
NOSOLAP: Moving from Data Warehouse Requirements to NoSQL
Databases

Deepika Prakash

Department of Computer Engineering, NIIT University, Neemrana, Rajasthan, India

Keywords: Data Warehouse, NoSQL Databases, Star Schema, Early Information Model, ROLAP, MOLAP,
NOSOLAP.

Abstract: Typical data warehouse systems are implemented either on a relational database or on a multi-dimensional
database. While the former supports ROLAP operations the latter supports MOLAP. We explore a third
alternative, that is, to implement a data warehouse on a NoSQL database. For this, we propose rules that
help us move from information obtained from data warehouse requirements engineering stage to the logical
model of NoSQL databases, giving rise to NOSOLAP (NOSql OLAP). We show the advantages of
NOSOLAP over ROLAP and MOLAP. We illustrate our NOSOLAP approach by converting to the logical
model of Cassandra and give an example.

1 INTRODUCTION

Traditionally, Data Warehouse (DW) star schemas
are implemented either using a relational database
which allows ROLAP operations or on a multi-
dimensional database that allows MOLAP
operations. While the data in the former is stored in
relational tables, the data in multidimensional
databases (MDB) are either in the form of multi-
dimensional array or hypercubes. A number of
RDBMS offer support for building DW systems and
for ROLAP queries. MOLAP engines have
proprietary architectures. This results in niche
servers and is often a disadvantage.

Another emerging approach is to use NoSQL
databases for a DW system. Data of a NoSQL
database is not modelled as tables of a relational
database and thus, NoSQL systems provide a storage
and retrieval mechanism which is different from
relational systems. The data models used are key-
value, column, document, and graph.

The motivation of using a NoSQL database lies
in overcoming the disadvantages of relational
database implementations. These are:

i.Today, there is a need to store and process large
amounts of data which the relational databases
may find difficult (Chevalier et al., 2015;
Stonebraker, 2012). Further, relational databases
have difficulties in operating in a distributed

environment. However, there is a need to deploy
DWs on the cloud (Dehdouh et al., 2015), in a
distributed environment (Duda, 2012). A relational
database does not provide these features while
guaranteeing high performance.

ii.It may be the case that some piece of data is not
present in underlying data sources at the time of
extraction (ETL). In a relational database engine
this is handled by using a NULL ‘value’. This
causes major difficulties particularly in the use
NULL as a dimension value and also as a foreign
key value in fact tables. Rather than use NULL
values, star schema designers use special values
like -1, 0, or ‘n/a’ in dimensions. It may also be
required to use multiple values like ‘Unknown’
and ‘Invalid’ to distinguish between the different
meanings of NULL. For facts that have NULL
values in their foreign keys, introduction of special
dimension rows in dimension tables is often
proposed as a possible solution to ease the NULL
problem.
Designers of star schemas have outlined a number
of problems associated with these practical
solutions to the problem of NULL values. Some of
these are, for example, difficulty of forming
queries, and misinterpretation of query results.
The problem of NULL values can be mitigated in a
NoSQL database because these systems

452
Prakash, D.
NOSOLAP: Moving from Data Warehouse Requirements to NoSQL Databases.
DOI: 10.5220/0007748304520458
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 452-458
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

completely omit data that is missing. Thus, the
problem of NULLS in the data cube is removed.

iii.DW 2.0 (Inmon, 2010) states that DW is to cater to
storing text, audio, video, image and unstructured
data “as an essential and granular ingredient”. A
relational database fails when it comes to
unstructured, video, audio files. A NoSQL
database can provide a solution to this
disadvantage.

iv.ETL for a relational implementation of a DW is a
slow, time consuming process. This is because
data from disparate sources must be converted into
one standard structured format of the fact and
dimension tables. We believe that since structured
data is not mandated by NoSQL databases, ETL
will be faster.

v.ROLAP has heavy join operations making the
performance of the system slow. We believe
performance of DW systems can be improved if
implemented in a NoSQL database.

vi.Relational databases focus on ACID properties
while NoSQL databases focus on BASE
properties. Since a DW largely caters to a read-
only, analytic environment with changes restricted
to ETL time, enforcement of ACID is irrelevant
and the flexibility of BASE is completely
acceptable and, indeed, may lead to better DW
performance.

