url”: <url—to—openstack—image>,
”network.url”: <url—to—openstack —network>,

”domain.id”: <domain—id>,
“username”: <username>>,
”password”: <password>,

”security .group”: <security —group>

5.4 Discussion

Table 1 generalises the achievements of the three or-
chestration tools. Cloud Features relate to the cloud
infrastructure, whereas Application Features refer to
the deployment and automation of applications. Re-
garding the Cloud Features, the following applies:

e Both Cloudify and TORCH support a dis-
tributed deployment over multi-Cloud environ-
ments, while Heat only supports a single-Cloud
deployment on an OpenStack environment.

e Both Cloudify and TORCH are infrastructure ag-
nostic; but the former does not provide an abstrac-
tion layer, which hides differences and avoids
provider-specific customisation.

As for the Application Features, the main points
are as follows:

e Heat does not natively support TOSCA; Cloudify
is aligned with TOSCA, but it does not reference
the standard types. On the contrary, TORCH is
fully in compliance with the specification.

512

e Heat and Cloudify exclusively supports manual
binding for cloud resources (i.e. the user needs to
reference provider-specific node types). TORCH
supports automatic binding (i.e. the user defines
abstract requirements, e.g. number of cores).

o All three tools provide support for shell scripts to
deploy applications. While Cloudify and TORCH
rely on TOSCA lifecycle interfaces, Heat relies on
user-data boot scripts associated to resources.

e All three tools support a way to configure commu-
nication relationships between components, and
resolve dependencies via attribute passing.

e Heat and Cloudify support both manual and au-
tomatic workflows, while TORCH only supports
automatic workflows.

e Both Cloudify and TORCH use the same reusabil-
ity mechanisms as TOSCA (e.g., type inheri-
tance). Heat partially supports reusability via in-
put parameters, and template composition.

Table 1: Comparison of Heat, Cloudify, and TORCH.

Orchestration Tools
Cloud Features Heat | Cloudify | TORCH
Multi-Cloud support X v v
Infrastructure agnostic X v v
Abstraction Layer X X v
Application Features
TOSCA compliance X] 0 \ v/
Resource Selection
- Manual Binding v v X
- Automatic Binding X X v
Lifecycle Description
- Shell Script v] 4 ‘ v
Wiring & Workflow
- Attribute Passing v v v
- Manual Workflow v v X
- Automatic Workflow v v v
Reusability 0 v v

X=not fulfilled, 0 = partially fulfilled, v'= fully fulfilled

6 PERFORMANCE
COMPARISON

In order to evaluate the effectiveness of the proposed
approach, extensive tests for the reference scenario in
Section 4 were conducted, by using Heat, Cloudify
and TORCH. Deployment tests were performed on a
minimal OpenStack environment, which comprises at
least two hosts: Controller node and Compute node.
The Controller node runs the Identity service, Im-
age service, management portions of Compute, man-
agement portion of Networking, various Networking
agents, and the Dashboard. The Compute node runs
the hypervisor portion of Compute that operates in-
stances. It also runs a Networking service agent that

connects instances to virtual networks. The “provider
networks” option is assumed as virtual networking in-
frastructure, which deploys the OpenStack Network-
ing service with primarily layer-2. Both Controller
and Compute nodes require a minimum of two net-
work interfaces for the following: a) Management
network, and b) Provider network.

A local cluster consisting of two identical off-the-
shelf PCs was considered in order to create a minimal
OpenStack Queens set-up, i.e., Controller node and
Compute node. The former also runs portions of the
Heat orchestration services, whilst the latter also hosts
the Cloudify Manager and the TORCH as well. The
features of the physical hosts can be summarised as
follows: Intel Core i7-4770S Quad-Core CPU @ 3.10
GHz, 8 GB SO-DIMM DDR3 SDRAM @ 1.6 GHz, 1
TB Hard Disk, 2 NICs. Both nodes run Ubuntu Server
16.04.5 LTS x86_64 Linux distribution.

