
Modeling Traceability in Software Development: A Metamodel and a
Reference Model for Traceability

Bruno Azevedo and Mario Jino
School of Electrical and Computer Engineering, University of Campinas, Brazil

Keywords: Traceability, Traceability Model, Software Quality, Requirements Engineering, Software Development.

Abstract: Many traceability models lack well-defined traceability link types, provide incomplete coverage of situations,
do not provide mechanisms to ensure consistency of traceability, and consider only requirements traceability
ignoring other activities of development. We propose a set of basic concepts for traceability, a reference
model, and a comprehensive metamodel for traceability created using this reference model. The reference
model defines: basic elements for traceability, basic actions to be done on artifacts, basic properties that sets
of link types and artifact types should have, basic categories that should be realized regarding these sets,
and basic set of processes for traceability. The metamodel is composed of a visual model defining how its
elements interact, the definition and semantic description of link types and artifact types which realize the
categories of the reference model, and a set of detailed processes describing the steps to maintain traceability
and system consistency. Our proposal aims to reduce the problems identified; the reference model provides
directions to help the creation, or evaluation, of a traceability model; the metamodel provides semantically
described traceability link types, coverage of the most common situations, mechanisms to ensure consistency
of traceability, and covers the most common activities in software development.

1 INTRODUCTION

Traceability is the ability to keep track of elements of
a system throughout its life cycle (Gotel and Finkel-
stein, 1994); this involves the knowledge of the origins
of each element and the rationale for its existence. El-
ements relate to other elements in many ways; to add
traceability information is to expose such relations.

Traceability is advantageous for both the business
and the development sides of software development: it
facilitates the alignment of the customers needs with
the product, enables the correct assessment of the im-
pact of changes, satisfies compliance for regulatory
standards by delivering audit-ready products, avoids
loss of design decisions by keeping development his-
tory, avoids dependency issues by preventing the re-
moval of necessary elements, enables the identifica-
tion of the actors involved in actions performed in the
system (accountability), among many other benefits.
Succintly, traceability allows the generation of a bet-
ter quality product.

Traceability in software development has been a
focus of interest for at least forty years. Several au-
thors have contributed to a better understanding of
traceability: Ramesh and Edwards (Ramesh and Ed-
wards, 1993) highlight several important issues in

the subject; Gotel and Finkelstein (Gotel and Finkel-
stein, 1994) analyze the problem, identifying the
need for pre-requirements traceability; Pfleeger and
Bohner (Pfleeger and Bohner, 1990) propose trace-
ability graphs and metrics for vertical and horizontal
traceability in the context of impact analysis; Goknil
et al. (Goknil et al., 2011) provides a formal ap-
proach to the definition of traceability links; Mäder
et al. (Mäder et al., 2009) highlight a few basic con-
cepts which traceability models should take into ac-
count; among many others.

Still, the adoption of traceability by the industry
is hindered by the lack of consensus on how and what
should be traced. Traceability models aim to solve this
issue by providing a standard to be used as a guide in
software development projects.

1.1 Motivation

Based on an extensive literature review we have per-
ceived that traceability models for software develop-
ment: (i) lack well-defined traceability link types, i.e.,
a traceability link type is shown, or named, but never
described semantically, making difficult or impossi-
ble to use; (ii) provide incomplete coverage of situa-
tions, i.e., link types do not model the most common

322
Azevedo, B. and Jino, M.
Modeling Traceability in Software Development: A Metamodel and a Reference Model for Traceability.
DOI: 10.5220/0007715103220329
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 322-329
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



relations such as dependency, accountability, or au-
thorization; (iii) do not provide mechanisms to ensure
consistency of traceability, i.e., processes are not pro-
vided to keep traceability and system consistency after
system changes; (iv) and consider only requirements
traceability, ignoring other activities of the develop-
ment process such as design or implementation, i.e.,
artifact types do not model the most common artifacts.
A comprehensive model for traceability is needed to
address these issues.

