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The constant increase of the amount of data generated by Internet of Things (IoT) devices creates challenges
for the supporting cloud infrastructure, which is often used to process and store the data. This work focuses on
an alternative approach, based on the edge cloud computing model, i.e., processing and filtering data before
transferring it to a backing cloud infrastructure. We describe the implementation of a low-power and low-cost
cluster of single board computers (SBC) for this context, applying models and technologies from the Big Data
domain with the aim of reducing the amount of data which has to be transferred elsewhere. To implement
the system, a cluster of Raspberry Pis was built, relying on Docker to containerize and deploy an Apache
Hadoop and Apache Spark cluster, on which a test application is then executed. A monitoring stack based
on Prometheus, a popular monitoring and alerting tool in the cloud-native industry, is used to gather system
metrics and analyze the performance of the setup. We evaluate the complexity of the system, showing that by
means of containerization increased fault tolerance and ease of maintenance can be achieved, which makes the
proposed solution suitable for an industrial environment. Furthermore, an analysis of the overall performance,
which takes into account the resource usage of the proposed solution with regards to the constraints imposed

by the devices, is presented in order to discuss the capabilities and limitations of proposed architecture.

1 INTRODUCTION

In the Internet of Things (IoT) almost everything gen-
erates data, of which a major part is stored or pro-
cessed in a cloud environment. Furthermore, the
amount of data generated or collected is growing ex-
ponentially, according to the IDC 2014 report on the
Digital Universe (Turner, 2014). In this kind of sit-
uation, local (pre-)processing of data might be a bet-
ter alternative to the current centralised cloud process-
ing model. Our objective is to present a lightweight
infrastructure based on the edge cloud computing
model, which aims to provide affordable, low-energy
local clusters at the outer edge of the cloud, possi-
bly composed of IoT devices themselves. The pro-
posal explored here is thus a small low-power, low-
cost cluster of single board computers in a local net-
work, which is able to pre-process generated data at
the outer edge. The aim is to present a model which
is scalable and affordable, with a low power footprint,
suitable for industrial applications in an IoT environ-
ment.

The proposed edge cloud architecture (Pahl et al.,
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2018b) makes use of technologies commonly used
in processing of Big Data, which has similar char-
acteristics of high speed, high variety, and high vol-
ume, when scaled down to the constraints imposed by
IoT devices, i.e., Apache Hadoop and Apache Spark.
The system is based on the containerization software
Docker, which provides the means of orchestrating
services on a device cluster. To analyze the perfor-
mance of the system (Heinrich et al., 2017), with
regards to the constraints imposed by the Raspberry
Pi, system metrics are collected through a monitoring
stack based on Prometheus, a monitoring and alerting
tool, deployed on the cluster.

Raspberry Pi-based architectures have already
been investigated for IoT and edge settings (Tso et
al., 2013; Hentschel et al., 2016; von Leon et al.,
2019; Pahl et al., 2017), but a performance explo-
ration for an industry-relevant setting is still missing.
Furthermore, the limits of a flexible, i.e., software-
defined, virtualised architecture for software manage-
ment need to be investigated.

Our paper details how the proposed solution can
be implemented, using a cluster of Raspberry Pis, a
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single board computer (SBC). We show how the pro-
posed system can be implemented, using Docker to
deploy and orchestrate lightweight containers which
run an Apache Hadoop and Apache Spark cluster,
used to process data with a test application. Further-
more, we demonstrate how the cluster can be used as
test bed for such applications, gathering meaningful
system metrics through a monitoring system based on
Prometheus. We conclude with an evaluation, taking
into account the complexity of managing the cluster
as well as the overall performance.

2 REQUIREMENTS AND
APPLICATION SCENARIOS

In a typical cloud computing scenario, the usual ap-
proach is to collect data and to send it to a centralized
system where storage space and computational power
is available, without any selection or analysis. With
increasing complexity and also having to deal with
increasing amounts of data generated in IoT environ-
ments, a centralised cloud infrastructure is not ideal
from a latency, cost and reliability perspective.

The aim of this work is to evaluate the feasibility
of an alternative low-cost and lightweight approach
based on the fog or edge cloud computing model. The
main requirement is to be able to collect, process, and
aggregate data locally, using affordable devices, such
that the overall amount of traffic and the need for
a backing cloud infrastructure can be reduced. The
costs for acquisition, maintenance and operation of
such a system and its suitability in an industrial setting
will also be considered as well as the overall perfor-
mance of the system with regards to the limited power
at disposal. The chosen software platform needs to
reflect a industry-relevant setting in terms of software
deployment or big data processing.