There is some amount of work that has been done in
implementing the DW as XML databases and also
on NoSQL platform. The basic idea is to arrive at
facts and dimensions and then convert, in the latter,
the resulting multi-dimensional structure into
NoSQL form. By analogy with ROLAP and
MOLAP we refer to this as NOSOLAP. The NoSQL
databases considered so far, in NOSOLAP, are
column, and document databases.

(Chevalier et al., 2015) converted the MD
schema into a NoSQL column oriented model as
well into a document store model. We will consider
each of these separately. Regarding the former, each
fact is mapped to a column family with measures as
the columns in this family. Similarly each dimension
is mapped to separate column families with the
dimension attributes as columns in the respective
column families. All families together make a table
which represents one star schema. They used HBase
as their column store.

The work of (Dehdouh et al., 2015) is similar to
the previous work but they introduce simple and
compound attributes into their logical model.
(Santos et al., 2017) transforms the MD schema into
HIVE tables. Here, each fact is mapped to a primary

table with each dimension as a descriptive
component of the primary table. The measures and
all the non-key attributes of the fact table are
mapped to the analytical component of the primary
table. As per the query needs and the lattice of
cuboids, derived tables are constructed and stored as
such.

Now let us consider the conversion of (Chevalier
et al., 2015) into document store. Each fact and
dimension is a compound attribute with the
measures and dimension attributes as simple
attributes. A fact instance is a document and the
measures are within this document. Mongodb is the
document store used.

Since the foregoing proposals start off from a
model of facts and dimensions, they suffer from
limitations inherent in the former. Some of these are
as follows:
i.Since aggregate functions are not modelled in a

star schema, the need for the same does not get
translated into the model of the NoSQL database.

ii.Features like whether history is to be recorded,
what is the categorization of the information
required, or whether a report is to be generated are
not recorded in a star schema

Evidently, it would be a good idea to start from a
model that makes no commitments to the structural,
fact-dimension, aspects of a data warehouse and yet
captures the various types of data warehouse
contents. In going to NOSOLAP, we now state our
position in this position paper: we propose to move
from a high-level, generic, information model to
NoSQL databases directly, without the intervening
star schema being created. The consequence of this
direct conversion is the elimination of the step of
converting to a star schema.

To realize our position, we will need to reject all
Data Warehouse Requirements Engineering,
DWRE, techniques that produce facts and
dimensions as their output. Instead, we will look for
a DWRE approach that outputs data warehouse
contents in a high-level information model that
captures in it all the essential informational concepts
that go into a data warehouse.

In the next section, section 2, we do an overview
of the different DWRE approaches and identify a
generic information model. This model is described
in section 3. Thereafter, in section 4, we identify
Cassandra as the target NoSQL database and present
some rules for conversion from the generic
information model to the Cassandra model. Section
5 is the concluding section. It summarizes our
position and contains an indication of future work.

NOSOLAP: Moving from Data Warehouse Requirements to NoSQL Databases

453

2 OVERVIEW OF DWRE

In the early years of data warehousing, the
requirements engineering stage was de-emphasized.
Indeed, both the approaches of Inmon (Inmon, 2005)
and Kimball (Kimball, 2002) were for data
warehouse design and, consequently, do not have an
explicit requirements engineering stage. Over the
years, however, several DWRE methods have been
developed. Today, see Figure. 1, there are three
broad strategies for DWRE, goal oriented (GORE)
approaches, process oriented (PoRE) techniques and
DeRE, decisional requirements engineering.

Some GORE approaches are (Prakash and
Gosain, 2003; Prakash et al., 2004; Giorgini et al.,
2008). In the approach of (Prakash and Gosain,
2003; Prakash et al., 2004) there are three concepts,
goals, decisions and information. Each decision is
associated with one or more goals that it fulfils and
also associated with information relevant in taking
the decision. For this, information scenarios are
written. Facts and dimensions are identified from the
information scenarios in a two step process.

In GrAND (Giorgini et al., 2008) Actor and
Rationale diagrams are made. In the goal modelling
stage, goals are identified and facts associated as the
recordings that have to be made when the goal is
achieved. In the decision-modeling stage, goals of
the decision maker are identified and associated with
facts. Thereafter dimensions are associated with
facts by examining leaf goals.