1.2 Contribution

Given the deficiencies discussed in the previous sec-
tion, we propose: (i) a reference model for traceabil-
ity, and (ii) a metamodel for traceability created using
(i). The first part aims to provide a better understand-
ing of traceability and allows the creation and evalu-
ation of traceability models; the second part provides
a semantically described metamodel for traceability in
software development projects.

A set of basic concepts for traceability is proposed
and a reference model is built on top of this concep-
tual framework; our reference model defines the basic
elements for traceability, the basic actions to be done
on artifacts, the basic properties that sets of link types
and artifact types should have, the basic categories that
should be realized regarding these sets, and the basic
set of processes for traceability.

Using the reference model as a basis, we created a
traceability metamodel composed of: a visual model
defining how the elements interact, the definition and
semantic description of link types and artifact types
which realize the categories of the reference model,
and a set of processes detailing the steps to maintain
traceability and system consistency.

This contribution aims to solve the problems we
identified in our literature review, mentioned previ-
ously. Our reference model provides directions to
help the creation of a traceability model without these
problems and our metamodel provides semantically
described traceability link types, provides coverage of
the most common situations, provides mechanisms to
ensure consistency of traceability, and takes into ac-
count the most common activities in software devel-
opment.

1.3 Structure

The paper is structured as follows. In Section 2, we
summarize the most closely related papers we found
in the literature. In Section 3, we propose a conceptual
framework and present our reference model for trace-
ability built using these concepts. In Section 4, we
provide our metamodel for traceability built using the

reference model shown previously. In Section 5, we
conclude the paper and discuss ideas for future work.

2 RELATED WORK

A literature review was performed to find out the cur-
rent state of research in modelling traceability for soft-
ware development. We looked for papers propos-
ing traceability models, traceability link types, artifact
types, and processes for traceability, plus conceptual
papers. We found a total of 223 papers of direct in-
terest; we performed a deeper inspection on these pa-
pers to study the concepts and elements for traceabil-
ity found in the current state of the art. These were
used as the starting point to create the reference model.
From this selection, the following 23 papers were con-
sidered the most relevant to the work discussed in this
paper; these propose traceability concepts, models,
links, and applications to specific domains.

Concepts and important issues to be taken into
account when developing a model for traceability
are highlighted in (Ramesh and Edwards, 1993)
and (Mäder et al., 2009).

Many works in this selection contain models for
traceability: a model derived from a real case sce-
nario is presented in (Ramesh et al., 1995b); empir-
ical approaches were used in (Ramesh et al., 1995a)
and (Ramesh and Jarke, 2001) to create models; a
case study was used to develop a model integrat-
ing traceability and Software Configuration Manage-
ment in (Mohan et al., 2008); a model integrating
different modeling techniques is described in (Beren-
bach and Wolf, 2007); in (Dermeval et al., 2013),
a model relating the requirements model to the ar-
chitecture model is proposed; a model and an ap-
proach for automatic generation of link types is de-
scribed in (Jirapanthong and Zisman, 2005); a trace-
ability management method for modelling traceability
with Multi perspectives View is proposed in (ghazi,
2008); a feature-oriented traceability model for soft-
ware product line development is presented in (Shen
et al., 2009); a four step traceability management pro-
cess having four steps and a model for traceability are
proposed in (Haidrar et al., 2016); in (Dubois et al.,
2010), a model for requirement traceability linking
the requirement model, the solution model, and the
V&V model is described; a model which integrates
textual specifications with UML specifications is pro-
posed in (Letelier et al., 2005); a model-driven ap-
proach for supporting the evolution of design deci-
sions is described in (Malavolta et al., 2011); a link
model for the Unified Process and a set of link ver-
ification rules are proposed in (Maeder et al., 2007).
In (Goknil et al., 2008), a metamodel having a set of

Modeling Traceability in Software Development: A Metamodel and a Reference Model for Traceability

323



formalized link types is proposed and is used in sub-
sequent work to support different goals: consistency
checking (Goknil et al., 2011), reasoning about re-
quirements (Goknil et al., 2013), validation of traces
between requirements and architecture (Goknil et al.,
2014a), and change impact analysis (Goknil et al.,
2014b).

