
Linux Patch Management: With Security Assessment Features

Soranut Midtrapanon and Gary Wills
School of Electronics and Computer Science, University of Southampton, U.K.

Keywords: Patch Management, Linux, Software Inventory, CVE Scanning, Security, Puppet, Mcollective.

Abstract: The lack of patch management has been identified as the main reason for many ransomware attacks. The cost
of patch management is still an obstacle for many small and medium-size businesses. There are many open
source, free of charge, patch management systems but these require many pre-configuration steps making
them complicated to use. Hence, this paper presents a patch management system that is cost-effective but also
efficient in terms of set-up time. We have written the system in Python with Puppet and Mcollective to aid
the configuration steps. An additional feature of this system is the ability to assess the security of the system
being patched, using CVE scanning.

1 INTRODUCTION

Patch management is the process of timely updating
of existing systems with software patches to plug
known security vulnerabilities or to improve service
performance (Souppaya, and Scarfone, 2013). It is
recommended that security patches be applied within
14 days of being issued. However, this is not enforced
and this has led to an increase in ransoms (Adamov,
and Carlsson, 2017) (Rajput, 2017). For example by
leveraging the EternalBlue exploit, well-known
ransomware WannaCry was able to infect many
systems worldwide (Mansfield-Devine, 2017).

The National Health Service (NHS) in the UK was
a victim of this ransomware, even though the
EternalBlue patch was released months beforehand,
many of the unpatched NHS systems were subject to
ransomware encryption which resulted in many of the
networks being shut down, this would not have
happened had an effective patch management system
been in place (Ehrenfeld, 2017) (Hoeksma, 2017).
Ransomware affects many systems not only
Windows based systems, in 2017 the EREBUS
ransomware infected the outdated kernels and web
application stack of Linux based systems (O’Brien,
2017) (McAfee, 2017).

Even though having good patch management is a
known method for basic security hygiene in order to
reduce cyber-attacks; it is still a neglected area for
many non-IT specialist companies. This is especially
the case in small and medium-sized enterprises
(SMEs), where the cost of setting up and maintaining
a patch management system can be prohibitive

(Mansfield-Devine, 2016); (Renaud, 2016);
(Goucher. 2016).

This paper presents an approach that enable SMEs
to address the issues of cost and maintenance of a patch
management system, for multiple Linux-based servers.

2 BACK GROUND LITERATURE

A patch management system allows system
administrators to install updates on their managed
systems (Gerace, and Cavusoglu, 2009), (Rankin,
2017). The patch management lifecycle involves
acquiring information about the patch from software
vendors; identify critical patches, performing patch
installations and verifying results (Dadzie, 2005). In
addition, aspects such as assessing potential security
risks on managed systems, collecting an inventory of
the software on the platform and hardware used, pre-
assessment of patches prior to being installed, and
prioritizing the order in which patches are installed
(Mell et al, 2005). They also give two mechanisms for
patch management.

• The Manual Patching Method: In this
method system administrators are required to
perform all patch management related tasks
manually. This includes monitoring newly
released patches, running scripts, logging
changes and performing spate analysis of their
system.

• Automated Patching: System administrators

270
Midtrapanon, S. and Wills, G.
Linux Patch Management: With Security Assessment Features.
DOI: 10.5220/0007712502700277
In Proceedings of the 4th International Conference on Internet of Things, Big Data and Security (IoTBDS 2019), pages 270-277
ISBN: 978-989-758-369-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

utilize software to perform most if not all
patch management tasks automatically.

The automated approaches are more efficient than
manual methods of patch management. In addition,
the automated patching method is recommended by
the National Institute of Standards and Technology
(NIST) (Mell et al., 2005), as it allows patching a
large number of systems within the recommended
time and importantly reduce the risk of human error
(Dey et al., 2016). Several other standards also point
out the need for good patch management. For
example, it is a compulsory component for
compliance for PCI Security Standards and NIST SP
800-53 (Souppaya, and Scarfone, 2013) and is part of
the UK’s Cyber Essentials scheme to mitigate cyber-
attack incidents in SMEs (Mansfield-Devine, 2016).