PoRE approaches include Boehnlein and
Ulbricht (Boehnlein and Ulbrich-vom, 1999;
Boehnlein and Ulbrich-vom, 2000). Their technique
is based on the Semantic Object model, SOM,
framework. The process involves goal modelling,
modelling the business processes that fulfil the goal.
Entities of SERM are identified which is then
converted to facts and dimensions; facts are
determined by asking the question, how can goals be
evaluated by metrics? Dimensions are identified
from dependencies of the SERM schema.

Another approach is by Bonifati (Bonifati et al.,
2001). They carry out goal reduction by using the
Goal-Quality-Metric approach. Once goal reduction
is done, abstraction sheets are built from which facts
and dimensions are identified. In the BEAM*
approach (Corr and Stagnitto, 2012) each business
event is represented as a table. The attributes of the
table are derived by using the 7W framework. 7
questions are asked and answered namely, Who is
involved in the event? (2) What did they do? To
what is done? (3) When did it happen? (4) Where
did it take place? (5) Why did it happen? (6) HoW

did it happen – in what manner? (7) HoW many or
much was recorded – how can it be measured? Out
of these, the first six form dimensions whereas the
last one supplies facts.

Whereas both GORE and PORE follow the
classical view of a data warehouse as being subject
oriented, DeRE takes the decisional perspective.
Since the purpose of data warehouse is to support
decision-making, this approach makes decision
identification the central issue in DWRE. The
required information is that which is relevant to the
decision at hand. Thus, DeRE builds data warehouse
units that cater to specific decisions. Information
elicitation is done in DeRE using a multi factor
approach (Prakash, 2016; Prakash and Prakash,
2019). For each decision its Ends, Means, and
Critical Success Factors are determined and these
drive information elicitation

Figure 1 shows the two approaches to
representation of the elicited information, the multi-
dimensioned and the generic information model
approaches. The former lays emphasis on arriving at
the facts and dimensions of the DW to-be. The latter,
on the other hand, is a high level representation of
the elicited information. The dashed vertical lines in
the figure show that in both GORE and PoRE the
focus of the requirements engineering stage is to
arrive at facts and dimensions. On the other hand,
the DeRE approach represents the elicited
information in a generic information model.

Figure 1: DWRE Techniques and their Outputs.

(Prakash and Prakash, 2019) model information
as early information. Information is early in the
sense that it is not yet structured into a form that can
be used in the DW to-be. An instantiation of this
model is the identified information contents of the
DW to-be.

Since the model is generic, it should be possible
to produce logical models of a range of databases
from it. This is shown in Figure 2. As shown, this
range consists of the multi-dimensional mode, XML
schema, and NoSQL data models. Indeed, an
algorithmic approach was proposed in (Prakash,
2018) to identify facts, dimensions and dimension
hierarchies from the information model.

Requirements
engineering

PoRE

Multi‐dimensional (MD)
structures: Facts,

dimensions

GOREDeRE

Output Generic Information
model

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

454

Figure 2: Converting the Information Model.

We propose to use the information model of
(Prakash, 2018) to arrive at the logical schema of
NoSQL databases.

3 THE INFORMATION MODEL

The information model of (Prakash and Prakash,
2019), shown in Figure 3, tries to capture all
information concepts that is of interest in a data
warehouse. Thus, instead of just focusing on facts
and dimensions, it details the different kinds of
information.

Information can either be detailed, aggregate or
historical. Detailed information is information at the
lowest grain. Aggregate information is obtained by
applying aggregate functions to either detailed or
other aggregate information. For example, items that
are unshipped is detailed information whereas total
revenue lost due to unshipped items is aggregate
information as function sum need to be applied to
the revenue lost from each unshipped item.
Information can also be historical. Historical
information has two components, time unit that
states the frequency of capturing the information and
duration which states the length of time the data
needs to be kept in the data warehouse.

Information can be computed from other
detailed, aggregate or historical information.
Information is categorized by category which can
have one or more attributes. A category can contain
zero or more categories. Information takes its values
from a value set.

Let us consider an example from the medical
domain. The average waiting time of the patients is
to be analysed. This is calculated as the time spent
by the patient between registration and consultation
by a doctor. Let us say that waiting time has to be
analysed department wise and on a monthly basis.
Historical data of 2 years is to be maintained and
data must be captured daily. Instantiation of the
information model gives us:

Figure 3: Information model.