The main use cases for such an application range
from the IoT domain, where large amounts of data are
generated and have to be processed, to autonomous
monitoring and automation systems, like remote lo-
calised power grids. Additionally, the ability to pro-
cess data locally with a low-cost and low-power sys-
tem opens up use cases in environments without large
amounts of processing power at disposal on premise,
which would benefit from a decreased traffic, like sys-
tems in remote areas. Possible application scenar-
ios include autonomous power generation and distri-
bution plants, such as smaller local energy grids, or
equivalent distributed systems in rural areas.

Such systems could benefit from the use of sin-
gle board computers like the Raspberry Pi (Johnston
et al., 2018) due to the possibility of connecting sen-

sors to the devices GPIO paired with the capability
to perform more complex computations, thus creating
a network of smart sensors capable of recording, fil-
tering, and processing data. The nodes can be joined
together to a cluster to distribute the workload in the
form of containers, possibly having separate nodes re-
sponsible for different steps of the data pipeline from
generation and collection to evaluation of the data in
a big data streaming and analytics platform. This
would lead towards a microservices-style architecture
(Jamshidi et al., 2018), (Taibi et al., 2018) allowing
for flexible software deployment and management.

The relevant technologies for a lightweight cluster
infrastructure (Raspberry Pis), a container-based soft-
ware deployment and orchestration platform (Docker
swarm) and a big data streaming application architec-
ture are introduced in the next section.

3 BACKGROUND INFORMATION

The three platform technologies — Raspberry Pis,
Docker containers and Hadoop — shall be introduced.

3.1 Raspberry Pi

The Raspberry Pi is a single-board computer, first in-
troduced in early 2013. The computer was initially
developed as an educational device, but soon attracted
attention from developers due to the small size and
relatively low price (RPi Foundation, 2018). Since the
first model was well received, there have been multi-
ple updates of the platform. In this project, the Rasp-
berry Pi 2 Model B, released in 2015, is used. The
specifications are shown in Table 1.

Table 1: Specification of the Raspberry Pi 2, Model B.

Architecture ~ ARMvV7
SoC Broadcom BCM2836
CPU 900 MHz quad-core 32-bit ARMCortex-A7
Memory 1GB
Ethernet 10/100Mbit/s
3.2 Docker

3.2.1 Architecture

Docker, first released in 2013, is an open source soft-
ware project, which allows to run containerized ap-
plications (Docker, 2018). A container is a runnable
instance of a Docker image, a layered template with
instructions to create such a container. A container
holds everything the application needs to run, like
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system tools, libraries and resources, while keeping
it in isolation from the infrastructure on which the
container is running, thus forming a kind of virtual-
isation layer. This is achieved by compartmentaliz-
ing the container process and its children, using the
Linux containers (LXC) and libcontainer technology
provided by the Linux kernel via kernel namespacing
and control groups (cgroups), in fact isolating the pro-
cess from all other processes on the system, while us-
ing the hosts kernel and resources. The major differ-
ence between containers and virtual machines is that
containers, sharing the hosts kernel, do not necessitate
a separate operating system, resulting in less overhead
and minimizing the needed resources. Figure 1 illus-
trates Dockers architecture.

The access to system resources can be individual-
ized for each container, thus allowing access, among
other devices, to storage, or, in the case of the Rasp-
berry Pi, to the general-purpose input/output pins
(GPIO) for interaction with the environment using
sensors or actuators.

Application Application Application
Container Container Container
Fy
Y
Kernel

Operating System (Host)

| Hardware |

Figure 1: Docker container architecture.

3.2.2 Docker Engine

Docker Engine', the Docker application, is built us-
ing a client-server architecture. The Docker daemon,
which acts as the server, manages all Docker objects,
i.e., images, containers, volumes and networks. The
client, a command line interface (CLI), communicates
with the daemon using a REST (representational state
transfer) API (application programming interface).

3.2.3 Docker Swarm

Docker 1.12, released in mid 2016, and all subse-
quent releases, integrate a swarm mode?, which al-
lows natively to manage a cluster, called swarm, of

IDocker Engine, https://docs.docker.com/engine
2Docker Swarm, https://docs.docker.com/engine/swarm/
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Docker engines. Docker swarm mode allows to use
the Docker CLI to create and manage a swarm, and
to deploy application services to it, without having to
resort to additional orchestration software. A swarm
is made of multiple Docker hosts, running in swarm
mode and acting as manager nodes or worker nodes.
A host can run as manager, worker, or both. When a
service is created, the number of replicas, available
network and storage resources, exposed ports, and
other configurations are defined. The state of the ser-
vice is being maintained actively by Docker, which
means that if, for instance, a worker node becomes
unavailable, the tasks assigned to that node are sched-
uled on other nodes, thus providing fault-tolerance. A
task here refers to a running container that is run and
managed by the swarm, as opposed to a standalone
container. Figure 2 illustrates an example of such a
Docker swarm configuration.