Moreover, it has been established by US-CERT
that by maintaining managed systems so that they
remain up-to-date, that 85% of all cyber threats can
be avoided (US-CERT, 2015). Therefore, when patch
management procedures are implemented correctly,
numerous system patches can be managed in a timely
manner (Arora et al., 2006).

2.1 Automated Patch Management
Software Architecture

Patch management software provides an effective
method for patching systems automatically. The
software has the ability to keep all managed systems up
to date by applying patches promptly. Client-Server
architecture for patch management enables users to
manage all systems and view reports through a central
management console. The patches are held on patch
management servers, and the patches are installed on
client machines (which can be other servers).

Generally, there are three methods for identifying
and installing the patch required on client machines.
A tool may use one or more of these techniques
together to patch a client machine (Souppaya and
Scarfone, 2013), each of these approaches can be
summarized as follows:

1. Agent-based Patch Management: In this
approach, an agent is installed on each of the
managed clients. A different agent is required for
each type of platform. The agent undertakes the
tasks required for patching: getting the patch
information, installing the patch, and verifying
successful completion of the task. The agent
required administrative privileges on all
machines.

2. Agentless Patch Management: A remote server
regularly scans the servers under its control and

carries out the necessary patch management if it
finds out of date applications/software. Hence,
there is no need to install an agent on the client.
However, this does increase the network traffic
(increase bandwidth), and only works on a local
network, as remote scanning can be blocked.

3. Passive Network Monitoring: Similar to
agentless scanning technique, where the patch
management server(s) scan the internal networks,
but they can also identify unmanaged and
unpatched systems but do not patch them
automatically. The limitations are that they can
only work on unencrypted networks and version
detectable applications.

Agent-based approaches is the preferred method
over agentless approaches as it has fewer limitations,
but importantly can be made to work on most
installations. While the passive approach is used to
extend features of existing systems.

2.2 Technical Challenges and Issues

There are several challenges and issues arising from
applying patch management approaches.

1. System Downtime: In some circumstances, it is
necessary to stop or restart software services when
patches are being applied or after applying
patches. This could have consequences for
organizations fulfilling Service Level Agreements
(SLAs) (Le et al., 2014). However, there are
patching approaches that can be applied to live
systems to achieve zero downtime; for example,
Oracle’s Kspicei, RedHat’s Kpatchii, and SUSE’s
Kgraftiii (Kashyap et al., 2016). Moreover, these
techniques also support verification, which is
undertaken immediately after the patches have
been installed without stopping or restarting the
service.

2. Failures and Side Effects due to installed
Patches: Installing a patch can also introduce new
errors such as inconsistency in system
configurations, permission issues, software bugs
and new vulnerabilities (Okhravi and Nicol,
2008). Organizations normally have to restore to
the safe fall-back state and then wait for a manual
update to be issued (Le et al., 2014) (Kashyap et
al., 2016). Hence, before installing a patch, system
administrators may perform manual testing first
(Gerace and Cavusoglu, 2009).

3. Multiple Architectures and Platforms: There
are many operating systems and network
architectures used by industry and commerce that
require specific procedures or commands when

Linux Patch Management: With Security Assessment Features

271

installing patches. Many of the commercial
packages do cater for this and work well in this
multiplatform/multi-architecture environment.
There are still occasions when the system
administrators need to perform manual patching
tasks (Souppaya and Scarfone, 2013).

3 EXISTING APPROACHES

Section 2 outlined the approaches that could be
undertaken for patch management systems. This
section focuses on identifying existing systems and
the gaps that led to our design.