A couple of works propose frameworks, given spe-
cific contexts: a framework containing mechanisms
for model slicing and a model for traceability, and a
view-based model-driven framework supporting semi-
automatically eliciting and semi-formalizing trace de-
pendencies among process development artifacts are
presented in (Nejati et al., 2012) and (Tran et al.,
2011), respectively.

3 A REFERENCE MODEL FOR
TRACEABILITY

In this section we propose a conceptual basis for trace-
ability and a reference model built on top of this basis.
We identify the basic elements of traceability; pro-
pose the set of basic actions that should be consid-
ered when tracing actions on artifacts; propose three
basic properties that sets of traceability link types
and artifact types should have; propose sets of cate-
gories for link types and artifact types, respectively,
that should be satisfied, and propose the set of basic
processes needed to mantain traceability and system
consistency.

3.1 Basic Elements in a Traceability
Model

There are three basic elements to be considered when
tracing software; these are: artifacts, links and pro-
cesses. The model depicted in Figure 1 show how
these elements relate to each other.

Figure 1: Conceptual model.

Artifacts are the workproducts of the software devel-
opment process (Tekinerdoğan et al., 2007). Actors
are representations of agents interacting with the soft-
ware system. Links represent relationships between

artifacts and actors; links can be classified into differ-
ent types, each one having a specific semantics con-
cerning the relationship between the elements it con-
nects. Processes aim to maintain consistency of trace-
ability information in the software system; whenever
an action happens, a process provides the set of steps
needed to maintain consistency.

3.2 Basic Actions Regarding Artifacts

We define six basic actions that should be taken into
account when tracing actions on artifacts. Creation is
the action through which an artifact comes into exis-
tence. Modification is the action of changing an ar-
tifact. Removal is the action of removing an artifact
from the working project. Homologation is the action
of adding an artifact to the working project. Decom-
position is the action of decomposing an artifact into
two, or more, artifacts. Application is the action of ex-
ecuting a procedure, defined in an artifact, on another
artifact.

3.3 Properties of Link Types and
Artifact Types

We propose three basic properties which the set of
link types and the set of artifact types in a traceabil-
ity model should have; these are Comprehensiveness,
Specificity, and Coverage. Specifically, the set of link
types should have the properties of Comprehensive-
ness, Specificity, and Coverage. The set of artifact
types should have the properties of Comprehensive-
ness and Specificity.

3.3.1 Comprehensiveness

Comprehensiveness is the property of taking into ac-
count a wide range of situations. For instance, a set of
link types having Comprehensiveness is able to model
the most common relationships between elements in a
project.

3.3.2 Specificity

Specificity is the property of being capable of express-
ing particular situations. For instance, consider a set
of link types having only one link type named ’Trace’
which will represent all relationships in a project. This
set has Comprehensiveness but fails to characterize
each specific situation it is modelling. It is able to
model both a dependency and an accountability rela-
tionship, but we are unable to identify which one is
being modelled; therefore there is loss of traceability
information.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

324



3.3.3 Coverage

Coverage is the property in which the set of link types
cover all the artifact types they should cover. For in-
stance, a set of link types having a link expressing au-
thorship of artifacts should cover all artifact types in
the model; there should not be an artifact type which
it is not possible to identify its author.

3.4 Basic Categories for Link Types

We propose seven basic categories in which link types
may be classified into: Accountability, Constraint,
Permission, Characterize action, Evolution, Action
outcome, and Composition. These categories cover
the link types found in the literature which we identi-
fied as essential.

A model should satisfy these categories, i.e., there
should be link types embodying the roles described by
each category.

A brief summary of the categories is shown next.