3.3 Hadoop
3.3.1 MapReduce

MapReduce is a programming model for processing
big data sets, which allows to use a distributed, par-
allel algorithm on clustered devices (Dean and Ghe-
mawat, 2004). A MapReduce program consists of
a map method, which performs sorting and filtering
of the data, and a Reduce method, which performs
an associative operation. Although inspired by the
map and reduce methods commonly used in func-
tional programming, the main concern of the MapRe-
duce framework is the optimization of the underlying
engine, achieving scalability and fault tolerance of the
applications implementing it.

Both the Map and Reduce operation of MapRe-
duce are performed on structured data, which takes
the form of (key, value) pairs. The Map function is
applied to every pair (k1, v1) of the input in paral-
lel, producing a list of pairs (k2, v2). After this first
step, all pairs with the same key k2 are collected by
the MapReduce framework, producing one group (k2,
list(v2)) for each key. Then, the Reduce function is
applied to each group in parallel, producing a list of
values v3. The whole process is illustrated below:

1 Map (k1,v1) list(k2,v2)
2 Reduce (k2, list(v2)) list(v3)

3.3.2 Hadoop

The Apache Hadoop framework is an open source
software library, which allows to process large
datasets in a distributed way, using the MapReduce
programming model (Apache, 2018). It is designed
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Figure 2: Docker Swarm Configuration Sample.

to scale from single nodes to clusters with multiple
thousands of machines (Baldeschwieler, 2018). The
following modules make up the core Apache Hadoop
library:

e Hadoop Common — common libraries & utilities;

e Hadoop Distributed File System (HDFS) — dis-
tributed file system to store data on cluster nodes;

e Hadoop YARN — managing and scheduling plat-
form for computing resources and applications;

e Hadoop MapReduce — large scale data processing
implementation of the MapReduce programming
model.

A typical, small Hadoop cluster includes a single mas-
ter node and multiple worker nodes. The master node
acts as a task and job tracker, NameNode (data index),
and DataNode (data store) , while the worker nodes
act as task tracker and DataNode. Figure 3 illustrates
such a cluster.

3.3.3 HDFS

The base of the Hadoop architecture consists of the
Hadoop Distributed File System (HDFS) and a pro-
cessing part, which implements the MapReduce pro-
gramming model. Files are split into blocks of data
and distributed across the DataNodes. Transferring
a packaged application on the same nodes, Hadoop
takes advantage of the principle of data locality. Since
the nodes manipulate the data they have access to,
Hadoop allows for faster and more efficient process-
ing of the dataset than more traditional supercomputer
architectures (Wang et al., 2014).

3.3.4 Apache Spark

Apache Spark is an open source framework for dis-
tributed computing, which provides an interface for

Master node Worker node

Task tracker Task tracker

!

Job tracker
MapReduce|layer
HDFS|layer
NameNode
DataNode DataNode

Cluster with multiple nodes

Figure 3: Hadoop cluster.

executing applications on clusters (Apache, 2018).
The framework uses as its foundation a resilient
distributed dataset (RDD), a distributed and fault-
tolerant set of read-only data items. As an exten-
sion to the MapReduce paradigm, Sparks RDDs of-
fer a limited form of Hadoop distributed shared mem-
ory for distributed programs. Allowing a less forced
dataflow compared to the MapReduce paradigm,
Apache Spark facilitates the implementation of pro-
grams which can reduce the latency, compared to an
Apache Hadoop implementation, by several orders of
magnitude.
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Apache Spark requires a cluster manager — sup-
ported implementations are Spark native, Apache
Hadoop YARN, and Apache Mesos clusters — and a
distributed storage system. Supported systems are,
among others, HDFS, Cassandra, and Amazon S3, or
a custom solution might be implemented. Further-
more, in extension to Apache Hadoop’s batch pro-
cessing model, Apache Spark provides an interface
to perform streaming analytics, where data is contin-
uously processed in smaller batches. Spark supports
distributed storage systems, TCP/IP sockets, and a va-
riety of data feed providers such as Kafka and Twitter
as streaming sources.