3.1 Why Linux?

Linux is still the most popular system on which to
host web-based applications. Unfortunately, it is also
the one on which it is most likely to also find the most
portion of out of date software. In addition, there are
also a number of Linux hacking tools available to
remotely exploit unpatched systems, (Delasko and
Chen, 2018). Microsoft has developed Windows
Server Update Services (WSUS) to support the
updating of patches on Windows-based systems. This
is deployed in such a way that the system is updated
regardless of the user choices (Palumbo, 2015).

3.2 Commercial Tools

There exist many commercial automated patch
management tools. The most commonly used are
those that use a centralized system that is controlled
via a web-based or desktop application. Some will
also assess third-party applications. Our analysis
focuses on security and customizable features as
shown in Table 1. It is important to pretest all third-
party patches prior to deployment on a system, even
if the patch has been developed especially for the
system (customized patch), it should go through a
system of verification first, as any patch could
introduce new vulnerabilities (Okhravi and Nicol,
2008). System administrators like to control and
verify the process of patch management, hence it is
important that tools provide Application
Programming Interfaces (APIs) supporting
originations to integrate the patch management tools
into their systems and processes. Additionally,
organizations like to buy one tool for multiple
platforms (Mansfield-Devine, 2016). The prices
shown are only for guidance.

Table 1 Shows that patch management tools with
multi-platform support are now important, this differs

from previous surveys (Seo et al., 2005) (Seo et al.,
2006). Notably that only about half of the vendors
provide pre-built and pre-testing third-party
application patches, they mainly mitigate this by
offering software catalogues of verified updates that
can be installed. Very few vendors provide a
mechanism for a security verification process of
custom patches before they are applied, they also do
not provide patching-related APIs and the cost is
based on a subscription model per managed device
which can become a prohibitive cost for SMEs
(Mansfield-Devine, 2016).

3.3 Non-commercial Software

The three common open-source tools for patch
management on Linux installations are vFense iv, FAI
Linux Projectv, and Spacewalkvi. vFense is a
standalone patch management tool, while the others
are automated tools design for system configuration
that has the ability to update software. All three tools
use an agent-based approach. This survey (Table 2)
aims to show the tools’ main feature, the number of
steps required to configure the setup of the system,
and whether or not the tool is currently support. Table
2 shows that

1. All the tools require numerous steps to complete
the setup and initial configuration. Also, vFense
involves the administrator to build the client agent
from scratch.

2. The tools use the Common Vulnerabilities and
Exposures (CVE) descriptions to analyze security
vulnerabilities.

3. Only provided by Spacewalk provides any form
of software inventory and an essential feature for
patch management.

4. Typically system administrative staff access is via
a web-based user.

5. With any open-source project, there is a risk that
the project is deprecated and receives no further
developer community support.

Spacewalk provides suitable patching related
features, has good support from the community, and
takes a moderate number of steps to complete the
configuration, but does not support Ubuntu.

A common problem for the systems that have
deployed the agent-based patching technique, is that
they are complex to use, and require many steps to
configure the systems. Therefore, our system plugs
these gaps creating a Linux based patch management
tool that is cost-effective, supports all of the current
Linux distributions, and is customizable and easy to
configure.

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

272

Table 1: Commercial patch management software.

Patch management software Multi- platform
Third party
pre-tested patch

Custom patch
add-on

API Pricing per year

IBM Bigfixvii Yes No Yes Yes
£2.05 per client
£32.29 per server

Ivanti Patchviii Yes No No Yes N/A

RedHat Satelliteix No No Yes Yes N/A

SolarWinds Patch Manager x No Yes No No £2,745 per 250 nodes

Flexera Corporate Software Inspectorxi Yes Yes No No From £2,194 per 100 nodes

Kaseya VSAxii Yes No No No N/A

GFI LanGuardxiii Yes No No Yes £6.67 - £17 er node

ManageEngine Patch Manager Plus xiv Yes Yes No No £493/£650 per 100 nodes

ZENworks Patch Management xv Yes Yes No No N/A

CMS Patch Manager xvi Yes Yes No No From £50 per month

BMC BladeLogic Server Automationxvii Yes No No Yes N/A

KACE xviii Yes Yes No No £8,000 per 100 nodes

Table 2: Open Source patch management software.