3.4.1 Accountability

Link types within this category are used to assign au-
thorship to actions. The subset of link types in this
category should have link types that assign authorship
to at least the six basic actions previously defined.

3.4.2 Constraint

Link types within this category are used to convey that
one artifact constrains another artifact. The subset of
link types in this category should have link types that
convey at least the following roles: that one artifact is
required by another artifact and that one artifact is in
conflict with another artifact.

3.4.3 Permission

Link types within this category are used to convey
information on authorization to perform actions con-
cerning artifacts. The subset of link types in this cat-
egory should have link types that convey information
on authorization to perform at least the six basic ac-
tions.

3.4.4 Characterize Action

Link types within this category are used to convey the
rationale and/or the description (who, what, and how)
concerning an action. The subset of link types in this
category should at least have link types – for each of
the six basic actions – that: (i) justify and describe
an action, (ii) solely justify an action, and (iii) solely
describe an action.

3.4.5 Evolution

Link types within this category are used to convey that
information is changed and propagated from one arti-
fact to another. The subset of link types in this cat-
egory should at least have link types that: (i) convey
that an artifact was refined into other artifacts, and (ii)
convey historical information on a given artifact, i.e.,
to enable version control of artifacts.

3.4.6 Action Outcome

Link types within this category are used to convey the
outcome of an action, e.g., a set of test cases applied
on a program produces a test log containing the results
of the test.

3.4.7 Composition

Link types within this category are used to convey
the information that an artifact was, or is, part of an-
other artifact. The subset of link types in this category
should at least have link types that: (i) convey that
an artifact was decomposed into two or more artifacts,
and (ii) convey that an artifact is part of another arti-
fact.

3.5 Basic Categories for Artifact Types

We considered the most common activities in soft-
ware development (IEEE Computer Society et al.,
2014) to define the basic categories for artifact types:
Pre-requirements, Requirements, Design, Implemen-
tation, Verification & Validation and Testing, and Ra-
tionale. There are development approaches which do
not use all these activities, such as agile approaches;
in this case, a user may ignore the categories which
model the unused activities.

The activities considered are well known with the
exception of Rationale.

3.5.1 Rationale

Artifact types within this category are created to jus-
tify and/or describe actions concerning artifacts. The
subset of artifact types in this category should have ar-
tifact types that provide rationale for at least the six
basic actions.

3.6 Basic Processes

The purpose of a traceability process is to maintain
traceability and system consistency. Consistency may
be broken by actions performed throughout the devel-
opment process. For instance, suppose an artifact α

Modeling Traceability in Software Development: A Metamodel and a Reference Model for Traceability

325



is dependent on another artifact β. If β is removed,
the system becomes inconsistent because α has an un-
solved dependency; the traceability information also
becomes inconsistent because α has a traceability link
to a nonexistent artifact. Hence, processes are neces-
sary to correct inconsistencies caused by actions.

Given the set of basic actions which may affect a
system, a model should at least have a process for each
of the six basic actions defined in Section 3.2.

3.7 Why a Model for Traceability
Should Have these Characteristics?

We argue that a model for traceability lacking these
characteristics is incomplete and, we believe, this is
self-evident in most cases. For instance, a model lack-
ing Accountability link types can not record who mod-
ified or created an artifact; a model having specificity
but lacking comprehensiveness will fail to represent
relations between elements in a project; a model with-
out artifacts to represent requirements can not trace
such artifacts; etc.

4 A METAMODEL FOR
TRACEABILITY

In this section we present our metamodel for trace-
ability constructed using the reference model defined
in Section 3. It is composed of a visual model defining
how the elements interact, 57 link types semantically
described, 12 artifact types, and 7 detailed processes
to maintain traceability and system consistency during
changes. Each of these sets satisfy the categories and
properties of the reference model.