4 STATE OF THE ART REVIEW

Lightweight virtualization solutions based on contain-
ers have continuously gained in popularity during the
last years. Their lightweightness make them in partic-
ular suitable for computing at the outer edge, where
limited resources are available, but still data originat-
ing from the IoT layer needs to be processed:

e Overhead: Compared to native processes, Docker
container virtualization has been shown to not add
significant overhead by leveraging kernel tech-
nologies like namespaces and control groups, al-
lowing the isolation of processes from each other
and an optimal allocation of resources, such as I/O
device access, memory and CPU (Renner et al.,
2016), (Morabito, 2016).

e JoT/Edge Applicability: Recent research has
proved that Docker is an extremely interesting
solution for IoT and Edge Cloud applications,
where, due to the constraints imposed by low-
power devices, it allows lightweight virtualization
and facilitates the creation of distributed archi-
tectures (Pahl and Lee., 2015), (Morabito et al.,
2017).

e Big Data: In addition, Docker is suitable for
provisioning Big Data platforms, for instance
Hadoop and Pachyderm, helping overcome dif-
ficulties in installation, management, and usage
of large data processing systems (Naik, 2017).
Such systems, as for instance Hadoop, have
been shown to be a convenient solution for pre-
processing large amounts of data also on small
clouds with limited networking and computing re-
sources (Femminella et al., 2016).

The recent development of affordable single board
computers allows to create low-power and low-cost
clusters for IoT environments, offering the capabil-
ity of pre-processing sensor data, while keeping ac-
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quisition and maintenance costs low (von Leon et al.,
2018). Devices such as the Raspberry Pi, which offer
the possibility to attach sensors and actuators to its
GPIO pins, are particularly interesting for any system
which gathers, processes, and reacts to environment
data of some form, such as smart infrastructures and
smart sensor networks, as has been shown by the re-
search done at the University of Glasgow in the Smart
Campus project (Tso et al., 2013), (Hentschel et al.,
2016). The team behind HypriotOS, a Linux based
operating system created with the aim of making the
Docker ecosystem available for ARM and IoT de-
vices, showed that container orchestration tools like
Docker Swarm and Kubernetes can be used on Rasp-
berry Pis to create highly available and scalable clus-
ters (Renner, 2016a), (Renner, 2016b).

However, an exploration of the limits of putting
a containerised big data streaming application on a
lightweight cluster architecture is still lacking. Thus,
we have built such an architecture and evaluated it
in terms of cost, configuration and performance as-
pects. An important concern for us was the con-
struction of industry-relevant container management
(Docker) and monitoring (Prometheus) tools.

5 LEIGHTWEIGHT EDGE DATA
PROCESSING PLATFORM

The proposed system is built on top of a Raspberry
Pi cluster. The devices are part of a Docker swarm,
leveraging the ease of container orchestration on mul-
tiple devices provided by the same. All applications,
i.e., the Apache Hadoop and Apache Spark cluster,
the Prometheus monitoring stack and the applica-
tions used to simulate data collection, are executed
inside Docker containers, simplifying the deployment
and management of the services, even in case of a
hardware failure. The Hadoop distributed file sys-
tem (HDFS) is used as data source for an Apache
Spark streaming application. The data is provided by
a Nodejs® application, which writes files to the HDFS
via its API. An overview of the architecture is shown
in Figures 4 and 5. Figure 4 shows the architecture of
the implementation and the data flow during the ex-
periments, while Figure 5 shows an overview of the
distribution of the services on the Raspberry Pis in
the configuration used for the experiments.

3Nodejs, https://nodejs.org
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Figure 4: System Architecture.

5.1 Hardware Architecture

For the cluster, eight Raspberry Pi 2 Model B are
used, each fitted with an 8 GB micro SDcard for the
installation of the OS. The Raspberry Pis are con-
nected to a Veracity Camswitch 8 Mobile switch?,
which is also used to power the devices through
POE (Power over Ethernet). The switch features ten
10/100Mbit/s ports, eight of which are 802.3 at POE
outputs. The Raspberry Pis are connected to the
switch using category SE SFTP cables.

POE has the advantage of the setup being cleaner,
since a separate power supply is not needed for the
Raspberry Pis and as such less cables run across the
system, although this is neither necessary nor cost
efficient. Since the Raspberry Pi does not provide
the necessary connectivity for POE, the devices need
to be outfitted with an additional POE module, con-
nected to the Raspberry Pis through the GPIO pins.