Tools vFense FAI Linux Project Spacewalk

F
ea

tu
re

s

Functionality

An open-source application.
Main purpose is to install
patches and perform related
tasks

An automated configuration
management that can install patches
and perform related tasks

An open-source Linux.
Management system that can
install patches and perform
related tasks

CVE Vulnerability scans Yes No Yes

Inventory of applications No No Yes

Web –based User
interface

Yes
(But deprecated)

No
(terminal user interface)

Yes

Distribution to all Linux
distribution?

Yes Yes
No
(Red Hat only)

E
as

e
of

 U
se

 Steps required to
Configure
(difficulty)

Large (Require numerous
steps)

Moderate to low Moderate

Currently supported?
No
Last update was in 2016

Yes Yes

4 ARCHITECTURE

An orchestration tool allows us to control and
concurrently manage multiple servers. Yet many of
the existing open-source tools that have good
community support and are intended as configuration
management tools that allows system administrators

to create configuration files that can then be
distributed the managed servers. Many of them also
come with plug-ins that provide orchestration
functionality.

These files contain the specified configurations
and settings for the managed systems. The tool will
also monitor any changes to the configuration of the

Linux Patch Management: With Security Assessment Features

273

managed servers and apply updates automatically.
Hence, we can take such tools and adapt them to meet
our requirements for patch management. We choose
to use the open source version of Puppet for our
configuration management tools (Walberg, 2008). It
addition, Puppet has good community support.
However, the open-source version does not come
with a web user interface so have we implemented
these to allow users to administer and manage the
patching process. An additional benefit of Puppet is
the native implementation of a server orchestration
tool called Mcollective, which can be used to
undertake tasks on all Linux distributions (Rankin,
2017). In addition, Mcollective is customizable
allowing for custom plugins to perform automated
tasks. Mcollective uses the Puppet Certificate
Authority (Puppet CA) to support secure
communication features over TLS/SSL. Mcollective,
obtains a certificate from Puppet CA for each
specified administrator on a Puppet master server.
Mcollective uses the certificated to construct a secure
channel through which only the authorized
administrator can control the Puppet agents installed
on managed servers, see Figure 2.

Table 3: Development tools and libraries.

Tool/library Description

Celeryxix
A Python message queue library to real-time
tasks in the background.

Eventletxx
A Python thread pool concurrent management
library, to enable us to run Celery on Windows

Django-celery-
resultsxxi

A Django Python library for storing all
Celery task results which can be queried to
display task statuses.

RabbitMQxxii
A message queue for handling Python
background, controlled by Celery.

Fabricxxiii

A SSH connection Python library. It is the
necessary for use to establish an SSH
connection to a Puppet master server, and to run
commands and authentication method for the
Public key.

Bootstrapxxiv
It is a responsive web user interface
framework. We use this in the implementation
of the user interface to set its looks and feels.

Toastrxxv
A JavaScript library for displaying
notifications to the users. We use this to
patching task notifications.

The system architecture design is shown in Figure
1. The main system is implemented using the Django
(Python) web-framework and a web user interface
front-end. The core process communicates with the
embedded database system (SQLite3) as this natively
supports Django. Authorized users can access the
system via a web browser.

In order to undertake the task of patch
management, the core system connects and

communicates with the managed systems using a
combination of Puppet and Mcollective functions
through an SSH connection. Each communication task
is executed as a background task (Celery) combined
with a central message queue (RabbitMQ), this enables
the administrator to continue with other activities
without needing to wait for the initial task to finish.