Two different kinds of deployment tests were car-
ried out for Heat, Cloudify and TORCH; namely,
WordPress Single-Deployment and WordPress Multi-
Deployment. The former concerns the basic use case,
the latter refers to the scalable instantiation of the for-
mer instead. Regardless of the orchestration deploy-
ment scenario, the following assumptions were made
about each VM instance: a) Ubuntu Server 14.04
cloud image, b) “ml.small” flavor (vcpus = 1, ram
=1 GB, disk = 5 GB), and c¢) IPv4 address on a
DHCP-enabled external network. The following pa-
rameters were calculated for performance evaluation:
Boot time, Configuration time, and Workflow time.
The first pertains to the time taken for a VM instance
to be booted and cloud-init modules to be executed on
it. The second refers to the time software installation
and configuration on a VM instance takes. The third
concerns the time the workflow takes for the entire
deployment to be complete.

Figure 4 illustrates the results obtained for the
single-deployment scenario. Both app_server (Figure
4a) and mysql_server (Figure 4b) instances were con-
sidered. Boot and Configuration times (on the Y-axis)
for each VM instance were computed depending on
Heat, TORCH and Cloudify approaches (on the X-
axis). Both charts show that TORCH performance
lies halfway between Heat and Cloudify ones.

Test results for the multi-deployment scenario are
displayed in Figure 5. Three different experiments
were conducted by triggering the multiple instanti-
ation of the single-deployment scenario for 2 VMs
(Figure 5a), 4 VMs (Figure 5b) and 6 VMs (Fig-
ure 5c¢), respectively. Boot, Configuration and Work-
flow times (on the Y-axis) for VM instances were
calculated according to Heat, TORCH and Cloudify
methods (on the X-axis). In contrast to the single-

A Comparison of Multi-cloud Provisioning Platforms

WordPress: Single-Deployment

mBoot = Config

]

g& =

Heat Torch Cloudify

(a) app-_server
WordPress: Single-Deployment

mBoot = Config

20

m I

Heat Torch Cloudify

(b) mysql_server
Figure 4: WordPress Single-Deployment - Boot and Con-
figuration.

deployment case, both Boot and Configuration times
are meant as the maximum Boot and Configuration
times. For the sake of clarity, Boot time is calculated
as the difference between the maximum Boot end-
time and the minimum Boot start-time among all the
VMs. The same applies to Configuration time. Even
in this case, the charts show that TORCH performs
midway between Heat and Cloudify. In particular, re-
gardless of the number of VMs, the following remarks
can be made: a) both TORCH and Cloudify prove
to be more effective in lowering Boot times, and b)
Configuration and Workflow times gradually increase
from Heat to Cloudify, passing through TORCH.

7 CONCLUSION

Automating service orchestration has become one
of the driving factors behind the growth of cloud
providers. Several initiatives and tools have emerged
to facilitate the portable, automated management of
cloud services throughout their lifecycle.

In this work, we presented TORCH, ie. a
TOSCA-based orchestration framework that auto-
mates the cloud service provisioning. In addition, we
selected two open-source orchestration tools (Heat,
Cloudify) and compared them on both quality and
quantity aspects using the experience from deploying
a sample use case. Test findings lead to the insight

513

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

WordPress: Multi-Deployment

mBoot = Config W Workflow
300

250

200

150

Time [s]

100

Heat Torch Cloudify

(a) 2 VMs

WordPress: Multi-Deployment

mBoot mConfig mWorkflow
600

500

400

300

Time [s]

200

100

Heat Torch cloudify

(b) 4 VMs

WordPress: Multi-Deployment

mBoot mConfig mWorkflow

Time [s]

Heat Torch Cloudify

(c) 6 VMs
Figure 5: WordPress Multi-Deployment: Boot, Configura-
tion and Workflow.

that our method compares to Heat and Cloudify, while
remaining TOSCA-compliant. Future work will in-
clude support for containerisation using Docker®.