5.2 Software Architecture
5.2.1 Operating System

The Raspberry Pis run Hypriot OS?, a specialized De-
bian distribution, as their operating system. The dis-
tribution comes with Docker pre-installed, and is a
minimal operating system optimized to run Docker
on ARM devices. Hypriot OS is available as an im-
age which can be flashed, ready to use, on a micro SD
card. The OS provides a pre-boot configuration file,

4Veracity Global Camswitch 8,
http://www.veracityglobal.com/products/networked-
video-integration-devices/camswitch-mobile.aspx

SHypriot OS, https://blog.hypriot.com/about/

allowing, among others, to set a host name, which is
used for Avahi local host name resolution.

The OS comes with a pre-installed SSH service,
accessible through the configured credentials. Since
password authentication is not secure, all nodes are
set up to use public key authentication. To automate
the setup of the nodes, like configuring automatic
mounting of drives and authentication, or installing
additional software, a configuration management tool,
namely Ansible®, is used since it allows to define the
hosts and automate configuration tasks via SSH.

5.2.2 Swarm Setup and Management

The Docker engine CLI is used to initialize and setup
the swarm. To initialize it, a single node swarm is cre-
ated from one of the nodes, which becomes the man-
ager for the newly created swarm. The manager stores
join tokens for manager and worker nodes, which can
be used to join other machines to the swarm. Fur-
thermore, different tags can be set through the Docker
CLI on each node, which are used to constrain the de-
ployment of services to specific nodes. To perform
other swarm management tasks, for instance promo-
tions, demotions and to manage the membership of
nodes, Docker engine commands can be issued to any
one of the swarm managers.

5.2.3 Service Deployment

To deploy services to the swarm, Docker stack de-
ployment is used, which allows to deploy a complete
application stack to the swarm. To describe the stack,
Docker uses a stack description in form of a Compose

6 Ansible, https://www.ansible.com/
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Figure 5: Overview of the distribution of the service containers on the nodes.

Table 2: Service allocation on the cluster nodes.

Node Container

Node 0  Data collection, Prometheus exporters7

Node 1  Data collection, Prometheus exporters

Node 2  Data collection, Prometheus exporters

Node 3  Spark worker 2, Prometheus exporters

Node 4  Spark worker 1, Prometheus exporters

Node 5  Spark master, Prometheus exporters,
Prometheus, Grafana

Node 6  Spark worker 3, Prometheus exporters

Node 7  Spark worker 4, Prometheus exporters

file (version 3), where multiple services are defined.
For each service that is part of the stack, the origin
registry, ports and networks, mounted volumes, ser-
vice name and replicas as well as deployment con-
straints, for example Docker node tags, can be spec-
ified. When deployed on a manager node, Docker

"Prometheus exporters: Armexporter, Node exporter,
cAdvisor.
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will deploy each service in the stack to the nodes of
the swarm, according to the constraints and definition,
balancing out the containers on the available nodes.

To deploy the compose file to the swarm manager
and to set up the nodes, for example for the prepa-
ration of configuration files and mounted directories,
Ansible scripts were used during this project, but the
actions can be performed manually or with any other
scripting language.

5.2.4 Hadoop and Apache Spark

Although it is possible to use Hadoop natively to cre-
ate clusters of computers, both Hadoop as well as
Apache Spark are deployed inside Docker contain-
ers here in order to streamline the deployment process
and in order to avoid the installation of the software
and the management of all the required dependencies
on each device.

A custom Docker image is used to install both
Hadoop and Apache Spark inside a container and for
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the set-up of the environment. In the final set-up one
master node and four separate worker nodes are de-
ployed. Since the worker nodes act as DataNodes for
the cluster, each worker node container is provided
with sufficient storage space, by means of a standard
3.5 inch 1TB hard disk, mounted as a volume.

Hadoop and Apache Spark are deployed to the
cluster, together with the data collection applica-
tion used to evaluate the implementation, through a
Docker Compose file.

6 EDGE DATA PROCESSING AND
MONITORING

6.1 Data Collection and Analysis

The architecture will be evaluated using two applica-
tions, one for simulating data collection on part of the
nodes and a second one is deployed to the Apache
Spark cluster to process the collected data. The ap-
plications are also used to gather metrics related to
the performance of the system, namely the process-
ing time of submitted data.

Data Collection. In order to simulate data collec-
tion, a Nodejs application is used to send an HTTP
PUT request with the data content to the HDFS API
creating a file in a specified interval of time. The data
collection application is deployed on the remaining
three nodes of the cluster through a Compose file.

The experiment data are sample files exposed to
and read by the application over the network allowing
to change the size and the contents without having to
modify the application and re-deploy it.