The process of establishing an SSH connection is
that an authenticity verification takes place on the
server, it confirms that the server’s public key
matches the expected user’s public key. In order to
ensure a successful connection to the managed server,
a corresponding SSH passphrase is required. We use
the Mcollective and its native plugins to execute
Linux-based commands, which retrieves all the
information from the connected systems. SSH
connections to the Puppet master server uses the
public key authentication found in the Fabric Python
library. We have manually tested all these commands
with various Linux systems to verify these commands
work in our system and give the expected results.

As we use Puppet to undertake the host discovery
task by connecting to our managed servers, and then
simultaneously uses Mcollective to run the Linux
commands on the managed server, it is therefore,
necessary to ensure that a Puppet environment is set
up first. At the core of the system, we process Django
views, which handles the requests. It also renders user
interfaces from template/static files and undertakes
the database operations.

Table 3 shows the tools and libraries used in our
system for the Django web-based development and
the Python background task implementation. There
were a number of methods for implementing the CVE
scanning of the managed servers. The first was to use
a locally hosted CVE database, but this would have
resulted in an extremely large size database, which
would be hard to maintain, so we decided to use a
Public CVE API. We did try using the unstructured
word search facilities with the API but obtained too
many false positive results. We settled on the CVE
API provided by RedHat which allowed us to search
by package names and versions. However, it is
limited and does is not supported Ubuntu, for which
we used the word search.

5 TESTING AND EVALUATIONS

This section presents the testing and evaluation of the
patch management system. The testing showed all
implemented functionalities work as expected. While
the evaluations compared our system with current
patch management systems.

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

274

Figure 1: System architecture.

Figure 2: Overview of how Puppet and Mcollective works together.

5.1 Testing Processes

We conducted unit tests and full system integration
tests. We used a white box approach to verify the

internal processes and logic of the system (Pressman.
2010).

Unit testing allowed us to ensure that the functions
we developed were as designed; we used the

Linux Patch Management: With Security Assessment Features

275

automatic test facilities that comes with Django, this
also come with automatic testing of views and user
interface functionality. We developed 96 test cases
for testing both views and internal functions; this
gave us the ability to conduct regression testing and
to use a test-driven approach to development.

We had designed the system so that the patch
management core functions could be automatically
tested separately from the system integration. The
integration tests were undertaken using manual
operations, using a Vagrant-based Puppet testing
environment. A Test Pyramid method (Cohn, 2010)
was integrated into the testing in order to reduce the
total number of test cases required. Hence, the unit-
test case cannot be reused. Therefore, the integrations
testing was undertaken without having to know the
internal logic (Pressman, 2010).

5.2 Evaluation

In this section, we present the evaluation of the
project in terms of the features, customizability and
cost. The main aim of this project was to develop an
efficient Linux patch management system that would
fit the budget of an SME

Section 3 identified a number of commercial
systems with indicative costs. Our system can provide
the necessary patching functionality and security
assessment. This will substantially reduce the cost to
an SME as they are saving in terms of investment
costs (as our system is open source).

In section 3 we identified Spacewalk as the best
open-source patching tool available to date.
Therefore, we compared the patching features of our
system and Spacewalk, see Table 4.

Table 4: Comparison of open-source system features.

Feature Our system Spacewalk

Web –based User interface Yes Yes

CVE Vulnerability scans Yes Yes

All Linux distributions Yes No

Steps required to Configure
(difficulty)

Low Moderate

As can be seen from Table 4, our system has two
main advantages over Spacewalk. The first is that we
support all Linux distributions. We have achieved this
by utilizing the Puppet/Mcollective. Secondly, by
using Puppet we can connect to and discover all
managed systems, also by using Mcollective to run
commands simultaneously, we have reduced the
number of steps required in the configuration process.

In addition, our system is designed for future
development, by enabling more features to add by
customizing and extending new plugins.

6 CONCLUSIONS

Our patch management system has been implemented
and the evaluation shows that it is a cost-effective and
usable open-source tool.

Our patch management tools fill the gaps found in
the current patch management software, it provides
vital patching capabilities on Linux systems with
security assessment features which support the
retrieval of essential details and CVE information
from managed systems for further analysis.