4.1 Traceability Space

We organize the elements of our metamodel in a
Traceability Space composed of four subspaces. The
Actors Space contains abstractions of the agents that
interact with the project. The Rules Space contains the
rules defining the actions which can be performed by
the actors. The System Space is the collection of prod-
ucts of the development process. The Processes Space
contains the set of processes used to maintain consis-
tency. Links and artifacts are also part of the Trace-
ability Space; these are instances of link types and in-
stances of artifact types, respectively. Link types con-
nect: (i) artifacts to other artifacts within the System
Space, and (ii) artifacts in the System Space to actors
in the Actors Space.

An example Traceability Space is depicted in Fig-
ure 2. It shows an actor who performed the Modifi-

cation Process on artifact α. Permission to do so was
assigned by the Rules Space. The resulting Account-
ability links connect the actor and the artifact. Con-
straint links connect artifacts α and β.

Figure 2: A Traceability Space.

4.2 Link Types

We have created 57 link types satisfying the roles of
the seven categories for link types of the reference
model. Each link type was semantically described
to: (i) enable its mapping to real life projects and (ii)
avoid ambiguities during its use. Table 1 shows the
complete set of link types arranged by category.

Two link types are shown next to give a general
idea of how each link type in the table was described.

4.2.1 Link Type ReifedFrom

The link type ReifiedFrom, an Evolution link type, has
the following description:
Definition 4.1. An artifact α is reified from an artifact
β if part of, or all of, α was constructed in a structured
way from all of, or part of, β. Implicit information
from β may be made explicit in α and/or new informa-
tion may be added.

Let α and β be two artifacts and let e be a link
starting in α and having β as its destination. The link e
is a ReifiedFrom link type if it conveys the information
that α was reified from β.

For instance, let α1 and α2 be requirements and let
β be a design artifact. Let all of α1 and part of α2 be

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

326



Table 1: Categories × Link types.

Accountability HomologatedBy, Homologated, RejectedBy,
Rejected, CreatedBy, Created, ModifiedBy,
Modified, AppliedBy, Applied, Decom-
posedBy, Decomposed, RemovedBy, and
Removed.

Constraint DependsOn, NecessaryFor and Con-
flictsWith.

Permission MayHomologate, MayBeHomologatedBy,
MayModify, MayBeModifiedBy, MayRe-
move, MayBeRemovedBy, MayDecompose,
MayBeDecomposedBy, MayApply, May-
BeAppliedBy, MayActivate, and MayBeAc-
tivatedBy.

Characterize Action DefinesModificationOf, ModificationDe-
finedBy, DefinesDecompositionOf, Decom-
positionDefinedBy, DefinesActivationOf,
ActivationDefinedBy, DefinesRemovalOf,
RemovalDefinedBy, JustifiesHomologa-
tionOf, HomologationJustifiedBy, Jus-
tifiesRejectionOf, RejectionJustifiedBy,
DefinesCreationOf, CreationDefinedBy, De-
finesApplicationOf, ApplicationDefinedBy,
SubjectToApplicationOf, and AppliesTo.

Evolution ReifiedFrom, ReifiedInto, ModifiedFrom,
and ModifiedInto.

Action Outcome ApplicationProduces, and ProducedByAp-
plicationOf.

Composition DecomposedFrom, DecomposedInto,
PartOf, and ComprisedOf.

used in the construction of β, i.e., information written
in natural language from α1 and α2 was transformed
into information written in a design representation lan-
guage in β. Two ReifiedFrom link types starting in β

and having α1 and α2 as its destination models this
relation.

4.2.2 Link Type DependsOn

The link type DependsOn, a Constraint link type, has
the following description:

Definition 4.2. An artifact β satisfies an artifact α if
a condition required by α is fulfilled by β.

Let α and β be two artifacts and let e be a link
starting in α and having β as its destination. The link e
is a DependsOn link type if it conveys the information
that β satisfies α.

There are several types of dependencies, such as:
the application of an artifact may depend on the previ-
ous application of other artifacts (dependency of pre-
vious actions) or an artifact may depend on character-
istics of another artifact to run correctly (existencial
dependency).