Data Analysis. For the analysis of the collected
data, a Python application is used. The applica-
tion polls for newly created files every second and
performs a count of single occurrences of words in
the files. The application is derived, with minimal
changes, from a sample application provided with the
Apache Spark engine®.

The used implementation follows the classical
MapReduce model, as described earlier, creating a list
of (key, value) pairs of the form (word, 1) for each
occurrence of a word. This list is then grouped by
keys, in this case by words, and the Reduce step is
then applied on each group, generating the sum of
occurrences of each word. These last two steps are
performed by one function, reduceByKey. The listing
below illustrates the algorithm in pseudocode with the

8 Apache spark example applications,
https://github.com/apache/spark/tree/master/examples

sample MapReduce implementation used as the test
application.

1 lines

2 count :=
lines.flatMap (lambda (line) {line.split ("")})

3 .map (lambda (word) { (word, 1)})

4 .reduceByKey (lambda (val, acc){val + acc})

5 counts.pprint ()

The application can be deployed to the Spark clus-
ter using the Spark CLI tool sparksubmit to send it to
the master node, which then distributes the applica-
tion to the workers in the cluster.

6.2 Monitoring

In order to facilitate monitoring of the system, a
Prometheus’-based monitoring stack is deployed to
the cluster, composed of three different components.

Firstly, Prometheus is an open source monitor-
ing and alerting system which uses a time series
database, and provides many integrations with other
software such as HAProxy, the ELK stack (Elastic-
search, Logstash and Kibana) or Docker.

Secondly, since the operational model of
Prometheus is to pull metrics from services, the stack
uses various so-called exporters to collect metrics
and expose them to be collected by Prometheus.
Many ready-to-use exporters exist, interesting for this
immplementation are those for Docker and system
metrics. The exporters used are cAdvisor'?, a dae-
mon which collects and exposes container resource
usage, and Node exporter'!, part of the Prometheus
project, which exports hardware and system metrics
exposed by the Linux kernel.

Thirdly, to visualize and review the collected data,
Grafana'? is used. Grafana is a tool for monitoring
and analyzing metrics, which allows to create dash-
boards exposed via a web user interface (UI). This
solution was chosen because it requires little config-
uration, for a use case involving the monitoring of
Docker containers on multiple Linux machines. Thus
an almost ready-to-use implementation, which can be
deployed on the Raspberry Pis, was used. The imple-
mentation takes advantage of Docker containers, and
the stack is deployed to the Docker cluster using a
custom Compose file.

In the final setup, Prometheus and Grafana are
both deployed on one of the nodes, while one instance

9Prometheus, https://prometheus.io/

10Google cAdvisor, https://github.com/google/cadvisor

IINode  exporter, https://github.com/prometheus/
node_exporter

12Grafana, https://grafana.com/
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each of cAdvisor and Node exporter is deployed on
every Raspberry Pi.

7 EVALUATION

We start with some observations on practical config-
uration and management concerns in Subsection 7.1
before addressing performance in the following per-
formance evaluation in Section 7.2.

7.1 Set-up and Practical Considerations

We evaluate here the practical effort needed to set up
and manage the described cluster architecture.

Both the hardware setup and the preparation for
running the software do not require any special skills.
The Micro SD cards can be flashed using a dedi-
cated tool, which is available for any major platform.
The Hypriot OS maintainers provide information on
the pre-boot configuration file for the nodes operat-
ing system on their website, and from there, many
guides are available for setting up a connection over
SSH using public key authentication. Scripts for set-
ting up, and later managing, the Docker swarm were
prepared to automate time consuming tasks, but all
the steps required can also be performed manually.
Since the setup requires to run the same commands
on all nodes, for example to install the required de-
pendencies, or to join a newly created swarm, using
a configuration management tool, or preparing some
shell scripts, should be considered. Once the cluster
is running, the Docker documentation provides sup-
port needed to manage the swarm or deploy services
to the same. The services are deployed using Docker
compose files, and running a command on one of the
master nodes.