REFERENCES
Alien4Cloud (2018). FastConnect.
https://alien4cloud.github.io/index.html. Last ac-

cessed on 24-01-2019.

Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser,
C. B., and Domaschka, J. (2015). Cloud Orchestra-
tion Features: Are Tools Fit for Purpose? In 2015
IEEE/ACM 8th International Conference on Utility
and Cloud Computing, UCC 2015, pages 95-101.

Binz, T., Breitenbiicher, U., Kopp, O., and Leymann, F.
(2014). TOSCA: Portable Automated Deployment
and Management of Cloud Applications. Advanced
Web Services.

Ohttps://www.docker.com/

514

Bousselmi, K., Brahmi, Z., and Gammoudi, M. M. (2014).
Cloud services orchestration: A comparative study of
existing approaches. In IEEE 28th International Con-
ference on Advanced Information Networking and Ap-
plications Workshops, (WAINA 2014), pages 410-416.

Calcaterra, D., Cartelli, V., Di Modica, G., and Tomarchio,
0. (2018). Exploiting BPMN features to design a
fault-aware TOSCA orchestrator. In Proceedings of
the 8th International Conference on Cloud Comput-
ing and Services Science (CLOSER 2018), pages 533—
540, Funchal-Madeira (Portugal).

Corporation, U. (2018). Ubicity. https://ubicity.com/. Last
accessed on 24-01-2019.

Ferry, N. and Rossini, A. (2018). CloudMF: Model-Driven
Management of Multi-Cloud Applications. ACM
Trans. Internet Technol, 18(2):16-24.

Ferry, N., Rossini, A., Chauvel, F., Morin, B., and Solberg,
A. (2013). Towards Model-Driven Provisioning, De-
ployment, Monitoring, and Adaptation of Multi-cloud
Systems. In 2013 IEEE Sixth International Confer-
ence on Cloud Computing, pages 887-894. IEEE.

Giannakopoulos, 1., Konstantinou, I., Tsoumakos, D., and
Koziris, N. (2017). Recovering from cloud applica-
tion deployment failures through re-execution. In Al-
gorithmic Aspects of Cloud Computing: Second In-
ternational Workshop, ALGOCLOUD 2016, Aarhus,
Denmark, pages 117-130.

GigaSpaces (2016). Cloudify. http://getcloudify.org/. Last
accessed on 24-01-2019.

Grozev, N. and Buyya, R. (2014). Inter-Cloud architectures
and application brokering: taxonomy and survey. Soft-
ware: Practice and Experience, 44(3):369-390.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications Version 1.0. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/0s/TOSCA-v1.0-
os.html. Last accessed on 10-04-2018.

OpenStack (2016). OpenStack Heat.
https://wiki.openstack.org/wiki/Heat. Last accessed
on 15-02-2017.

Petcu, D. and Vasilakos, A. V. (2014). Portability in clouds:
approaches and research opportunities. Scalable Com-
puting: Practice and Experience, 15(3):251-270.

Pham, L. M., Tchana, A., Donsez, D., de Palma, N., Zur-
czak, V., and Gibello, P. Y. (2015). Roboconf: A
hybrid cloud orchestrator to deploy complex applica-
tions. In Proceeding of IEEE 8th International Con-
ference on Cloud Computing, pages 365-372.

Ranjan, R., Benatallah, B., Dustdar, S., and Papazoglou,
M. P. (2015). Cloud Resource Orchestration Program-
ming: Overview, Issues, and Directions. IEEE Inter-
net Computing, 19:46-56.

Weerasiri, D., Barukh, M. C., Benatallah, B., Sheng, Q. Z.,
and Ranjan, R. (2017). A taxonomy and survey of
cloud resource orchestration techniques. ACM Com-
put. Surv., 50(2):26:1-26:41.