4.3 Artifact Types

We have defined 12 artifact types satisfying the six
categories for artifact types of the reference model;
seven artifact types for the Rationale category to al-
low the justification and/or description of the six ba-
sic actions plus an extra action (Activation), and one
generic artifact for each remaining category: Pre-
Requirements Engineering Artifact (PREA), Require-
ments Engineering Artifact (REA), Design Artifact
(DA), Implementation Artifact (IA), Verification &
Validation and Testing Artifact (VVTA), Rationale for
Creation (RC), Rationale for Modification (RM), Ra-
tionale for Removal (RR), Rationale for Decomposi-
tion (RD), Rationale for Activation (RAc), Rationale
for Application (RAp), and Rationale for Homologa-
tion or Rejection (RHR).

4.3.1 On Rationale Types

A rationale type provides rationale and/or the descrip-
tion concerning an action. A rationale is a justifica-
tion (why) for an action; a description defines who,
what, and how, concerning an action. An explanation
on each rationale type is given below.

RCs provide rationale for the creation of an arti-
fact but it can also provide more information about
the artifact being created; for instance, an RC for an
IA could explain its utility and describe how it can be
used. RMs provide rationale for modification of an ar-
tifact and describes the modifications to be made. RRs
provide rationale for removal of an artifact; i.e., given
an artifact, an RR argues for its removal from the Ac-
tive System. RDs provide rationale for decomposition
of an artifact but can also define how the decomposi-
tion should be done. RAcs provide rationale for acti-
vation 1 of an artifact but it can also define modifica-
tions that should be done before it is activated. RAps
provide rationale for application of an artifact but can
also define how the application should be done. RHRs
provide rationale for homologation or rejection of an
artifact; for instance, after a failed attempt to remove
an artifact, an RHR would be created explaining the
reasons for the rejection of the proposed removal.

4.4 Processes

We have created 7 processes satisfying the six basic
processes required by the proposed reference model
plus an extra process (Activation). A very brief ex-
planation of the Homologation Process is shown next.
Permissions are assumed to be checked for actions in
the process.

1The process of trying to activate an artifact previously
rejected or removed.

Modeling Traceability in Software Development: A Metamodel and a Reference Model for Traceability

327



4.4.1 Homologation Process

Every newly created artifact starts off in the Inactive
System; it must go through the Homologation Process
to become part of the Active System. Let α be an ar-
tifact which goes through the Homologation Process
and A be the group of actors who created it. Let B be
a group of actors disjoint from A which performs the
homologation process on α. The group B evaluates
the artifact α to determine whether it is added to the
Active System. There are two possible outcomes: α

is homologated becoming active, or it is rejected re-
maining inactive.

Why is the Homologation Process Useful? Ho-
mologation avoids the introduction of inconsistencies
in the Active System; e.g., if the evaluation by the Ho-
mologation Process is not performed, a necessary ar-
tifact could be removed, leaving the system inconsis-
tent. Furthermore, it allows the evaluation of the im-
pact of an action before it is done. Therefore, the deci-
sion whether to proceed with an action may be guided
through the assessment of its impact; e.g., during the
homologation process it may be found that the cost of
the removal of an artifact outweighs its benefits.

Issues when Homologating a Rationale for Modifi-
cation or Removal. The decision to homologate a
Rationale for Modification (RM) or a Rationale for
Removal (RR) is contingent upon the impact in the
Active System; it may be necessary to perform a se-
quence of actions to deal with the problems arisen
from the actions of modification or removal. Hence,
the homologation may not occur if the impact is unde-
sirable.

To exemplify the role of the Homologation Pro-
cess, consider the situation where an RM α is up for
homologation, β is the target of α, and β has Neces-
saryFor link types starting from it; the implementation
of the modification described in α could cause exist-
ing dependencies to become unfulfilled. Therefore,
each NecessaryFor link type should be taken into ac-
count and solutions should be provided for each pos-
sible problem. The same is true for DependsOn link
types starting from β; the modification described in α

could eliminate the need for these link types, or even
create new dependencies. The Homologation Process
provides the steps to check for problems and its possi-
ble solutions.