The following observations on the main evalua-
tion criteria can be made:

e Maintainability and Ease of Operation. Using
containerized services on a Docker swarm is cru-
cial for achieving maintainability and ease of op-
eration of the implementation.

e Fault-tolerance. Furthermore, the use of Docker
requires only minimal overhead, but increases the
fault tolerance of the system, since containers fail-
ing due to hardware or software problems can be
easily restarted on any other node, which is taken
care of by the cluster itself. Thus, Docker is ideal
for achieving high availability and increasing the
fault tolerance.

e Image Building and Build Times. It has to be
kept in mind that for applications such as Apache
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Hadoop and Apache Spark, there might not al-
ways be a Docker image built for the ARM archi-
tecture. The continuous integration and continu-
ous delivery (CI/CD) service provided by Gitlab'3
was used by us to build the required images. Since
the containers used to build the images run on a
different instruction set than the Raspberry Pis, a
system emulator, QEMU14, was used inside the
Dockerfiles to cross-build images. Even though
there are some problems with this approach due to
the Java Virtual Machine (JVM) displaying bugs
during the builds, making it necessary to run some
preparatory commands manually on the already
deployed services, it has been preferred to build-
ing the images on one of the cluster nodes due to
the longer build times. Table 3 shows the build
times of one of the used images on a common
notebook!’, compared to the build times of the
same image on a Raspberry Pi used in the clus-
ter, to which the time to distribute the image on
the nodes has to be added. The pull of the image
from the Gitlab registry took around 6 minutes.

While these build times seem high, this is an activ-
ity that is not frequently needed and can generally
be tolerated.

Table 3: Comparison of Docker image build times.

Target architecture  Build architecture  Build time
armv’7/ x86_64 6m 1s
armv7/ armv7 14m33s

7.2 Performance

The main performance evaluation focus shall be on
experimentally evaluating data processing time und
resource consumption, based on input data file sizes
that reflect common IoT scenarios with common
small-to-midsize data producers.

Running the test applications required some fine
tuning of the resources allocated to the Spark ex-
ecutors, influenced by the constraints imposed by
the Raspberry Pis. The only relevant results were
achieved by allocating S00MB of memory to each ex-
ecutor, since the Spark process would generate out-
of-memory exceptions when using less, while on the
other hand, if given more memory, the processes
would starve one of the components necessary for the
Hadoop/Spark cluster. This memory allocation can be
set during the submission of a job.

13Gitlab, https://about.gitlab.com/

4QEMU, https://www.qemu.org/

15The model used is a HP 355 G2, with AMD A8-6410
2GHz CPU and 12GB memory.
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7.2.1 File Processing Times

The delay between the submission of a new file and
the end of the analysis process was measured by com-
paring the submission time with the time the output
was printed to the standard output stream (stdout) of
the submission shell, using time stamps for both.

Table 4 shows the results measured for files with
around 500B and 1KB, respectively, submitted once a
second, which reflects as explained a common small-
to-midsize data production volume. In both cases, the
data analysis application was polling for new files ev-
ery second, and files were submitted at a rate of one
per second.

The test cases aimed at exploring the limits of
the RPi-based container cluster architecture for cer-
tain IoT and edge computing settings. The delays
shown in Table 4 can be considered too high for some
real-time processing requirements, e.g., for any ap-
plication which relies on short times for immediate
actuation, and are unexpectedly high considering the
file size and the submission rates used during the test
runs. However, if only storage and analysis without
immediate reaction is required or the sensors produce
a limited volume of data (such as temperature sen-
sors), then the setting would be sufficient.

Table 4: File processing duration from time of file creation.

File size  Polling time  Delay
1.04KB s 236s
532B Is 61s

7.2.2 Resource Consumption

Table 2 earlier showed how the various services were
distributed among the nodes during the execution.
The data recorded by the monitoring stack deployed
shows no increase of the used resources during file
submission and analysis.

CPU. Figure 6 shows the CPU time use (by node)
during the execution of the test application, while Fig-
ure 7 shows the same data, divided by container. As
could be expected, the graphs show an increase of the
CPU workload on all Apache Spark nodes, in partic-
ular on the worker nodes of the cluster. The analysis
application was submitted from node 3 (Spark worker
2), which explains the higher CPU use compared to
the other nodes at point 0 in the graphs, while data
collection was started two minutes in, at the 120 sec-
onds mark, as can be seen by an increased CPU uti-
lization by the Spark master node. Data collection
and data analysis were stopped at 420 seconds and
480 seconds, respectively. The shown records are for
the 532 Bytes test file, see also Table 4.

Memory. Similar results can be seen in Figure
8 and Figure 9, showing the memory use of the con-
tainers in Spark and the monitoring stack during the
experiment divided by node and by container, respec-
tively. As expected, we can observe that the memory
usage by the Spark node used to submit the applica-
tion, and which therefore acts as controller for the ex-
ecution and collects the results from all other nodes,
is higher than on the other nodes.