The advantage of using Puppet and Mcollective to
integrate into the core is that we have significantly
reduced the number of steps required in the initial
configuration process as we are able to support to all
Linux distributions with customizability and
extensibility. Furthermore, we provide a user-friendly
interface that allows anyone to interact with the patch
management system without the need to be an expert
at understanding Linux commands.

Moreover, by being open-source it is an
affordable patch management tools, it can be used to
increase security awareness by the use of the CVE
scanning and the necessity of keeping systems up-to-
date, especially to SMEs on a limited budget.

Future work is in developing further the use of
CVE scanning with public APIs. We are looking into
better ways to scan and analyses CVEs. For example,
machine learning coupled with Neuro-linguistic
programming can improve the interpretation of the
CVE descriptions and improve the effectiveness of
the CVE scan. This could lead to efficiently
discovering known vulnerabilities in a system.

REFERENCES

Adamov, A. and Carlsson, A. (2017) 'The state of
ransomware. Trends and mitigation techniques', 2017
IEEE East-West Design and Test Symposium (EWDTS).
Sept. 29 2017-Oct. 2 2017. pp. 1-8.

Arora, A., Caulkins, J. P. and Telang, R. (2006) 'Research
Note - Sell First, Fix Later: Impact of Patching on Soft-
ware Quality', Management Science, 52(3), pp. 465-471.

Cohn, M. (2010) Succeeding with agile: software
development using Scrum. Pearson Education.

Dadzie, J. (2005) 'Understanding Software Patching', ACM
Queue - Patching and Deployment, 3(2), pp. 24-30.

Delasko, S. and Chen, W. (2018) 'Operating Systems of
Choice for Professional Hackers', ICCWS 2018 13th

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

276

International Conference on Cyber Warfare and
Security. Academic Conferences and publishing
limited, p. 159.

Dey, D., Lahiri, A. and Zhang, G. (2015) 'Optimal Policies
for Security Patch Management', INFORMS J. on
Computing, 27(3), pp. 462-477.

Ehrenfeld, J.M. (2017) 'WannaCry, Cybersecurity and
Health Information Technology: A Time to Act',
Journal of Medical Systems, 41(7), p. 104.

Gerace, T. and Cavusoglu, H. (2009) 'The critical elements
of the patch management process', Commun. ACM,
52(8), pp. 117-121.

Goucher, W. (2011) 'Do SMEs have the right attitude
to security?', Computer Fraud and Security, 2011(7),
pp. 18-20.

Hoeksma, J. (2017) 'NHS cyberattack may prove to be a
valuable wake up call', BMJ, 357.

Kashyap, S. et al. (2016) 'Instant OS Updates via Userspace
Checkpoint-and-Restart',USENIX Annual Technical
Conference. pp. 605-619.

D Le, J Xiao, H Huang, H Wang (2014) 'Shadow patching:
Minimizing maintenance windows in a virtualized
enterprise environment', 10th International Conference
on Network and Service Management (CNSM) and
Workshop. 17-21 Nov. 2014. pp. 169-174.

Mansfield-Devine, S. (2016) 'Securing small and medium-
size businesses', Network Security, 2016(7), pp. 14-20.

Mansfield-Devine, S. (2017) 'Ransomware: the most
popular form of attack', Computer Fraud and Security,
2017(10), pp. 15-20.

McAfee (2017) Malware and Threat Reports: Threat
Advisory - Ransomware-Erebus (PD27141). McAfee,
CA, USA: McAfee Labs Knowledge Center.

Mell, P., Bergeron, T. and Henning, D. (2005) 'Creating
a patch and vulnerability management program', NIST
Special Publication, 800, p. 40.

O’Brien, D. (2017) Internet Security Threat Report (ISTR)
Ransomware 2017: An ISTR SpecialReport. Symantec
Corporation, Mountain View, CA, USA.