Information: waiting time of patients
Computed from: registration time, consultation time
Aggregate functions: average
Category: Department wise, Month-wise
Category Attributes: Department: code, name
 Month: Month
History: Time Unit: Daily

 Duration: 2 years

4 MAPPING RULES

Having described the information model to be used
as input to our conversion process, it is now left for
us to identify the target database model and the
mapping rules that produce it.

We use Cassandra as our target NoSQL database.
First, since it belongs to the class of NoSQL
databases, Cassandra does not suffer from the
deficiencies of the relational model identified earlier.
Cassandra, a blend of Dynamo and BigTable, gets
its distributed feature from Dynamo. Cassandra uses
a peer-to-peer architecture, not master/slave
architecture and handles replication through
asynchronous replication.

Cassandra is column-oriented and organizes data
into tables with each table having a partitioning and
clustering key. The language to query the tables is
CQL which has aggregate functions like min, max,
sum, average.

Cassandra has the possibility of supporting
OLAP operations. In this paper, our concern is the
conversion to the Cassandra logical model and we
do not take a position on OLAP operations.
However, we notice that the SLICE OLAP operation
can be defined as a set of clustered columns in a
partition that can be returned based on the query.
Cassandra does indeed support the SLICE operation
well. This is because it is very efficient in ‘write’
operations having its input/output operations as

Requirements
engineering

Information Model

Column Document XMLGraphKey‐value Multi‐dimensional
structure InformationCategory

Contains

Categorised by

Attribute

Property
of 1..*

Aggregate Detailed Historical

Time Unit
Duration

Computed
from

0..*
1..*1..*

0..*
1..* 1..*

1..*

Value Set

1..*

1..*

Takes Value
from

Function
of

1..*

1..*

NOSOLAP: Moving from Data Warehouse Requirements to NoSQL Databases

455

sequential operations. This property can be used for
the SLICE operation.

We give a flavour of our proposed rules that
convert the information model of the previous
section to the logical model of Cassandra. These are
as follows:

Rule 1: Each Information, I, of the information
model, becomes a table of Cassandra named I. In
other words, each instantiation of the information
model of figure 2 gives us one table.

Rule 2: Each ‘Computed from’ Ɛ I is an attribute of
the Cassandra table, I.

Rule 3: Each category attribute, attr, of the
information model, becomes attributes of Cassandra
table, I.

Rule 4: Let us say that category C contains category
c. In order to map a ‘contains’ relationship, two
possibilities arise:

a) There is only one attribute of the category c.
We propose the use of set to capture all the
instances of c. The set, s, thus formed is an
attribute of Cassandra table, I. For example,
consider that a Department contains Units
and Units has one attribute unit-name. Set,
named say unit_name, will be an attribute of
table I. Set unit_name is defined as

unit_name set <text>
where, each name is of data-type text.
The set ‘unit_name’ will capture all the units
under the department.
Notice that since Sets are used to store a
group of values, it is a suitable data structure
for this case.

b) There is more than one attribute of the
category c. Since a Map is used to store key-
value pairs, we propose to use Map data
structure of Cassandra. The Map created will
form an attribute of the Cassandra table, I.
Consider the same example of a Department
contains Units. But this time let Units have
attributes, code, name and head. A Map will
be defined as

Units map<int, text, text>
where each code, name and head can be
stored using data-type int, text and text
respectively.

Rule 5: The category of the information model
makes up the primary key of table I. Notice, that the
model allows more than one category for
information, I. Now, the primary key of Cassandra
has two components namely, partitioning key and
clustering key. Therefore, we need to specify which

category maps to which key of Cassandra. There are
two possibilities:

a) If there is only one category, then that category
is the partitioning key.

b) In the second case, there may be more than one
‘category’. Note that the partitioning key is used
to identify and distribute data over the various
nodes. The clustering key is used to cluster
within a node. Thus, the decision on which
category or pair of ‘category’ becomes the
partition key and which becomes the clustering
key influences the performance of the DW
system. We recommend that all the categories
should become partitioning keys. However,
notice that after selecting a category as the
partitioning key, a specific attribute of the
category must be selected to designate it as a
key. This task will have to be done manually.

For deciding on the clustering key, any attribute of
the Cassandra table can be a clustering key. This
will have to be determined by the requirements
engineer in consultation with domain experts.