Not shown is the resource usage by the remaining
system (e.g., the Docker daemons and system pro-
cesses), which were constant during the test, with
CPU time below 2% and memory use around 120MB
on each node.

7.2.3 Analysis and Discussion

The graphs show that the system resources are not
used optimally, with room to spare both on the CPU
and in particular on the memory of the devices. The
results suggest that the delay is due to how the distri-
bution and replication of small files'® is performed by
HDFS, causing a suboptimal use of Sparks streaming
capabilities and the systems resources.

Apart from the rather high delays and a subopti-
mal resource usage, the recorded data shows an un-
even CPU utilization by the Spark master container,
reaching 0% around the 250 seconds mark, which
was consistently irregular throughout all the test runs.
This might be due to the file system, or rather HDFS,
starving the process due to high I/O times. Here, fur-
ther experiments with alternative sources might ex-
plore and confirm reasons with more certainty.

Regarding possible hardware performance im-
provements, the Raspberry Pi 3 might here be a better
option than a Pi 2. While in comparison the CPU only
gains 300MHz, it also updates its architecture from a
Cortex-A7 set to a Cortex-A53 one, which is an archi-
tecture boost from 32-bit to 64-bit, thus resulting in
much better performance of a factor 2 to 3'7. In terms
of RAM, where the Raspberry Pi 2 has 450MHz, the
Pi 3 has 900MHz RAM.

In conclusion, the aim of this investigation, was
to determine some of the limits of the proposed in-
frastructure. Depending on the concrete application
in question, our configuration might however still
be sufficient or could be improved through better
hardware or software configuration. Furthermore, a
controller allowing self-adaptation (Jamshidi et al.,
2016) to address performance and resource utilisa-

16 A typical block size used to split files by HDFS is
64MB.

https://www.jeffgeerling.com/blog/2018/raspberry-pi-
3-b-review-and-performance-comparison
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Figure 7: Container CPU time, by container.

tion anomalies of the platform configuration might be
a solution for the future here that can address sub-
optimal resource utilisation (Jamshidi et al., 2016;
Jamshidi et al., 2015).

8 CONCLUSION

A lightweight containerised cluster platform can be
suitable for a common range of IoT data processing
applications at the edge. Leveraging the lightweight
containerization and container orchestration capabil-
ities offered by Docker, allows for an edge comput-
ing architecture that is simple to manage and has high
fault-tolerance. Due to the Docker swarm actively
maintaining the state of the services, Docker provides
high availability of services, making the cluster self-
healing, while also making scaling simple.

The low energy and cost impact of single board
devices, while still being able to run complex infras-
tructures by means of clustering, are promising with
regards to the overall reduction of infrastructure costs
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even in the presence of high volumes of data. Even
though it has been shown that it is possible to imple-
ment a Big Data system on device clusters with strict
constraints on networking and computing resources
like the Raspberry Pis to create a low-cost and low-
power cluster capable of processing large amounts of
data, the actual performance of at least our prototype
system has limits. For instance, a performance lim-
itation of the prototype implementation was caused
by the choice of the Hadoop distributed file system
(HDFS) as source for data streams of small files.

In practical terms, for our platform configuration,
most of the images used were created from scratch, or
at least heavily customized from similar implementa-
tions to meet the requirements. Nonetheless, the num-
ber of projects targeting ARM devices are growing in
popularity, for instance, the monitoring stack, which
allowed us to use the system as a performance test bed
for the implementation and applications, was avail-
able as a ready-to-use Docker compose file which
could be deployed to the cluster with just some con-
figuration changes.
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Lightweight edge architectures are important for
many new application areas. Autonomous driving is
an example where mobile edge clouds are required.
Vehicles need to coordinate their behaviour, often us-
ing modern telecommunications technologies such as
5G mobile networks. This requires onboard comput-
ing capability as well as local edge clouds in addition
to centralised clouds in order to guarantee the low la-
tency requirements. SBC clusters are an example of
computational infrastructure close the outer edge.

A possible future extension of the work should ex-
plore different possibilities enabled by Apache Spark,
for example using the network as a data source. This
approach could facilitate the use of common IoT data
transmission protocols, like MQTT, while Hadoop
and HDFS might be used on pre-processed and ag-
gregated data. Furthermore, the model used to evalu-
ate the implementation could be extended in order to
verify the actual performance of the system in more
scenarios. Here, alternative data stream sources could
also be considered as part of future work.

Another direction would go beyond the perfor-

mance engineering focus, addressing concerns such
as security and trust (El Ioini and Pahl, 2018; Pahl et
al., 2018a) for IoT and edge cloud settings.
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