Okhravi, H. and Nicol, D. (2008) 'Evaluation of patch
management strategies', International Journal of

i https://ksplice.oracle.com
ii https://access.redhat.com/articles/2475321
iii https://www.suse.com/documentation/sles-12/

book_sle_admin/data/cha_kgraft.html
iv https://github.com/vFense/vFense
v https://fai-project.org
vi https://spacewalkproject.github.io
vii https://www.ibm.com/security/endpoint-security/bigfix
viii https://www.ivanti.com
ix https://access.redhat.com/products/red-hat-satellite
x https://www.solarwinds.com/patch-manager
xi https://www.flexera.com/enterprise/products/software-

vulnerability-management/corporate-software- inspector
xii https://www.kaseya.com/resource/kaseya-patch-mana

gement
xiii https://www.gfi.com/products-and-solutions/network-

security-solutions/gfianguard/specifications/patch-
management-for-operating-systems

Computational Intelligence: Theory and Practice, 3(2),
pp. 109-117.

Palumbo, T. (2015) 'Patch Management: The Importance of
Implementing Central Patch Management and Our
Experiences Doing So', Proceedings of the 2015 ACM
Annual Conference on SIGUCCS. St. Petersburg,
Florida, USA. 2815561: ACM, pp. 105-108.

Pressman, R.S. (2010) Software engineering: a
practitioner's approach. 7th edn.: Palgrave Macmillan.

Rajput, T.S. (2017) 'Evolving Threat Agents: Ransomware
and their Variants', International Journal of Computer
Applications, 164(7), pp. 28-34.

Rankin, K. (2017) 'Hack and /: sysadmin 101: patch
management', Linux Journal, 2017(279),p. 5.

Rankin, K. (2017) 'Hack and /: Orchestration with
MCollective, Part II', Linux Journal2017(273), p. 5

Renaud, K. (2016) 'How smaller businesses struggle with
security advice', Computer Fraud and Security,
2016(8), pp. 10-18.

Seo, J.-T. Choi D-S, Park E-K, Shon T-S, Moon J. (2005)
'Patch Management System for Multi-platform
Environment', Parallel and Distributed Computing:
Applications and Technologies. PDCAT 2004. Berlin,
Heidelberg. Springer Berlin Heidelberg, pp. 654-661.

Seo, J.-T. Kim Y-J, Park E-K, Lee S-W, Shon K, Moon J..
(2006) 'Design and Implementation of a Patch
Management System to Remove Security
Vulnerability in Multi-platforms', Fuzzy Systems and
Knowledge Discovery.FSKD 2006. Berlin, Heidelberg.
Springer Berlin Heidelberg, pp. 716-724.

Souppaya, M. and Scarfone, K. (2013) 'Guide to
enterprise patch management technologies', NIST
Special Publication, 800, p. 40.

US-CERT (United States Computer Emergency Readiness
Team) (2015) Top 30 Targeted High Risk
Vulnerabilities (TA15–119A). Washington, DC.
Available at: https://www.us- cert.gov/ncas/alerts/

TA15-119A (Accessed: 29 June 2018).
Walberg, S. (2008) 'Automate system administration tasks

with puppet', Linux J., 2008(176), p. 5.

xiv https://www.manageengine.co.uk/patch-management/
knowledge-base/overview.html

xv https://www.microfocus.com/products/zenworks/patch-
management

xvi https://www.cloudmanagementsuite.com
xvii http://www.bmc.com/it-solutions/bladelogic-server-

automation.html
xviii https://www.quest.com/products/kace-systems-manage

ment-appliance/patch-management- security.aspx
xix http://www.celeryproject.org
xx http://eventlet.net
xxi https://pypi.org/project/django_celery_results
xxii https://www.rabbitmq.com
xxiii https://www.fabfile.org
xxiv https://getbootstrap.com
xxv https://github.com/CodeSeven/toastr

Linux Patch Management: With Security Assessment Features

277