There is a special case to (b). There can be
certain categories for which the value of their
attribute is taken from the system date and time.
Such attributes get mapped to Cassandra’s
timestamp/timeuuid datatype. Assigning such a
category/category attribute as a partitioning key
creates as many partitions as the number of dates
and time. To minimize the number of partitions we
recommend to not use such attributes as the
partitioning key. This is because such partitions
provide no real value. Instead, we recommend that
such a category attribute be assigned as a clustering
key.

Applying our broad rules to the example taken in
section 3 above, we get a table named waiting time.
There are two ‘computed from’ information pieces,
registration time and consultation time. Thus, these
two become attributes of table waiting time. Further,
category attributes: department code and department
name belonging to category department also become
attributes of the table.

Based on Rule 5, department and month are the
partitioning keys. Let us say, department_code
attribute represents the department. So, the
partitioning key will be (department code,
dateMonth). Registration time is the clustering key.
The table is created with the CQL statement shown
below in Table 1. Notice that there is a column
dateMonth that represents month wise category.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

456

Table 1: Table generated after applying Rules 1 to 5.

CREATE TABLE hospital.waiting_time (
 department_code text,
 dateMonth int,
 registration_time timeuuid,
 consultation_time timestamp,
 department_name text,
 PRIMARY KEY ((department_code, dateMonth),
registration_time)
)

The following table, Table 2, shows the sample
of the data inserted.

Table 2: CQL commands for insertion of data.

INSERT INTO hospital.waiting_time
(department_code, dateMonth
,registration_time,consultation_time,department
_name) VALUES ('Sur',201901,33e90fc0-1efa-11e9-
8ca9-0fdba4c6d409,1547265902000,'Surgery');
INSERT INTO hospital.waiting_time
(department_code,dateMonth,registration_time,co
nsultation_time,department_name) VALUES
('Sur',201901,4317a0b0-1efa-11e9-8ca9-
0fdba4c6d409,1547267162000,'Surgery');
INSERT INTO hospital.waiting_time
(department_code,dateMonth,registration_time,co
nsultation_time,department_name) VALUES
('Med',201901,1599f7a0-1efa-11e9-8ca9-
0fdba4c6d409,1547264902000,'Medicine');
INSERT INTO hospital.waiting_time
(department_code,dateMonth,registration_time,co
nsultation_time,department_name) VALUES
('Med',201901,216427e0-1efa-11e9-8ca9-
0fdba4c6d409,1547265902000,'Medicine');

In order to clearly understand the partition based
on department code and month of registration, let us
look at the partition token obtained when rows are
inserted into the table. Partition tokens can be
obtained by CQL:

Select token (department_code, dateMonth) from
hospital.waiting_time

The result of running the above statement can be
seen in Figure 4. For all rows that have the same
partition token Cassandra creates one row for each
department and each month. So, for example,
Medicine department and month of January will be
one row. All the associated attributes will be stored
as columns of the row.

Figure 4: Partition tokens obtained for the data inserted in
Table 2.

Now, the aggregate function of the example of
section 3 is to be mapped. Aggregate functions of
the information model can be directly mapped to the
aggregate functions of Cassandra. In our example,
waiting time is calculated as the difference between
registration and consultation time. Since there is no
difference operator in Cassandra, we wrote a
function, minus_time, to calculate the same. Once
this was done, the aggregate function, avg, was
applied and group by department code and month.
Figure 5 shows the CQL code for the same.

Figure 5: Obtaining the final aggregate information
department wise and monthly.

Suppose we want information about waiting time
but with a different categorization say, patient wise
in addition to department wise and month wise. For
the information model of figure 3, a completely new
piece of information, compared to the earlier one, is
generated. Thus, when we map this new information
to Cassandra, a new table will be created with its
own attributes and partition keys. In other words,
each Cassandra table caters to one instantiation of
the information model.

A tool to map the information model to
Cassandra logical model based on the rules proposed
is being developed.

5 CONCLUSION

There are traditionally two ways in which a DW
system is implemented. One way is to directly use
the data cube in a multi-dimensional database. Even
though these systems give high performance, the
databases are proprietary databases making a server
niche. The other way to implement a DW is to use a
relational database. Here, facts and dimensions are
implemented as relational tables.