4.5 Customizing the Metamodel

The metamodel may be customized according to the
specific needs of a project. Some projects may need

a leaner approach, choosing not to use certain link
types, artifact types, and processes. Such customiza-
tions may be implemented at the expense of loss of
traceability information.

5 CONCLUSIONS

We identified a series of issues with the current trace-
ability models; to address these issues we have pro-
posed a reference model and a metamodel for trace-
ability. The reference model, defined by the concep-
tual basis, may be used in the creation of traceabil-
ity approaches; it also allows the evaluation of ap-
proaches, checking whether an approach fulfills ba-
sic properties and categories of link types, artifact
types, and processes. The reference model was used
to develop a metamodel composed of: a Traceability
Space, showing how the elements interact with each
other; a set of link types and artifact types fulfilling all
the categories; a set of processes detailing the steps to
maintain traceability and system consistency.

The models may be customized according to the
specific needs of a project; some projects may need
a leaner approach, choosing not to use certain link
types, artifact types, and processes.

Our proposal may be extended in several ways, as
follows.

Investigate new concepts and mechanisms to en-
rich the conceptual basis, aimed at reducing subjectiv-
ity in traceability-related tasks.

Extend the set of link types, artifact types, and pro-
cesses to cover additional domains, such as security-
focused projects, or to to increase the comprehensive-
ness and specificity of the current sets.

Investigate additional properties of the link types
to improve our proposal expressiveness. For exam-
ple, the addition of different levels of dependency
strength would provide more information when per-
forming modifications on the System Space; it would
also be useful for change impact analysis.

The link types and processes may be formalized
using an existing language or by describing each ele-
ment using first-order logic.

The development of tools to support the use of the
reference model and metamodel. The reference model
tool will support the evaluation of approaches and fa-
cilitate the creation of approaches. The metamodel
supporting tool will provide semi-automated use of
the processes. It will also be useful for impact anal-
ysis.

We are currently using the metamodel to trace the
elements in a software development project.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

328



REFERENCES

Berenbach, B. and Wolf, T. (2007). A unified requirements
model; integrating features, use cases, requirements,
requirements analysis and hazard analysis. In ICGSE
2007, pages 197–203.

Dermeval, D., Castro, J., Silva, C., Pimentel, J. a., Bitten-
court, I. I., Brito, P., Elias, E., Tenório, T., and Pedro,
A. (2013). On the use of metamodeling for relating re-
quirements and architectural design decisions. In Pro-
ceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, SAC ’13, pages 1278–1283. ACM.

Dubois, H., Peraldi-Frati, M. A., and Lakhal, F. (2010). A
model for requirements traceability in a heterogeneous
model-based design process: Application to automo-
tive embedded systems. In 2010 15th IEEE Interna-
tional Conference on Engineering of Complex Com-
puter Systems, pages 233–242.

ghazi, H. E. (2008). Mv - tmm: A multi view traceability
management method. In 2008 32nd Annual IEEE In-
ternational Computer Software and Applications Con-
ference, pages 247–254.

Goknil, A., Kurtev, I., Berg, K., and Veldhuis, J.-W. (2011).
Semantics of trace relations in requirements models
for consistency checking and inferencing. SoSyM,
10(1):31–54.

Goknil, A., Kurtev, I., and Millo, J.-V. (2013). A metamod-
eling approach for reasoning on multiple requirements
models. In EDOC ’13, pages 159–166, Washington,
DC, USA. IEEE Comp. Soc.

Goknil, A., Kurtev, I., and van den Berg, K. (2008).
A Metamodeling Approach for Reasoning about Re-
quirements, pages 310–325. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Goknil, A., Kurtev, I., and Van Den Berg, K. (2014a).
Generation and validation of traces between require-
ments and architecture based on formal trace seman-
tics. Journal of Sys. and Soft., 88:112–137.