Relational databases suffer from the
disadvantages of not being distributed, being
sensitive to NULLs, not catering to all the different
types of data that is to be stored, involving heavy
join operations which impacts system performance.

NOSOLAP: Moving from Data Warehouse Requirements to NoSQL Databases

457

ETL for a relational implementation is very time
confusing and a slow process.

Therefore, we propose to use a NoSQL database.
After all the information needs of the DW to-be have
been identified by the requirements engineering
phase, we propose mapping rules to take us to the
logical model of NoSQL databases. For this, the
information model is examined. Our preliminary
work is for Cassandra, a column oriented database.
Once the mapping is complete, OLAP operations
can be performed.

Future work includes:

a) Defining the way in which OLAP operations will
be implemented in Cassandra

b) Applying our mapping rules to a real-world
example and evaluating our rules

c) Developing mapping rules for a document store.
We have selected Mongodb as the database.

d) Developing mapping rules for XML databases.

REFERENCES

Boehnlein, M. and Ulbrich-vom Ende, A., 1999,
November. Deriving initial data warehouse structures
from the conceptual data models of the underlying
operational information systems. In Proceedings of the
2nd ACM international workshop on Data
warehousing and OLAP (pp. 15-21). ACM.

Böhnlein, M. and Ulbrich-vom Ende, A., 2000. Business
process oriented development of data warehouse
structures. In Data Warehousing 2000 (pp. 3-21).
Physica, Heidelberg.

Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A. and
Paraboschi, S., 2001. Designing data marts for data
warehouses. ACM transactions on software
engineering and methodology, 10(4), pp.452-483.

Chevalier, M., El Malki, M., Kopliku, A., Teste, O. and
Tournier, R., 2015, April. How can we implement a
Multidimensional Data Warehouse using NoSQL?. In
International Conference on Enterprise Information
Systems (pp. 108-130). Springer, Cham.

Corr, L. and Stagnitto, J., 2011. Agile data warehouse
design: Collaborative dimensional modeling, from
whiteboard to star schema. DecisionOne Consulting.

Dehdouh, K., Bentayeb, F., Boussaid, O. and Kabachi, N.,
2015, January. Using the column oriented NoSQL
model for implementing big data warehouses.
In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA) (p. 469). The Steering
Committee of The World Congress in Computer
Science, Computer Engineering and Applied
Computing (WorldComp).

Duda, J., 2012. Business intelligence and NoSQL
databases. Information Systems in Management, 1(1),
pp.25-37.

Giorgini, P., Rizzi, S. and Garzetti, M., A Goal-Oriented
Approach to Requirement Analysis in Data
Warehouses. Decision Support Systems (DSS) jounal,
Elsevier, pp.4-21.

Inmon, W.H., 1995. What is a data warehouse?. Prism
Tech Topic, 1(1).

Inmon, W.H., Strauss, D. and Neushloss, G., 2010. DW
2.0: The architecture for the next generation of data
warehousing. Elsevier.

Kimball, R., 1996. The data warehouse toolkit: practical
techniques for building dimensional data warehouses
(Vol. 1). New York: John Wiley & Sons.

Prakash, D. and Prakash, N., 2019. A multifactor approach
for elicitation of Information requirements of data
warehouses. Requirements Engineering, 24(1),
pp.103-117.

Prakash, N. and Gosain, A., 2003, June. Requirements
Driven Data Warehouse Development. In CAiSE Short
Paper Proceedings (Vol. 252).

Prakash, D., 2016. Eliciting Information Requirements for
DW Systems. In CAiSE (Doctoral Consortium).

Prakash, D., 2018, September. Direct Conversion of Early
Information to Multi-dimensional Model.
In International Conference on Database and Expert
Systems Applications (pp. 119-126). Springer, Cham.

Prakash, N., Singh, Y. and Gosain, A., 2004, November.
Informational scenarios for data warehouse
requirements elicitation. In International Conference
on Conceptual Modeling (pp. 205-216). Springer,
Berlin, Heidelberg.

Santos, M.Y., Martinho, B. and Costa, C., 2017.
Modelling and implementing big data warehouses for
decision support. Journal of Management Analytics,
4(2), pp.111-129.

Stonebraker, M., 2012. New opportunities for new sql.
Commun. ACM, 55(11), pp.10-11.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

458