Goknil, A., Kurtev, I., van den Berg, K., and Spijkerman, W.
(2014b). Change impact analysis for requirements: A
metamodeling approach. Inf. & Soft. Tech., 56(8):950–
972.

Gotel, O. C. Z. and Finkelstein, A. C. W. (1994). An analysis
of the requirements traceability problem. In Require-
ments Engineering, Proceedings of the First Interna-
tional Conference on, pages 94–101.

Haidrar, S., Anwar, A., and Roudies, O. (2016). Towards a
generic framework for requirements traceability man-
agement for sysml language. In CiSt 2016, pages 210–
215.

IEEE Computer Society, Bourque, P., and Fairley, R. E.
(2014). Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0. IEEE Com-
puter Society Press, 3rd edition.

Jirapanthong, W. and Zisman, A. (2005). Supporting
product line development through traceability. In
APSEC’05, pages 9 pp.–.

Letelier, P., Navarro, E., and Anaya, V. (2005). Customiz-
ing traceability in a software development process.
In Information Systems Development, pages 137–148.
Springer US.

Mäder, P., Gotel, O., and Philippow, I. (2009). Getting back
to basics: Promoting the use of a traceability informa-
tion model in practice. In TEFSE ’09, pages 21–25.

Maeder, P., Philippow, I., and Riebisch, M. (2007). A trace-
ability link model for the unified process. In SNPD,
volume 3, pages 700–705.

Malavolta, I., Muccini, H., and Smrithi Rekha, V. (2011).
Supporting architectural design decisions evolution
through model driven engineering. In Troubitsyna,
E. A., editor, Software Engineering for Resilient Sys-
tems, pages 63–77, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Mohan, K., Xu, P., Cao, L., and Ramesh, B. (2008). Improv-
ing change management in software development: In-
tegrating traceability and software configuration man-
agement. Decision Support Systems, 45(4):922 – 936.

Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., and Coq,
T. (2012). A sysml-based approach to traceability
management and design slicing in support of safety
certification: Framework, tool support, and case stud-
ies. Inf. & Soft. Tech., 54(6):569 – 590.

Pfleeger, S. L. and Bohner, S. A. (1990). A framework for
software maintenance metrics. In Proceedings. Con-
ference on Software Maintenance, pages 320–327.

Ramesh, B., Dwiggins, D., DeVries, G., and Edwards, M.
(1995a). Towards requirements traceability models.
In Systems Engineering of Computer Based Systems,
Proceedings of the 1995 International Symposium and
Workshop on, pages 229–232.

Ramesh, B. and Edwards, M. (1993). Issues in the develop-
ment of a requirements traceability model. In Require-
ments Engineering, Proceedings of IEEE International
Symposium on, pages 256–259.

Ramesh, B. and Jarke, M. (2001). Toward reference models
for requirements traceability. Software Engineering,
IEEE Transactions on, 27(1):58–93.

Ramesh, B., Powers, T., Stubbs, C., and Edwards, M.
(1995b). Implementing requirements traceability: a
case study. In Requirements Engineering, Proceed-
ings of the Second IEEE International Symposium on,
pages 89–95.

Shen, L., Peng, X., and Zhao, W. (2009). A comprehensive
feature-oriented traceability model for software prod-
uct line development. In Australian Software Engi-
neering Conference, pages 210–219.

Tekinerdoğan, B., Hofmann, C., Akşit, M., and Bakker, J.
(2007). Metamodel for tracing concerns across the life
cycle. In Early Aspects: Current Challenges and Fu-
ture Directions, pages 175–194. Springer Berlin Hei-
delberg.

Tran, H., Zdun, U., and Dustdar, S. (2011). Vbtrace: using
view-based and model-driven development to support
traceability in process-driven soas. SoSyM, 10(1):5–
29.

Modeling Traceability in Software Development: A Metamodel and a Reference Model for Traceability

329


